• Nie Znaleziono Wyników

In this paper, we obtain su ient onditions for the strong onsisten y of the least squares estimator βe of β under additional assumptionsonthenon-randomsequen ex1, x2

N/A
N/A
Protected

Academic year: 2021

Share "In this paper, we obtain su ient onditions for the strong onsisten y of the least squares estimator βe of β under additional assumptionsonthenon-randomsequen ex1, x2"

Copied!
19
0
0

Pełen tekst

(1)

SUFFICIENT CONDITIONS FOR THE STRONG

CONSISTENCY OF LEAST SQUARES

ESTIMATOR WITH α-STABLE ERRORS

João Tiago Mexia

Mathemati sDepartment, Fa ultyof S ien eandTe hnology

New Universityof Lisbon

Monte da Capari a2829516 Capari a, Portugal

e-mail: par rf t.unl.pt

and

JoAo˜ Lita da Silva

NewUniversity ofLisbon,Mathemati s Department

Fa ultyofS ien eandTe hnology

Quinta da Torre, 2825114 Monteda Capari a, Portugal

e-mail: jsf t.unl.pt

Abstra t

Let Yi = xTi β+ ei, 1 6 i 6 n, n >1 bealinearregressionmodel

andsupposethattherandomerrorse1, e2, . . .areindependentandα-

stable. In this paper, we obtain su ient onditions for the strong

onsisten y of the least squares estimator βe of β under additional

assumptionsonthenon-randomsequen ex1, x2, . . .ofrealve tors.

Keywords: linearmodels,leastsquaresestimator,strong onsisten y,

stability.

2000Mathemati sSubje t Classi ation: 60F15.

(2)

1. Introdu tion

Thestrong onsisten yoftheLeastSquaresEstimator(LSE)hasbeenstud-

iedonthe last yearsbymanyauthors (seefor instante[6, 10,11,12,13,14℄

or [15 ℄). In the papers [10℄ and [11℄ are obtained ne essary and su ient

onditions for the LSE strong onsisten y. Nevertheless, the formulation

used by the authors of the papers quoted above assumes an i.i.d. random

errorsequen e withnullexpe tedvalueandnite absolutemoment oforder

1 6 r < 2. In a rst stage, our purpose will be to derive LSE strong on-

sisten y from a formulation that is, insome sense, similar to the des ribed

previously. As a matter of fa t, we will assume that the errors e1, e2, . . .

arei.i.d. α-stableex luding any hypothesis ontheir absolute moments. Let

us point out thatthe stability onditionfor theerrorsis introdu ed here to

makeusefulthesuitable'linearity' propertiesofthestabledistributions. On

a se ond stage, we generalized the above assumptions supposing that the

random variables e1, e2, . . .areonly independent andα-stable, obtainingan

extension of theresultspresentedin[10 ℄ and[11 ℄.

Consider the linearmodel,

(1.1) Yi = xTi β+ ei, 1 6 i 6 n, n >1,

where x1, x2, . . . areknown non-random real κ-ve tors,

β:=

 β1

.

.

.

βκ



istheve tor of(unknown)parameters andei istherandomerror inthei-th

observation (i = 1, . . . , n).

Setting

Sn:= x1xT

1 + . . . + xnxT

n

wewillassumethatS−1

n existsfornlargeenough(forsmallnsu hthatS−1

n

doesnot exist,S−1

n anbedened arbitrarily). DenotingtheLSEofβ byβe

(3)

we an write

(1.2) βe = β + S−1n

Xn

i=1

xiei

sothat, βe isstrongly onsistent ifand only ifS−1n Xn

i=1

xiei −→ 0a.s. .

2. Auxiliary tools

Thefollowing notational onventions willbe adoptedthroughout thepaper.

Given a ve tor x∈Rκ,the eu lidean ve tor norm will bedenoted by

||x|| :=√ xTx

and the matrix normof anmatrix A∈ Mκ×κ(R) willbeindi ated by

|||A||| := sup

x6=0

||Ax||

||x|| .

The tra e of A ∈ Mκ×κ(R) will be denoted by tr(A). For any matrix A∈ Mκ×κ(R)withrealeigenvalueswewillindi atebyνmax(A)andνmin(A)

the maximum and minimum eigenvalue of A respe tively. Given two sym- metri matri esA, B∈ Mκ×κ(R) we writeA > B to denotethat A− Bis

nonnegative denite;wewillusethenotationA> Btoindi atethatA− B

ispositive denite.

Itiswell-knownthatarandomvariableZ (oritsdistribution) issaid to have a stable distribution if for any positive numbers c1 and c2, there is a

positive numbera anda realnumber bsu h that

(2.1) c1Z1+ c2Z2 = a Z + bd

(4)

where Z1 and Z2 are independent opies of Z.1 A random variable Z is

alledstri tly stable if (2.1) holdswithb= 0 (see [16℄).

Equivalently (see [16 ℄), a random variable Z is said to have a stable

distribution ifthere are parameters 0 < α 6 2, σ >0, −1 6 λ 6 1 and µ

real su hthat its hara teristi fun tion hasthefollowing form,

(2.2)

E eiZt

=

















exp − σα |t|α



1 − iλ(signt) tanπα 2

+ iµt

!

if α6= 1

exp − σ |t|



1 + iλ2

π (sign t) log |t|

 + iµt

!

if α= 1 ,

where

signt:=







1 if t >0 0 if t= 0

−1 if t <0 .

Sin e(2.2) is hara terized byfour (unique) parameters

α∈]0, 2], σ >0, λ∈ [−1, 1], µ∈R

respe tively,theindexofstability,thes aleparameter,theskewnessparame-

ter andtheshift parameter wewilldenotestabledistributionsbySα(σ, λ, µ)

and write

Z ∼ Sα(σ, λ, µ)

to indi ate that Z has the stable distribution Sα(σ, λ, µ). A stable random

variableZ withindex ofstability α is alledα-stable.

Let us remark that a random variable Z on entrated at one point is always stable, i.e., a onstant µ has degenerate distribution Sα(0, 0, µ) for

1

ThenotationX = Yd meansthattherandomvariablesXandY agreeindistribution, thatis,FX(x) = FY(x),x ∈R.

(5)

any 0 < α 6 2. This degenerate ase is of no spe ial interest and, unless

stated expli itly, we always assume that Z is non-degenerate. In fa t, de- generate distributions have unusualproperties, for example, all moments of

a degenerate distribution arenite, whereas a non-degenerate stable distri-

bution with0 < α < 2 hasinnite se ondorder moments.

The distribution fun tions of α-stable random variables are absolutely

ontinuous and their densitieshave derivatives of anyorder in every point,

but ex luding some spe ial ases, their representations an be expressed

onlythrough ompli atedspe ialfun tions. However,thereexistasymptoti

expansionsofα-stabledensitiesinaneighborhoodoftheoriginor ofinnity (see [9,17 ℄or [18℄). Themain spe ial aseis given by

S2(σ, λ, µ) = N (µ, 2σ2) (σ > 0).

In this situation the skewness parameter λ is totally irrelevant. Hen e, a

random variable

Z ∼ S2(σ, λ, µ) (σ > 0)

hasprobabilitydensityfun tion

fZ(z) = 1

2σ√πe(z−µ)24σ2 , z∈R.

The remaining spe ial ases of probability densities of α-stable random

variables in losed form are: the Cau hy distribution S1(σ, 0, µ) whose

densityis

f(x) = σ

π (x − µ)2− σ2 , x∈R

and the LévydistributionS1/2(σ, 1, µ) whose densityis

f(x) =

r σ

2π(x − µ)3e2(x−µ)σ , x > µ.

(6)

Somebasi properties ofstabledistributions are listedbelow: (see [16℄)

(1) Let Z1 and Z2 be independent random variables with Zi ∼ Sαi, λi, µi),i= 1, 2. Then

Z1+ Z2∼ Sα



α1 + σα2)1/α1σα1 + λ2σα2

σα1 + σα2 , µ1+ µ2

 .

(2) Let Z ∼ Sα(σ, λ, µ) and let a be a real onstant. Then Z + a ∼ Sα(σ, λ, µ + a).

(3) LetZ ∼ Sα(σ, λ, µ)and letabea non-zero real onstant. Then aZ∼ Sα(|a| σ,sign (a)λ, aµ) if α6= 1 aZ∼ S1



|a| σ,sign(a)λ, aµ − 2

πσλalog |a|



if α= 1.

(4) LetZ ∼ Sα(σ, λ, µ) withα6= 1. ThenZ is stri tly stableifand only

ifµ= 0.

(5) Z ∼ S1(σ, λ, µ)isstri tly stableifand onlyifλ= 0.

(6) Z ∼ Sα(σ, λ, µ)issymmetri about µifand onlyifλ= 0.

(7) LetZ have distribution Sα(σ, λ, 0) withα <2. Thenthere exist two

i.i.d. randomvariablesA andB with ommon distributionSα(σ, 1, 0)

su hthat

Z =d

1 + λ 2

1/α

A−

1 − λ 2

1/α

B if α6= 1

(7)

Z =d

1 + λ 2

 A−

1 − λ 2

 B+

1 + λ π

 log

1 + λ 2



1 − λ π

 log

1 − λ 2



if α = 1.

The next statement is a powerful tool in matrix analysis and generalizes a

result whi h is a sine qua non for probability theory: the s alar version of

the Krone kerlemma.

Lemma 2.1 Krone ker's lemma (matrix ase). Let xi, i = 1, 2, . . . be a

sequen e ofrealκ-ve tors,Ai asequen e ofreal symmetri nonsingularκ×κ

matri es with Ai+1 > Ai > O and Pi a sequen e of nonsingular κ × κ

matri es. Suppose that ri=P j=iA−1

j xj exists (and isnite). Then:

(i) If A:= lim

n→∞

An existsandis nite, then lim

n→∞

A−1

n

Xn

i=1

xi existsand

isnite.

(ii) If lim

n→∞

1

tr(An) = 0 then lim

n→∞

1

tr (An) Xn

i=1

xi= 0.

(iii) If lim

n→∞

A−1

n = O, lim

n→∞

Pnrn= 0and

lim sup

n→∞

Xn

i=1

A−1n Ai− Ai−1

P−1

i

< ∞ then lim

n→∞A−1

n

Xn

i=1

xi = 0.

P roof. Theproof an be founded in[1 ℄on page 2.7.

(8)

Remark 1. The ondition lim supn→∞Pn

i=1

A−1n Ai− Ai−1

P−1

i

< ∞

isimplied bythemu h stronger ondition

lim sup

n→∞

νmax(An) νmin(An) <∞.

For some remarkson amatrix versionof Krone ker's lemma, see[2℄.

To nish this se tion, we present an important result that gives us the

almost sure onvergen e for sums of independent random variables Xi ∼ Sαi, λi, µi).

Proposition 2.1. Let {Xi, i > 1} be independent random variables Xi ∼ Sαi, λi, µi),0 < α 6 2. Then,

X

i=1

Xi onverge a.s. ⇐⇒

X

i=1

σαi <∞ and X

i=1

µi onverge.

P roof. We establish the proof only for 0 < α < 2 sin e the ase α = 2

is obvious in view of the form of hara teristi fun tions of normal law.

We show rst that if

P

i=1σαi <∞ and P

i=1µi onverge then P i=1Xi

onverges almostsurely. Setting,

an:= (σα1 + . . . + σαn)1/α, bn:= λ1σα1 + . . . + λnσαn σα1 + . . . + σαn

and cn:= µ1+ . . . + µn

we get, forall n∈N,

(9)

Xn

i=1

Xi ∼ Sα(an, bn, cn)

provided thatXi∼ Sαi, λi, µi).

Therefore,we an write

(2.3)

Xn

i=1

Xi= ad nYn+ cn if α6= 1

and

(2.4)

Xn

i=1

Xi= ad nYn+ 2

π bnan log an+ cn if α= 1

where {Yn, n > 1} is a sequen e of random variables satisfying Yn∼ Sα(1, bn,0). Hen e, there exist two i.i.d. random variables An and Bn with ommon distribution Sα(1, 1, 0) su h that,

(2.5) Yn=d

1 + bn

2

1/α

An

1 − bn 2

1/α

Bn if α6= 1

and

Yn=d

1 + bn 2

 An

1 − bn

2



Bn+1 + bn π log

1 + bn 2



−1 − bn

π log

1 − bn

2



if α= 1.

(2.6)

(10)

Sin e

P

i=1σαi <∞ and P

i=1µi is onvergent we obtain the

onvergen e inlawof Yn sin e An and Bn haveboth distribution Sα(1, 1, 0)

for all n ∈ N (let us note that bn is a onvergent sequen e). A ording

to (2.3) and (2.4) , the series

Pn

i=1Xi onverges in law whi h implies

the existen e of a (proper) random variable S su h that Pn

i=1Xi −→ Sa.s.

(see [4℄).

Wenowshowthat,if

P

i=1Xi onvergesalmostsurelythenP

i=1σαi <∞

and

P

i=1µi onverge. Sin e

|bn| =

λ1σα1 + . . . + λnσαn σα1 + . . . + σαn

61, ∀n ∈N

thereexistasubsequen e bηn

onvergingtoapointof[−1, 1]whi himplies

the onvergein lawofthe following random sequen es:

1 + bηn 2

1/α

Aηn

1 − bηn

2

1/α

Bηn if α6= 1

and

1 + bηn 2

 Aηn

1 − bηn

2



Bηn+1 + bηn π log

1 + bηn 2



−1 − bηn

π log

1 − bηn

2



if α= 1 .

Therefore,thealmost sure onvergen e of

P

i=1Xi leads to

n→∞lim

ηn

X

i=1

σαi <∞

(11)

(see Theorem14.2 of[3℄ inpage 193)sothat,

X

i=1

σαi <∞

sin e this isa seriesof non-negative terms. Thus,

λ1σα1 + . . . + λnσαn+ . . .

σα1 + . . . + σαn+ . . . onverge,

X

i=1

µi onverge.

3. The strong onsisten y of LSE

Fromthesixties,thestrong onsisten yofLSEhasattra tedmu hattention

frommanystatisti ians. Inthemiddleandlateofseventiestheproblemwas

satisfa torily solved for the ase where the random errors possesses a nite

varian e. In fa t, a paper by Lai, Robbins and Wei (1979) showed that if

the e1, e2, . . . arei.i.d. withE e1

= 0and 0 < E e21

<∞ thena su ient

onditionfor the strong onsisten y ofβe is,

S−1n = Xn

i=1

xixTi

!−1

−→ O

as n → ∞. Hen e, the parti ular ase of the linear regression model (1.1)

givenbyi.i.d. stri tlystableerrorswithindexofstabilityα= 2is ompletely

under overbytheLai,Robbins &Wei'sresult.

Theorem 3.1. Consider the linear regression model (1.1) . If

(a) the random variables e1, e2, . . . are i.i.d. S2(σ, λ, 0),

(b) lim

n→∞S−1n = O,

then βe is strongly onsistent.

(12)

Remark 2. Letusnotethatthene essityofthe onditionlimn→∞S−1n = O

on the LSE strong onsisten y it had been proved earlier by H. Drygas

(1976) onthesameassumptions fortheerror sequen e: e1, e2, . . . i.i.d. with E e1

= 0 and 0 < E e21

<∞.

Moregenerally,

Theorem 3.2. Consider the linear regression model (1.1) . If

(a) the random variables e1, e2, . . . are i.i.d. S2(σ, λ, µ) withµ6= 0,

(b) lim

n→∞S−1n = O, lim sup

n→∞

Xn

i=1

S−1n xixTi

< ∞and

X

i=1

S−1

i xi <∞,

then βe is strongly onsistent.

P roof. From (1.2)weget

βe = β + S−1n Xn

i=1

xi(ei− µ) + µS−1n

Xn

i=1

xi.

Sin e ei − µ ∼ S2(σ, λ, 0) the thesis is a onsequen e of Theorem 3.1 and Krone ker's lemma (matrix ase).

The next theorem an be interpreted as an alternative path to the results

presented in[10℄ and [11℄. Indeed, the authors of thepapers quoted above

supposean i.i.d. error random sequen ewhere ea h term hasnull expe ted

value and nite absolute moment of order 1 6 r < 2. Our results will

establishes thestrong onsisten y of the LSE assuming only that the error

random sequen eisi.i.d. α-stable(α < 2).

Theorem 3.3. Let 0 < α < 2, α 6= 1 and onsider the linear regression

(13)

(a) the random variables e1, e2, . . . are i.i.d. Sα(σ, λ, µ),

(b) lim

n→∞S−1n = O, lim sup

n→∞

Xn

i=1

S−1n xixTi

<∞ and X

i=1

S−1i xi

min (α,1)<∞,

then βe is strongly onsistent.

P roof. Theidentity (1.2) guarantees,

βe = β + S−1n Xn

i=1

xiei = β + S−1n Xn

i=1

xiei + µ S−1n Xn

i=1

xi

withei ∼ Sα(σ, λ, 0). Ontheonehand,byKrone ker's lemma(matrix ase) we have µ S−1n Pn

i=1xi −→ 0 as n → ∞ provided that

Pi=1S−1

i xi

< ∞

and lim supn→∞Pn i=1

S−1n xixT

i

< ∞. On the other hand, ea h ompo-

nent ofthe ve tor

Pn i=1S−1

i xiei hasdistribution

Sα





 σ

Xn

i=1

|aij|α

!1/α

, λ

Xn

i=1

sign(aij) |aij|α Xn

i=1

|aij|α

,0





, j= 1, . . . , κ

where aij isthej-th omponent of theve tor ai := S−1i xi. Sin e

X

i=1

|aij|α 6 X

i=1

S−1i xi

α

we obtain the almost sure onvergen e of

P i=1S−1

i xiei through the

Proposition2.1and Krone ker's lemma (matrix ase) permitus to on lude

S−1

n

Pn

i=1xiei −→ 0a.s. .

(14)

On the next result we will use the notation |x|min := min |x1| , . . . , |xκ|

where xis annon-random κ-ve tor.

Theorem 3.4. Consider the linear regression model (1.1) . If

(a) the random variables e1, e2, . . . are i.i.d. S1(σ, λ, µ),

(b) lim

n→∞S−1n = O, lim sup

n→∞

Xn

i=1

S−1n xixTi

< ∞and

X

i=1

S−1i xi

log

S−1i xi

min onverges,

then βe is strongly onsistent.

P roof. Therelation (1.2) givesus

βe = β + S−1n Xn

i=1

xiei = β + S−1n Xn

i=1

xiei + µ S−1n Xn

i=1

xi

with ei ∼ S1(σ, λ, 0). Ea h omponent of the ve tor Pn i=1S−1

i xiei has

distribution

S1





 σ

Xn

i=1

|aij| , λ

Xn

i=1

sign (aij) |aij| Xn

i=1

|aij|

,−2σλ π

Xn

i=1

aijlog |aij|





, j= 1, . . . , κ

(15)

where aij isthej-th omponent of ai := S−1i xi. Therefore,we have

S−1

n

Xn

i=1

xiei −→ 0a.s.

whi h is a onsequen e of the Proposition 2.1 and the Krone ker's lemma

(matrix ase) provided that limi→∞S−1

i xi = 0 (note that our assumptions guarantees

S−1i xixT

i

< ∞ as i→ ∞).

Sin e

X

i=1

S−1

i xi

<∞ and lim sup

n→∞

Xn

i=1

S−1n xixTi

< ∞

we get µ S−1n Xn

i=1

xi −→ 0 as n→ ∞ and thethesisis established.

Remark 3. If the random errors e1, e2, . . . are i.i.d. stri tly stable with

index of stability 0 < α < 2 then the strong onsisten y of the LSE is still valid assuming limn→∞S−1n = O, lim supn→∞Pn

i=1

S−1n xixT

i

< ∞

and

P i=1

S−1i xi

α<∞.

The previous results an be extended to the ase where therandom varia-

bles e1, e2, . . . are (only) independent and ei ∼ Sαi, λi, µi). In this sense,

we nish this work with a possible generalization where the assumption of

identi aldistributionforrandomerrorse1, e2, . . .is ompletelyex luded. For

abetterpresentationofourideasandtheirasso iatedresultsletusstartwith

the ase0 < α 6 2,α6= 1.

Theorem 3.5. Let 0 < α 6 2, α 6= 1 and onsider the linear regression

model (1.1) . If

(a) the random variables e1, e2, . . . are independent su h that ei ∼ Sαi, λi, µi),

(16)

(b) lim

n→∞S−1n = O,lim sup

n→∞

Xn

i=1

S−1n xixTi

< ∞,

X

i=1

 σi

S−1i xi

α

<∞

and

X

i=1

µiS−1

i xi <∞,

then βe is strongly onsistent.

P roof. From(1.2)weonlyhavetoprovethealmostsure onvergen eofthe series

P i=1S−1

i xiei sin e the Krone ker's lemma (matrix ase) establishes the thesis. Ea h omponent of theve tor

Pn i=1S−1

i xiei hasdistribution,

Sα





 Xn

i=1

σi|aij|α

!1/α

, Xn

i=1

σi|aij|α

λisign(aij) Xn

i=1

σi|aij|α

, Xn

i=1

µiaij





, j= 1, . . . , κ

whereaij isthej-th omponentofai:= S−1i xisothat,fromProposition2.1 we obtain thealmostsure onvergen eof

P i=1S−1

i xiei.

The ase α= 1 isdes ribed next.

Theorem 3.6. Consider the linear regression model (1.1) . If

(a) the random variables e1, e2, . . . are independent and su h that ei ∼ S1i, λi, µi),

(b) lim

n→∞S−1n =O,lim sup

n→∞

Xn

i=1

S−1n xixTi

<∞,

X

i=1

σi

S−1i xi

log S−1i xi

min

onverges and

X

i=1

µiS−1

i xi <∞,

then βe is strongly onsistent.

Cytaty

Powiązane dokumenty

[r]

Following the literature review that identified the above DfBC approaches, an online survey was completed to gain a broad understanding of industries position within

W takim stadzie, chociaż na mniejszej populacji i w ograniczonym zakresie, prowadzi się nadal

Po skończeniu U n iw ersy tetu M iklaszew ski zostaje starszym asy sten­ tem przy K atedrze Chem ii Rolnej u prof.. M iklaszew skiego św iad­ czy depesza przesłan a

Zmiany w instytucji prawa pierwokupu omawia Tadeusz Domińczyk wskazując przepisy ustawy o gospodarce gruntami i wywłaszczaniu nieruchomości.. Zasięg ustawowy prawa

is made with the following estimators: (1) the minimum norm quadratic unbiased estimator (MINQUE); (2) the best invari- ant quadratic unbiased estimator (BIQUE), also known as

W tym celu nauczyciel omawia, jak jest zbudowany przewodnik/atlas i w jaki sposób należy z niego korzystać (wskazuje spis gatunków ptaków znajdujący się na przodzie lub

The method is described and re- sults are presented for subsonic, transonic and supersonic flow problems over a