• Nie Znaleziono Wyników

Harborsim, a generally applicable harbour simulation model

N/A
N/A
Protected

Academic year: 2021

Share "Harborsim, a generally applicable harbour simulation model"

Copied!
26
0
0

Pełen tekst

(1)

H A R B O R S I M

a g e n e r a l l y a p p l i c a b l e

h a r b o u r s i m u l a t i o n model

i r . R. Groenveld D e l f t U n i v e r s i t y of Technology Department of C i v i l Engineering Hydraulic Engineering Group D e l f t , 1983

(2)
(3)

1. I N T R O D U C T I O N

Every planning of a p o r t development or design of a new har-bour i s confronted w i t h the unique physical p r o p e r t i e s and r e l a t e d problems to be solved.

On the other hand every p o r t can be defined as a l i n k i n the t r a n s p o r t chain involved i n the t r a n s f e r of cargo from one medium of t r a n s p o r t to another.

Every p o r t and i t s connected transhipment equipment and t r a n s p o r t means are designed f o r the same basic purposed and i n -volves a p o r t consists of a number of systems as:

a. a system of signals (buoys and navigation a i d s ) to enable the ship to make a safe l a n d f a l l

b. an anchorage f o r use while a ship i s w a i t i n g due to t i d a l conditions or congestion

c. p i l o t system

d . a system of towage

e. the quays w i t h cargo handling f a c i l i t i e s f . undercover and open storage

g. inland t r a n s p o r t system e t c .

I t i s p o s s i b l e , t h e r e f o r e , to construct an imaginary port which incorporates t h i s f e a t u r e s .

Nevertheless to determine the capacity of a portsystem, i t i s necessary to schematize the r e a l i t y by leaving out a l l non relevant aspects.

A powerful method t h a t can be used i n the complicated p o r t systems i s o f f e r e d by the d i s c r e t e computer s i m u l a t i o n . Generally speaking simulation i s used to study the dynamic behaviour of the harboursystem by experimentations w i t h a model of t h a t system. In t h i s way i t i s possible to obtain data which i n s t a t i s t i c a l sense are r e l e v a n t to the o r i g i n a l system.

(4)
(5)

THE O B J E C T I V E S O F A D I S C R E T E

C O M P U T E R SIMULATION MODEL .

The o b j e c t i v e s of d i s c r e t e computer simulation models are:

a. With a computer simulation model i t i s possible to d e t e r -mine the r e s u l t s (contemplated r e s u l t s ) of an i n t e r v e n t i o n or a number of i n t e r v e n t i o n s . These i n t e r v e n t i o n s can be of technical nature as enlarging the transhipment c a p a c i t y , improvement of the nautical c o n d i t i o n s , enlarging of the quaylength or concern management as changing of the p r i o r i t y r u l e s (consequence a n a l y s i s ) . In t h i s way i t i s possible f o r instance to determine optimal channel depth or quaylength i n r e l a t i o n to the w a i t i n g times of the ships ( o p t i m a l i s a -t i o n i n por-t p l a n n i n g ) .

b. With a number of t r i a l i n t e r v e n t i o n s a b e t t e r i n s i g h t i n the f u n c t i o n i n g of the system of the p o r t system can be obtained.

I t i s possible to determine the c r i t i c a l parameters and the parameters which a f f e c t the system only s l i g h t l y ( s t r u c t u r e a n a l y s i s ) .

c. I f the boundary conditions of the design of a new harbour are a v a i l a b l e a simulation model can determine whether the design s a t i s f i e s the design requirements.

For many harbours i t i s possible to use a generally applicable simulation model. This means the required amount of time and money i s rather small concerning the t r a n s l a t i o n from the

ver-bal model to a computer simulation model.

That i s why the Hydraulic Engineering Group of D e l f t Univer-s i t y of Technology haUniver-s developed the general Univer-simulation model HARBORSIM.PRO.

(6)

GENERATOR SHIP, TYPE 1 GENERATOR SHIP,TYPE 2 GENERATOR SHIP,TYPE 3 GENERATOR SHIP,TYPE GENERATOR SHIP.TYPE 5

CONFIGURATION SIMULATION MODEL HARBORSIM.PRO

GENERATOR ( )

SHIP.TYPE 6 V J

GENERATOR SHIP.TYPE

0 6 07 0 8 D9 DjO DIG 017 DIB, D19 M 026 D 2 7 M D 2 9 p , D 3 6 D 3 7 D 3 8 0 3 9 M

ö ö f ö i ö ö ööiöiiöiiöi ö f ö i i o l ö ö ö ö

DETAIL A BERTHING AREA

(7)

D E S C R I P T I O N O F T H E G E N E R A L PORT

SIMULATION MODEL HARBORSIM

The model Harborsim i s a tool f o r the design of a new p o r t or marine terminal (masterplan and phases i n the time) and the extention or improvement of an e x i s t i n g port (improvement of the nautical c o n d i t i o n s , enlarging quaylength, enlarging trans-shipment c a p a c i t y , e t c . ) . The model includes the movements of ships towards i n and away from the port dealing w i t h

- a large number of shiptypes (and i f necessary categories per type) w i t h d i f f e r e n t a r r i v a l p a t t e r n s , service time d i s t r i -bution and p r i o r i t i e s ;

- t i d a l conditions (waterlevels and v e l o c i t i e s ) of each chan-nel s e c t i o n ;

- weather conditions (storm and f o g ) ; - day and night n a v i g a t i o n .

The general c o n f i g u r a t i o n of the model i s given i n f i g . (1) and consists o f :

a. an access channel of 4 sections ( s l - s 4 ) ;

b. 4 t u r n i n g basins ( s 5 , s7, s9, s l l ) each of which has access to a maximum of 10 basins;

c. each basin may consist of a great number of quays.

Extention of the number of sections i n the access channel and the number of t u r n i n g basins i s very easy.

Each channel section i n the model can be made one or more way t r a f f i c f o r each shiptype. This information has been put i n two three dimensional a r r a y s . These arrays inform whether i t i s possible t h a t shiptype x overtakes or meets shiptype y i n channel section s.

(8)
(9)

4. O U T P U T

The model Harborsim.Pro gives per run the f o l l o w i n g output:

1. The status of the system w i t h data about the queues (number of e n t r i e s , l e n g t h , maximum and minimum length during the r u n , the mean and the maximum w a i t i n g t i m e ) , the status of the components i n the model ( c u r r e n t , passive or suspended). 2. The number of generated ships per shiptype.

3. For each shiptype:

- histograms concerning w a i t i n g times a t the a r r i v a l buoy (outside the harbour);

- histograms concerning w a i t i n g times i n the harbour; - histograms concerning the t o t a l w a i t i n g times. 4 . For each quay or b e r t h :

(10)

SCHEME COMPUTER SIMULATION MODEL HARBORSIM

COMPONENT

MAIN

PROCESS DESCRIPTION

d e f i n e s :

components

queues

h i s t o g r a m s

t a k e s c a r e o f :

d e c l a r a t i o n s

r u n c o n t r o l

o u t p u t

GENERATORS OF

SHIPS

g e n e r a t e s a c c o r d i n g t o

t h e d i s t r i b u t i o n o f

t h e s h i p t y p e

SHIP

( t e m p o r a r y

compo-n e compo-n t )

passes t h r o u g h t h e

p r o c e s s o f t h e s h i p

PILOT

d e t e r m i n e s i n

conjunc-t i o n w i conjunc-t h conjunc-t h e h a r b o u r

master c o n c e r n i n g t h e

i n c o m i n g t r a f f i c

HARBOURMASTER

d e t e r m i n e s m

conjunc-t i o n w i conjunc-t h conjunc-t h e p i l o conjunc-t

c o n c e r n i n g t h e l e a

-v i n g t r a f f i c

ADMINISTRATOR 1

t a k e s c a r e o f t h e

adm i n i s t r a t i o n c o n c e r

-n i -n g quays

ADMINISTRATOR

2

t a k e s c a r e o f t h e

adm i n i s t r a t i o n o f s a i

-l i n g s h i p s

F i g .

2

(11)

T H E MODEL IN DETAIL

. C O M P O S I T I O N O F T H E M O D E L

The computer simulation model has been w r i t t e n i n the simu-l a t i o n simu-language Prosim; t h i s simusimu-lation simu-language has been developed by the D e l f t U n i v e r s i t y of Technology.

In Prosim every statement i s thought being c a r r i e d out by a system component as a p a r t of the d e s c r i p t i o n of the beha-viour of t h a t component. There w i l l remain a number of tech-nical matters such as d e c l a r a t i o n s , a c t i v a t i o n s , run schedu-l i n g e t c . These matters are considered to be c a r r i e d out by the Prosim system component MAIN. MAIN e x i s t s already before the simulation s t a r t s ( f i g . 2 ) .

The f i r s t section of the model, the d e f i n i t i o n s e c t i o n , i s c a r r i e d out by the component MAIN and shows how the model i s composed.

The second section of the computer model, the dynamic s e c t i o n , shows the behaviour of the d i f f e r e n t components i n t h i s model. The process d e s c r i p t i o n of the components i s given i n the next pages.

(12)
(13)

5.2. P R O C E S S O F T H E C O M P O N E N T MAIN

ACTIVATION The component MAIN e x i s t s already before the simulation s t a r t s .

TASK The component MAIN defines the components GENERATORS, the class of components SHIP and DUMMY-SHIP, the components HARBOURMASTER,

PILOT, ADMINISTRATOR 1 and ADMINISTRATOR 2.

MAIN c a r r i e s out the d e c l a r a t i o n s , the i n i t i a l i z a t i o n , a c t i v a -tions of components and the run scheduling.

At l a s t MAIN takes care of the output of the simulation model.

5.3. P R O C E S S O F T H E G E N E R A T O R S

ACTIVATION The components GENERATOR 1 to 7 are a c t i v a t e d by the component MAIN.

The generator of a shiptype generates ship according the s t a t i s t i c a l a r r i v a l t i m e d i s t r i b u t i o n as Poisson, KErlang, u n i -form, normal, e t c .

When the a r r i v a l of a ship has been generated at the same time, the a t t r i b u t e s of t h a t ship are determined as:

1. s a i l i n g times

2. the stay i n the turning c i r c l e 3. s a i l i n g stretches

4. quay d e s t i n a t i o n

5. draught f o r incoming and leaving ships 6. keel clearance

7. length

8. p r i o r i t y c o ë f f i c i ë n t of the ship 9. c r i t i c a l water v e l o c i t i e s

10. servicing times

The determination of the servicing time i s done according to the s t a t i s t i c a l s e r v i c i n g time d i s t r i b u t i o n of the ship as Poisson, K-Erlang, uniform or normal e t c .

(14)

(HARBOUR ' M O I A R l .

PROCES OF THE HARBOURMASTER

lURNING BASIN 10 BE CONSIDERED: K B - T B = 1

<

l A B E l N QUEUE NüHER IURNINGBA5IN N B - I B . 1

<

>

YE5

CONSIDER IHE FIR5I SHIP Of IHE HMIOUEUE

NUMBER IURNINGBA5IN N 6 - I B = 2

>

ÏES CONSIDER IHE FIR5I SHIP OF IHE HM2.0UEUE

NUMBER IÜRNIN6BASIN N B - T B = 3

<:

>

YES

CONSIDER IHE FIRSI SHIP OF THE HH 3 . a U E U E

E I C

>

YES EIC L A B E l H O - N E X I . E X A M ;

<:

H K . S H I P . N O C O H P NEG

>

YES N B . I B . N B . I B . I

CHECK WAIERLEVEIS AND VEIOCIIIES ENIRANCE NEC

>

< ^ N B J B > I O I A l NUMBER lURNING 8,

ras

<(CHECK WAIERLEVEIS AND VELOCIHES C H A N N a s ) >

NEG

POS CHECK OCCUPAIION CHANNELS

YES CALL H M - 5 I A R I PROCEDURE

D J U E U E . L E N 6 1 H > 0 POS

DEIERMINE IHE PRIORIIY OF HM.SHIP

YES ACIIVAIE AOMIN 2 FROM A 0 M 2 - S I A R I

>

N B _ I B = 1

>

1^ < HM.SHIP.PBIORliY>IWl.PRIFIG > I • ^ r I— r HMl.PRIFIG. HM.SHIP.PRIORIIY HM1.PRI5HIP = HM.SHIP N B . I B . 2 j S < H M . S H I P . P R I 0 R I ! Y > H W 2 . P R I F I G H M 2 . P R I F I G - H M . S H I P . P R I 0 R l i y ^ I HK2-PRI5HIP = HH.SHIP I < lie ^ '

<:

EIC X E I C

>

H M l . P R I F I G > - 0 5 ! i

GENERAIE NEW HM.DUM5HIP ACCORDING H M l . PRISHIP PUI HM-0UM5HIPIN DUHMÏ QUEUE RANKED Bï HIS 50RIPAR

HK2-PR1FIG > - 0 5 . lES I GENERAIE NEW HM.DUMSHIP

ACCORDING H K 2 . P R I S H I P

11

PUI HM.DüMSHIPIN OUMMÏ QUEUE RANKED BY HIS S0R1PAR

EIC

E I C

E I C

CONSIDER IHE NCXI SHIP OF IHE QUEUE |

(15)

5.4. P R O C E S S O F T H E H A R B O U R M A S T E R

ACTIVATION The process of the Harbourmaster i s a c t i v a t e d by the component P i l o t .

TASK The Harbourmaster i n conjunction w i t h the P i l o t and Administra-t o r 2 c o n Administra-t r o l s Administra-the leaving navigaAdministra-tion Administra-t r a f f i c . The Harbour-master considers f o r t h i s purpose the queues HMl-OUEUE, HM2-QUEUE, HM3-QUEUE e t c . of ships ready to leave.

The HMlQUEUE f o r example contains the ships w i t h the d e s t i -nations (1-10) connected w i t h turning basin 1 ( s 5 ) , see f i g . ( 1 ) .

FLOW CHART The Harbourmaster considers the f i r s t ship of the queue HMl-( f i g . 3) QUEUE.

For t h i s ship a number of checks are done: 1 . the f r e e quaylength (FREEQUAY-LENGTH)

2. the t i d a l conditions (WATERLEVELS AND VELOCITIES) 3. the occupation of the channels (OCCUPATION CHANNELS)

I f a l l these checks are s a t i s f a c t o r y the p r i o r i t y of the ship i s c a l c u l a t e d . I f the p r i o r i t y i s higher than the value of the v a r i a b l e HMl-PRIFIG then:

1 . the value of the p r i o r i t y i s given to the v a r i a b l e HMl-PRIFIG

2. the ship of issue i s considered to be the p r i o r i t y ship HMl-PRISHIP

Hereafter the next ship i n the HMl-QUEUE i s considered and above mentioned handlings are repeated from the label HQ-NEXT-EXAM .

I f the HMl-QUEUE has been passed through (HM-SHIP = NOCOMP) the HM2QUEUE containing ships ready to leave w i t h the d e s t i -nations 11-20 connected w i t h turning basin 2 (s7) i s consi-dered and the cycle i s repeated from the label N-OUEUE.

In t h i s way i f necessary HM3-QUEUE and HM4-QUEUE are passed through.

The p r i o r i t y ships (HMl-PRISHIP, HM2-PRISHIP, HM3-PRISHIP, HM4-PRISHIP), i f e x t a n t , are copied i n the shape of dummy ships and put i n the dummy queue (D-QUEUE) ranked by the p r i o r i t y .

Then, provided the length of the D-QUEUE > 0, the component Administrator 2 (ADM2) i s a c t i v a t e d i n the procedure HM-START-PROC.

(16)

PROCES OF T H E PILOT P _ P R I F I G = - 1 , H M 1 . P R I F I 6 = - 1 ; H M 2 _ P R I F I G = - 1 ; H M 3 - P R I F 1 G = - f ; H M 4 - P R I F I G = - 1 ; A R R A Y I R A J E C l INFORMATION INCOMING S H I P S NOT C L E A N E D : N J R I N F ^ T B

ARRAY T R A J E C T INFORMATION LEAVING SHIPS NOT C L E A N E D : O U T J R I N F = T B

L A B E L TEST W E A T H E R ;

< FOG CONDITIONS OR STORMCONDITIONS >

-D E T E R M I N E -D A Y L E N G T H I NIGHT CONDITIONS

>

Y E S Y E S C A L L WEATHERCOND,

<

T E S T -YES HOLD B A D W E A T H E R R E P E A T E R O M TEST W E A T H E R HOLD UNTIL DAY LIGHT COND.

>

CONSIDER THE F I R S T S H I P OF THE Q U E U E P. Q U E U E ( P I L O T Q U E U E ) THIS S H I P = P . SHIP L A B E L NEXT SHIP OF P . Q U E U E : P - S H I P = NOCOMP

>

Y E S C H E C K F R E E Q U A Y - L E N G T H

>

NEG POS C H E C K W A T E R L E V E L S AND V E L O C I T I E S

<:

>

NEG POS C H E K OCCUPATION C H A N N E L S

<

POS

D E T E R M I N E PRIORITY OF THE P.SHIP

>

NEG

PRIORITY O F P . S H I P > P . P R I F I G ,

>

NEG P_PRIFI6 = PRIORITY OF R.SHIP

PILOT PRIORITY S H I P = P. S H I P

CONSIDER NEXT SHIP OF R . Q U E U E

<

P . P R I F I G > - 0,5 Y E S

G E N E R A T I E NEW P . D U M S H I P PUT P_DUMSHIP IN DUMMY Q U E U E R A N K E D BY HIS S O R T P A R

H . M A S T E R . S T A T U S = P A S S I V E Y E S

>

>

ACTIVATE H . M A S T E R FROM HM.START

(17)

5.5. P R O C E S S O F T H E P I L O T

ACTIVATION

TASK

FLOW CHART ( f i g . 4)

The process of the P i l o t i s activated by the component Har-bourmaster or the component Administrator 2.

The P i l o t i n conjunction w i t h the Harbourmaster and Administra-t o r 2 conAdministra-trols Administra-the incoming navigaAdministra-tion Administra-t r a f f i c .

A f t e r g i v i n g values to a number of a u x i l i a r y variables the p i l o t asks f o r the weather conditions (fog and storm) and

determines the daylength. I f no r e s t r i c t i o n s concerning weather conditions and daylength e x i s t , the f i r s t ship of the queue of the P i l o t (P-QUEUE) i s considered, i f not the P i l o t waits un-t i l un-these condiun-tions are s a un-t i s f a c un-t o r y .

Next a number of checks are done:

1 . f r e e quaylength 2. the t i d a l conditions

3. the occupation of the channels

I f a l l these checks are s a t i s f a c t o r y the p r i o r i t y of the ship i s c a l c u l a t e d . I f t h i s p r i o r i t y of the concerning shio i s higher than the value of the v a r i a b l e P-PRIFIG then:

1. the value of the p r i o r i t y i s given to the v a r i a b l e P-PRIFIG 2. the ship at issue i s considered to be the p r i o r i t y ship of

the P i l o t (P-PRISHIP).

The P i l o t has only one p r i o r i t y ship.

Hereafter the next ship i n the queue of the P i l o t i s considered and above mentioned handlings are repeated from the label

NEXT-SHIPS-OF-P-QUEUE.

I f the queue has been passed through (P-SHIP=NOCOMP) the ship w i t h the highest p r i o r i t y (P-PRISHIP) is copied i n the shape of a dummy ship (P-DUMSHIP).

This dummy ship i s placed i n the dummy queue (D-QUEUE) ranked by i t s p r i o r i t y .

The Harbourmaster i s a c t i v a t e d provided his status i s i d l e . The P i l o t is passivated.

(18)

P R O C E S O F A D M I N I S T R A T O R 2

NUMBER SHIP ACTIVAIEO» O

<:

A D - O U H S H I P . NO COMP

>

HML.QUEUE LENGTH.HM?.0UEUE.LENG1H.E1C> NB_5A:I P_OUEUE, LENGTH . CONSIDER THE FIRST SHIP OF IHE

D-QUEUE AO.0UM5HIP. D . Q U E U C F I R S I HOLD (15) POSIIION AD.OUKSHIP . ' A R R I V A L ' YES N B . S A C T = N B . 5 A C I . 1 N B _ S A C I . N 8 . 5 A C T . 1 PILOT. STATUS P A S S I V E YES ACTIVATE PILOT FROM PILOT S T A R !

>

REGISTRAIE S A I U I M E S IN I N C . T R I I N C . Q T R J AND INFO ARRAYS

REGISTRATE SAILTIMES IN O U I - I R I O U T . O T R J AND ONFO ARRAYS

ACTIVATE PILOT.PRISHIP FROM SAILIN

ACTIVATE AD-OUHSHIP FROM 0_SHIPSTART

LABEL NEXT DUMSHIP

CONSIDER IHE NEXT DUMSHIP OF D-QUEUE THIS SHIP. AD-DUMSHIP

< ^ AD-DUM5HIP IS NOCOMP ^

NEG

<

NO CHECK OCCUPAIION CHANNELS

<

POS POSITION A D - D U M S H I P . ' A R R I V A L '

>

YES N B . 5 A C I . N B . S A C M REGISTRAIE SAILTIMES IN I N C . I R J I N C - Q I R J AND INFO ARRAYS

ACTIVATE PILOT. PRISHIP FROM SAILIN

ACIIVAIE A0-OUM5HIP FROM D5H1PSIARI

f i g . 5 A D - D U M 5 H I P . I B . 1

<:

>

A O . DUMSHIP. I B . 2

>

EIC

>

ACTIVATE AO-OUMSHIP FROM 0 SHIPSIART

YES

^

N B - S A C I . N B - S A C M

REGISTRAIE S A I U I M E S IN O U L I R J O U T . O I R J AND ONFO ARRAYS

<

AD-DUMSHIP. I B = 1

<:

>

AD-DUMSHIP. I B . 2

>

EIC

>

ACIIVAIE AD DUMSHIP FROM DSHIPSIARl YES

YES

YES

ACTIVATE H-MASIER HMl-PRISHIP FROM SAILOUT ACIIVAIE H . M A 5 I E R . H M 2 - P R I S H i P FROM SAlLOUl E T C ETC N B - S A C I P - Q U E U E . LENGTH • HMl-OUEUE LENGTH.HM2 OUEUE.LENBIH.ECI

YES HOLD (151

<:

PILOT. STATUS . P A S S I V E YES A C I I V A I E PILOT FROM P I L 0 T 5 I A R I

>

ACIIVAIE H.MASTER. H M l . PRISHIP FROM S A l L O U l

A C I I V A I E H - M A S I E R H M 2 . P R I S H I P FROM S A l L O U l

EIC EIC

(19)

5.6. P R O C E S S O F T H E A D M I N I S T R A T O R 2

ACTIVATION

TASK

FLOW CHART ( f i g . 5)

The process of the component Administrator 2 (ADM2) i s a c t i -vated by the Harbourmaster.

The Administrator 2 orders the ships to enter or leave the p o r t and c a r r i e s out the necessary a d m i n i s t r a t i o n s .

The Administrator 2 considers the f i r s t dummy ship (AD-DUMSHIP) of the dummy queue (D-QUEUE).

I f t h i s dufnmy ship r e f e r s to a ship i n the queue of the P i l o t (POSITION AD-DUMSHIP IS ARRIVAL) then:

1 the data of t h i s ship and the s a i l times are r e g i s t r a t e d i n the arrays INC-TRJ, INC-QTRJ, INFO

2. the p r i o r i t y ship of the P i l o t (P-PRISHIP) and the dummy ship (AD-DUMSHIP) are activated

I f the f i r s t ship of the dummy queue r e f e r s to a ship i n the port then:

1 . the data of t h i s ship and the s a i l times are r e g i s t r a t e d i n the arrays OUT-TRJ, OUT-QTRJ, INFO

2. the dummy ship and the belonging p r i o r i t y ship i n the p o r t (HMl-PRISHIP, HM2-PRISHIP, HM3-PRISHIP or HM4-PRISHIP) are activated

In the case the dummy queue is empty (AD-DUMSHIP=NOCOMP) the ADM2 checks i f ships are w a i t i n g to enter of leave the p o r t

(NB-SACT <P-QUEUE+HM1-QUEUE+HM2-QUEUE+ETC.) and i f so the

P i l o t i s activated a f t e r 15 minutes and the ADM2 i s passivated. The ADM2 considers the next dummy ship of the dummy queue.

I f extant the ADM2 checks the occupation of the channels. I f t h i s check i s s a t i s f a c t o r y the data and the s a i l times of _ the ship are r e g i s t r a t e d . The dummy ship and the belonging p r i o -r i t y ship a-re a c t i v a t e d . This cycle i s -repeated f-rom the label NEXT DUMSHIP. I f the dummy queue has been passed through

(AD-DUMSHIP=NOCOMP) and i f ships are s t i l l w a i t i n g to enter or leave the p o r t (NB-SACT<P-qUEUE+HMl-QUEUE+HM2-QUEUE+ETC.) the P i l o t i s a c t i v a t e d a f t e r 15 minutes.

(20)

P R O C E S O F T H E S H I P

f.mm lEKGiH HM i.ouEiitTtSfl^

01 sraus.PASSIVE j m

I ACTIVATE P;.0' EBOM PitQ] SIAR!

EMER H I / : . QUEUE E k ' E t h T . a o E U E EK!ES PCj-OOEUE

HEGISmiE lIHE SPEKB IN P.OOEUE

WAItl P - M * OlEUE IIKE tAlCOlAIt HEW FREE OUAI tEllGIH

tEAl'E P.OUEUE ENIEB SAIIIN OUEÜE KBID SAIIIIME 10 IKE OUA<

LEAVE SAILIN OUEUE CALCUIAIE NEW UIILIZAIION QUAr

ENIER DUAÏ OUEUE HOLD IKESERïICEIlHE OF IHE SHIP

LEAVE IHEOuAl fluEuE

1UBN(NGB.3 J>

3

NC

( P A S S I V A ' E M Ö _ / « « M ! U t ü E LENSIH.iiv2-0UE0E LENGIK. \

\ J \m.!im lENG-p. E ' t - . P . M U t LEHilPj; / M

PliOl SIAIUS.PASSIVE ^ ACIIVAIE PILOI FROM P_SIARI

BEGISIBAIEIIHE SPEND IN HK.OüEUt

1

CALCULAIE NEWFBEE OÜAI LENtll- I CAICUIAIE SE'A UIiii2Al;ci, V,Ai;iP.I,0iï.OüEUE liME REGISIBAIE lOlAL WA'ÜNGimE

<:

I E

1 E N ' t ' SAil OlM QUEUE 1

1 H C . C S A I L I ' W E EFARSIVAi B J C ! | 1 LEAVE SA^ CJ' CUEUE 1

(21)

5.7 P R O C E S S O F T H E S H I P

ACTIVATION

TASK

FLOW CHART ( f i g . 9)

The process of the ship i s activated by the component Gene-r a t o Gene-r of the ship and the component AdministGene-ratoGene-r 2.

The shin passes through the port system; the components P i l o t , Harbourmaster and Administrator 2 run t h i s process.

When a ship a r r i v e s (generated by the component generator) the ship i s put i n the queue of the P i l o t (P-QUEUE). The ship a c t i v a t e s the P i l o t i f no s h i p s , w a i t i n g to get permission to leave or enter the p o r t , are present.

The ship i s passivated.

The shio proceeds i t s process when the component Administra-t o r 2 gives permission. The ship calculaAdministra-tes i Administra-t s w a i Administra-t i n g Administra-time i n the P-QUEUE, the FREE-OUAY-LENGTH and leaves the P-QUEUE. The ship i s put i n the SAILIN-QUEUE and' stays i n t h i s queue during i t s s a i l time from the a r r i v a l point to the quay.

(HOLD SAIL TIME TO THE QUAY).

Then the ship leaves the SAILIN QUEUE, calculates the new u t i l i z a t i o n of the quay and i s put i n the QUAY QUEUE. The ship stays i n t h i s QUAY QUEUE during i t s service time (HOLD THE SERVICE TIME OF THE SHIP), leaves the QUAY QUEUE and i s put i n the HMl-QUEUE, HM2-QUEUE, HM3-QUEUE or HM4-QUEUE according to the d e s t i n a t i o n of the s h i p .

The ship a c t i v a t e s the P i l o t i f no ships w a i t i n g f o r per-mission to leave or enter the port are present.

Then the ship i s passivated.

The ship proceeds the process from the label SAIL OUT QUEUE when the component Administrator 2 gives permission to leave the p o r t . The ship leaves i t s queue, i s put i n the SAILOUT QUEUE and stays i n t h i s queue during the s a i l time from the quay to the a r r i v a l point (HOLD SAIL TIME TO THE ARRIVAL BUOY). Then the ship leaves the queue and leaves the system (TERMINATE)

(22)

L A B E L l - R E D U C - I H F Q :

<

A R I > 2 AND INIRINF IS T R U E

>

INC-QIRI (1. INFO IW). 2)<N0W

Y E S R E M Q V E INFORMATION Of THIS-SHIP FROM ARRAYS' I N C D I R J , I N C - I R J . I N F O INC-QTRJ (1, INF0I1,4),2I<NQW INTRINF='0'B I E S I = 1. N B - P I C D . l-\

<^ NUMBER REGISTRATED SHIP>0 A R I > ^ LABEL IN- NEXT SHIP

CONIR.-r

DEIERMINE IHE SEDIONSCOMMON OF TEST-SHIP WITH REGISTRATED SHIP I

CONSIDER STRETCH J - l LABEL IN-STRETCH-NEXT^ < P O S I T I O N . ' A R R I V A L ' > YES < OVERTAKE > -YES <OVERIAKE POSSIBLE > I E 5 T . - 1 YES CALCULAIE POINT OF INTERSECTION AND REGISTRAIE IN 0I5TRETCH.ENIR ARRAY LABEL POSITION HARBOUR

< ENCOUNTER > j Y E S < ENCOUNTER POSSIBLE > -Y E S CALCULAIE POINT OF INIERSECIION AND REGISTRAIE IN DISIREICH.ENIER ARRAY

-<DI51ANCE LESS IHEN ISMIN.)-^ [YES

<OVERIAKE POSSIBLE > — —

T E S T . - l I

<DISTANCE LESS IHEN I5MIN> NO YES

^ l E S I . - l I < ENCOUNTER POSSIBLE > YES I E S I . - 1 J SECIION COMMON ^ YES J-NUMBER LASl SECIION CONIR ='0' B < CONTR IS 1RUE > -[YES J E S ^ L A S I SECIION REG S H I ^

LAST SECTION TESLSHIP ,

I t

(23)

5.8. P R O C E D U R E O C C U P A T I O N C H A N N E L S

ACTIVATION

TASK

FLOW CHART ( f i g . 6 , 7 , 8 )

The procedure occupation channels i s passed through both i n the process of the P i l o t and i n the process of the Harbour-master.

The procedure determines the p o s s i b i l i t y of entering or l e a -ving of a ship related to the occupation of the channel sec-t i o n , sec-turning c i r c l e s and bersec-thing areas.

From the label I-REDUC-INFO the superfluous information con-cerning s a i l i n g times of incoming ships i s removed from the

arrays INC-TRJ, INC-ATRJ and INFO. . The value of a number of a u x i l i a r y variables i s determined.

I f incoming ships are r e g i s t r a t e d (NUMBER REGISTRATED >0) the common channel sections of the f i r s t r e g i s t r a t e d ship and the t e s t - s h i p of the sections s i - s l l are determined. Then s t a r t i n g w i t h section 1 the procedure controls dependently on the p o s i t i o n of the concerning ship (POSITION = "ARRIVAL or POSITION = "HARBOUR") whether overtaking or meeting takes place and i f so the procedure checks i f t h a t i s permitted. This process i s repeated f o r the next sections ( 1 = 1 + 1 ) from the label IN-NEXT-STRETCH.

Then i f the r e g i s t r a t e d ship and the t e s t - s h i p have the same d e s t i n a t i o n the l a s t channel section i s c o n t r o l e d .

Further the turning c i r c l e s are controled and when the ships have the same destinations the procedure c o n t r o l s the berthing area. , . . , . This procedure i s repeated f o r every r e g i s t r a t e d incoming ship from the label IN-NEXT-SHIP.

In the same way the procedure removes the superfluous i n f o r -mation concerning s a i l i n g times of leaving ships (from the label 0-REDUC-INFO) and possible c o n f l i c t s i t u a t i o n s i n chan-nal s e c t i o n s , turning basins and berthing areas are determined.

I f the t e s t - s h i p meets somewhere a c o n f l i c t s i t u a t i o n the value o f the v a r i a b l e TEST becomes - 1 .

(24)

I E S T . - 1 WA Al 'T < r o S I H O N . ' A R R I V A L ' > -Y E S

<

Y E S E N C O U N I E R IN l U R N I N G B A S I N \ OF 1 E S I S H I P / Y E S

<

E N C O Ü N I E R IN TURNING B A S I N OF R E G I S T R A T E D SHIP U l . 1 I • < l < A R h L A B E L O - R E D U C - I N F O

<

A R O > 2 AND O U l - T R I N F 15 T R U E

>

< 0 U T T R I ( U 1 I < N Q W 1 5 > -Y E S

REMOVE INFORMATION OF THIS S H I P " FROM ARRAYS OUI.QTRJ, OUT-TRJ, ONFO

< ^ OUI-IRI I I T 1 ) < N 0 W - 1 5 y

O U T - T R I N F . ' O ' i

NUMBER REGISTRATED S H I P > 0 A R O > 0 L A B E L Q U I - N E X T SHIP

C O N T R . ' 0 '

DETERMINE IHE S E C I I O N S COMMON OF T E S T S H I P WITH R E G I S T R A T E D S H I P ] CONSIDER STRETCH J = l L A B E L O U T - S T R E T C H - N E X T - < ^ POSITION H A R B O U R ^ <^ O V E R T A K E V I ^ <^OVERTAKE P O S S I B L E X \ LAST S E C I I O N R E G I S T R A T E D S H I P / Y E S l E S I . - l < ^ ENCOUNTER IN BERTH A R E A } 1 NO NO TE5T.-1 Y E S CALCULATE POINT OF INIERSECIION AND REGISTRAIE IN 0I5TSTRETCH.ENTR, ARRAY <( ENCOUNIER y<ENCOUNIER POSSIBLE > -TYÊS l E S I . -1 C A L C U L A I E POINT OF INTERSECTION AND REGI51RATE IN O l S T S I R E T C H - E N T R , ARRAY E t f i g . 7 - ^ D I S T A N C E L E S S THEN 15 MiK < OVERTAKE P O S S I B L E > T E S T . - l - < D I S I A N C E L E S S IHEN 15MIN ' < E N C O U N I E R P O S S I B L E > l E S I

(25)

A T E S T H J = J +1 J > S E C T I O N C O M M O N Y E S J - - N U M B E R L A S T S E L E C T I O N C O N T R = ' 0 ' B Y E S X L A S T S E L E C T I O N R E G . S H I P \ L A S T S E L E C T I O N T E S T - S H I P Y E S T E S T = - 1 < ' P O S I T I O N = ' A R R I V A L ' > Y E S Y E S E N C O U N T E R IN T U R N I N G B A S I N O F T E S T S H I P

<

L A S T S E C T I O N T E S T - S H I P ^ Y E S

<

, L A S T S E C T I O N R E 3 I S T R A T E D S H I P , Y E S

>

E N C O U N T E R I N B E R T H A R E A

>

< T E S T = -1 > Y E S 14-T - < K A R O O > L A B E L E N D J C C J E S T

(26)

5.9. P R O C E S S O F T H E A D M I N I S T R A T O R 1

ACTIVATION The process of the Administrator 1 i s a c t i v a t e d by the component MAIN.

TASK The Administrator 1 r e g i s t r a t e s the u t i l i z a t i o n of the d i f -f e r e n t quays and berthing points used i n the model i n the concerning histograms.

The Administrator 1 i s suspended during a f i x e d time i n t e r -val and r e g i s t r a t e s again the u t i l i z a t i o n of quays and berthing points e t c .

5.10. P R O C E S S O F T H E DUMMY S H I P

ACTIVATION The process of the dummy ship i s activated by the component P i l o t or the component Harbourmaster.

TASK A dummy ship i s used because the computer language Prosim doesn't allow t h a t a component i s placed i n two queues a t the same time. To solve t h i s problem each time a dummy ship i s created and placed i n the dummy queue.

A f t e r being put i n the dummy queue the dummy ship leaves t h i s queue and i s terminated.

Cytaty

Powiązane dokumenty

Podstawowy dylemat sta­ now iło zatem z jednej strony przyjęcie właściwego kryterium wyboru obiektów włączanych do planu (przy czym kierow ano się zarówno rangą

W artykule omówiono dostępne w literaturze krajowej oraz zagranicznej wskaźniki emisji dla kotłów i innych urządzeń zasilanych gazem ziemnym, które pozwalają na

moniKa gaWlaK | doktor nauk humanistycznych, literaturoznawczy- ni, słowenistka, adiunkt w zakładzie Teorii literatury i Translacji w instytucie Filologii Słowiańskiej

Prelegenci odnieśli się między innymi do problemu słowników cyfro- wych czy kodyfikacji słownictwa rosyjskiego w słownikach wielojęzycznych (Mariola Jakubowicz,

If free running model tests or fuü scale manoeuvres are used to find these parameters, the model-identification technique is applied, while at the same time this technique serves

8 „Społeczeństwo zna instytucje, które ograniczają sztukę, ale zna również formy wym uszania na swych członkach zajm owania slię dziełami sztuki.. Balcerzan:

Tak ostrożne, wieloetapowo następujące badanie zgodności umowy międzynarodowej, a zwłaszcza konwencji MOP z prawem wewnętrznym PRL przed ratyfikacją uzasadnia wniosek, iż

The idea is the following: first compute the optimal positioning of the thrusters for the static (Sta) situation, then solve the dynamic (dy) model in order to predict the trajectory