• Nie Znaleziono Wyników

On the black hole - torus systems

N/A
N/A
Protected

Academic year: 2021

Share "On the black hole - torus systems"

Copied!
40
0
0

Pełen tekst

(1)

On the black hole - torus systems

Andrzej Odrzywołek

Dept. of General Relativity & Astrophysics, IF UJ

29 Nov. 2018, Thu, 17:15

Work with : Patryk Mach, M. Piróg, W. Kulczycki, E. Malec, Z. Karkowski, W. Dyba

GR simulation data provided by: Roberto De Pietri, Alessandra FEO, Universit`a degli Studi di PARMA Magnetised disks: Jose Font, S. Gimeno-Soler

A. Odrzywołek Seminarium NKF

(2)

Ring, circle, torus, toroid, polish donut

1 circle (1D) (Piotrowski paradox)

2 ring (2D) (orbital megastructure)

3 disk (2D) (Saturn’s ring, Galaxy)

4 toroid (3D)

(self-gravitating with central mass)

Circle and disk as limiting cases of toroids If the mass of the toroid m Ñ 0 we get:

flat disk for Keplerian rotation

circle or mass gap (no solution) otherwise

A. Odrzywołek Seminarium NKF

(3)

Ring, circle, torus, toroid, polish donut

1 circle (1D) (Piotrowski paradox)

2 ring (2D) (orbital megastructure)

3 disk (2D) (Saturn’s ring, Galaxy)

4 toroid (3D)

(self-gravitating with central mass)

Circle and disk as limiting cases of toroids If the mass of the toroid m Ñ 0 we get:

flat disk for Keplerian rotation

circle or mass gap (no solution) otherwise

A. Odrzywołek Seminarium NKF

(4)

Ring, circle, torus, toroid, polish donut

1 circle (1D) (Piotrowski paradox)

2 ring (2D) (orbital megastructure)

3 disk (2D) (Saturn’s ring, Galaxy)

4 toroid (3D)

(self-gravitating with central mass)

Circle and disk as limiting cases of toroids If the mass of the toroid m Ñ 0 we get:

flat disk for Keplerian rotation

circle or mass gap (no solution) otherwise

A. Odrzywołek Seminarium NKF

(5)

Ring, circle, torus, toroid, polish donut

1 circle (1D) (Piotrowski paradox)

2 ring (2D) (orbital megastructure)

3 disk (2D) (Saturn’s ring, Galaxy)

4 toroid (3D)

(self-gravitating with central mass)

Circle and disk as limiting cases of toroids If the mass of the toroid m Ñ 0 we get:

flat disk for Keplerian rotation

circle or mass gap (no solution) otherwise

A. Odrzywołek Seminarium NKF

(6)

Ring, circle, torus, toroid, polish donut

1 circle (1D) (Piotrowski paradox)

2 ring (2D) (orbital megastructure)

3 disk (2D) (Saturn’s ring, Galaxy)

4 toroid (3D)

(self-gravitating with central mass)

Circle and disk as limiting cases of toroids If the mass of the toroid m Ñ 0 we get:

flat disk for Keplerian rotation

circle or mass gap (no solution) otherwise

A. Odrzywołek Seminarium NKF

(7)

Stationary configurations

Configuration of interest is: „Kerr” black hole + massive, stationary, axisymmetric torus.

Object is fully specified by:

1 Black Hole and torus masses & angular momenta

2 Equation of State

3 last but not least: rotation law

4 magnetic field

A. Odrzywołek Seminarium NKF

(8)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(9)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(10)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(11)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(12)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(13)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(14)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(15)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(16)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(17)

Numerical implementation

Surface capturing vs surface tracking We must handle two essential surfaces:

1 black hole horizon

2 toroid edge

Any of them could be tracked or captured on numerical grid.

A. Odrzywołek Seminarium NKF

(18)

1 Nishida, Eriguchi, Lanza (1992): both (?) surfaces captured

2 Ansorg & Petroff (2005):

both surfaces tracked

3 Shibata (2008): horizon tracked, toroid captured

A. Odrzywołek Seminarium NKF

(19)

1 Nishida, Eriguchi, Lanza (1992): both (?) surfaces captured

2 Ansorg & Petroff (2005):

both surfaces tracked

3 Shibata (2008): horizon tracked, toroid captured

A. Odrzywołek Seminarium NKF

(20)

1 Nishida, Eriguchi, Lanza (1992): both (?) surfaces captured

2 Ansorg & Petroff (2005):

both surfaces tracked

3 Shibata (2008): horizon tracked, toroid captured

0 5 10 15 20

r sin θ 0

5 10 15 20

r cos θ

A. Odrzywołek Seminarium NKF

(21)

Motivation for re-implementation

1 arbitrary rotation laws (incl. Keplerian)

2 magnetic fields

3 study full parameter space: uniqueness, bifurcation, topology, existence . . .

4 cross-check of results obtained with different codes

5 post-newtonian & newtonian comparison

A. Odrzywołek Seminarium NKF

(22)

General remarks on rotating fluids

so-called rotation law connecting angular velocity Ω “ uϕ{ut or angular momentum j “ uϕut with „distance” from rotation axis is a free function j pΩq, e.g. j “ const, j “ Ωδ, . . .

above reflect freedom of how are you stirring sugar in a glass of tea (neglecting viscosity & meridional currents)

Keplerian rotation law of a test particle around point mass/black hole play a special role in astrophysics

1 Newton (3rd Kepler law):

1

j 9 pΩ{pGmq2q13

2 Schwarzschild:

1

j 9 pΩ{pGmq2q13 ´ 3Ω{c2

3 and finally Kerr:

j 9 `a ` ξ3˘ `a2´ 2aξ ` ξ4˘

ξ3p2a ` ξ3´ 3ξq , ξ “ p1{Ω ´ aq1{3, pm “ 1q

A. Odrzywołek Seminarium NKF

(23)

Conjecture of „attractor” in rotating GR systems

Postulate: all generic/realistic GR disks should rotate according to

„Keplerian” rotation law:

j pΩq “ ´1 2

d d Ωln

1 ´ pa22` 3m2323p1 ´ aΩq43q ı

, where m, a are now free parameters unrelated to those of central Kerr black hole.

How to verify above statement?

Compare computed toroid structure with:

astronomical observations

toroid emerging in GR simulation of NS-NS merger (binary neutron star merger, kilonova, e.g. GW170817 )

A. Odrzywołek Seminarium NKF

(24)

Numerical GR data used for comparison

Data used later is from article: Roberto De Pietri, Alessandra Feo, Francesco Maione, Frank L¨offler, Modeling equal and unequal mass binary neutron star mergers using public codes, Physical Review D, Volume 93, Issue 6, id.064047.

Technically, we used:

1 equatorial plane „XY” slices of full 3D data

2 all 400 timesteps covering from late NS-NS inspiral to toroid stabilization

3 Carpet-HDF5 BSSN fixed mesh-refinemet files for α, gXX, gXY, gYY, gXZ, gZZ, gYZ, βX, βY, VX, VY, VZ, ρ

4 G “ c “ 1 Md units

A. Odrzywołek Seminarium NKF

(25)

Neutron star mergers (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

A. Odrzywołek Seminarium NKF

(26)

Neutron star mergers (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

A. Odrzywołek Seminarium NKF

(27)

Neutron star mergers (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

A. Odrzywołek Seminarium NKF

(28)

Neutron star mergers (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

A. Odrzywołek Seminarium NKF

(29)

Neutron star mergers (kilonova)

Binary NS params:

M1 “ M2 “ 1.6 Md

BH formed instantly:

M “ 2.83 Md, a » 0.44 Toroid mass:

MT “ 6.2 ˆ 10´5 Md

A. Odrzywołek Seminarium NKF

(30)

Angular velocity and momentum in isotropic coordinates

Lorentz factor:

W “ 1

a1 ´ gijViVj, Ut” U0 “ W α

Transversal velocity components:

Uϕ“ W p´Y VX`X VYq, Uϕ “ WX pVY ´ βY{αq ´ Y pVX ´ βX{αq X2` Y2

Angular velocity Ω and angular momentum j : Ω “ Uϕ

Ut, j “ UϕUt.

A. Odrzywołek Seminarium NKF

(31)

Expected j pΩq

Conclusion: „stabilized” toroid expected between jmin and ISCO.

A. Odrzywołek Seminarium NKF

(32)

Expected j pΩq

Conclusion: „stabilized” toroid expected between jmin and ISCO.

A. Odrzywołek Seminarium NKF

(33)

Expected j pΩq

Conclusion: „stabilized” toroid expected between jmin and ISCO.

A. Odrzywołek Seminarium NKF

(34)

Raw j pΩq data from simulation

A. Odrzywołek Seminarium NKF

(35)

Raw j pΩq data from simulation

A. Odrzywołek Seminarium NKF

(36)

Raw j pΩq data from simulation

A. Odrzywołek Seminarium NKF

(37)

Raw j pΩq data fit

A. Odrzywołek Seminarium NKF

(38)

Fit j pΩq after cut

1

2ρmaxă ρ ă ρmax “ 2.76 ˆ 10´9

A. Odrzywołek Seminarium NKF

(39)

Conclusions

1 data extracted from GR simulation

2 j pΩq curve formed quickly after black hole formation

3 naive raw data fit seems poorly related to Mach-Malec formula

4 fit weighted with matter density gives rotation law with Kerr parameter a » 1

5 above result is surprising but not forbidden

6 reason for fit failure still unclear

7 are we dealing with accretion or excretion disk ?

8 accretion/excretion disk probably located between ISCO and jmin

9 dj {d Ω changes sign - stability criteria affected?

A. Odrzywołek Seminarium NKF

(40)

References

1 Self-gravitating axially symmetric disks in general-relativistic rotation, Janusz Karkowski, Wojciech Kulczycki, Patryk Mach, Edward Malec, Andrzej Odrzywołek, and Michał Piróg Phys. Rev. D 97, 104017 – Published 15 May 2018

2 General-relativistic rotation: Self-gravitating fluid tori in motion around black holes, Janusz Karkowski, Wojciech Kulczycki, Patryk Mach, Edward Malec, Andrzej Odrzywołek, and Michał Piróg Phys. Rev. D 97, 104034 – Published 21 May 2018

3 Modeling equal and unequal mass binary neutron star mergers using public codes Roberto De Pietri, Alessandra Feo,

Francesco Maione, and Frank L¨offler Phys. Rev. D 93, 064047 – Published 21 March 2016

A. Odrzywołek Seminarium NKF

Cytaty

Powiązane dokumenty

motion in black hole (Schwarzschild) metric provides missing class of absorbed particles (see e.g: D. Hunik, 2014, praca lic.).. random motions can be incorporated using Vlasov

to arrive at master scalar equations), we take the structure of the outcome of previous work as the initial input for our procedure: we make an ansatz that all gauge

The broadband fitting of the optical/UV/X-ray spectrum (OP- TXAGNF fit) is not unique since the data provides two most stringent constraints: normalization o f

We obtained, in particular, the general-relativistic Keplerian rotation law that possesses the first post- Newtonian limit (1PN) and exactly encompasses the solution corresponding

Typical dependence of th e results on th e resolution of th e num erical grid, th e m axim um num ber of th e Legendre polynom ials L, and th e tolerance coefficient

Axial w-modes of a neutron star can be determined from a single scalar wave equation with a potential, in complete analogy to quasinormal modes of a black hole.. The different

Although the Event Horizon Telescope team attempted to create images of both black holes only the image of the M87 black hole was presented on the 10 th of April 2019.. The center

Americans (Event Horizon Telescope – Doeleman) and Europeans (Imaging the Event Horizon of Black Holes – Falcke, Kramer and Rezzolla) attempt to “construct the first accurate image of