• Nie Znaleziono Wyników

Virial tests for post-Newtonian stationary black-hole-disk systems

N/A
N/A
Protected

Academic year: 2022

Share "Virial tests for post-Newtonian stationary black-hole-disk systems"

Copied!
6
0
0

Pełen tekst

(1)

V iria l t e s t s for p o s t-N e w to n ia n sta tio n a r y b la ck -h o le—d isk s y ste m s

P io t r J a r a n o w sk i

W y d z ia l F izy k i, U n iw e rsy te t w B ia ły m sto k u , C iołkow skiego 1L, 1 5-245 B ia ły sto k , P o la n d E -m ail: p .ja r a n o w s k i@ u w b .e d u .p l

P a t r y k M a c h , E d w a r d M a le c , M ic h a ł P ir o g

I n s ty tu t F izy k i im . M a r ia n a Sm oluchow skiego, U n iw e rsy te t Jag iello ń sk i, L o jasiew icza 11, 30-348 K rak ó w , P o la n d

E -m ail: p a tr y k .m a c h @ u j .e d u .p l , m a l e c @ t h . i f . u j . e d u . p l , m i c h a l .p i r o g @ u j .e d u .p l

A b s t r a c t . W e in v e s tig a te d h y d ro d y n a m ic a l p o s t-N e w to n ia n m o d els o f s e lfg ra v ita tin g s ta tio n a r y b la c k -h o le -d isk sy stem s. T h e p o s t-N e w to n ia n schem e p re s e n te d h ere a n d also in o u r re c e n t p a p e r is a c o n tin u a tio n o f p rev io u s, p u re ly N e w to n ia n stu d ie s o f s e lfg ra v ita tin g h y d ro d y n a m ic a l d isk s r o ta tin g a c co rd in g to th e K e p le ria n r o ta tio n law . T h e p o s t-N e w to n ia n re la tiv is tic c o rre c tio n s a re sig n ifican t ev en a t th e 1P N level. T h e 1P N c o rre c tio n to th e a n g u la r v elo city c a n b e o f th e o rd e r o f 10% o f its N e w to n ia n value. I t c a n b e e x p ressed as a c o m b in a tio n o f g eo m etric a n d h y d ro d y n a m ic a l te rm s. M oreover, in c o n tr a s t to th e N e w to n ia n Poincaróe- W av re th e o re m , it d e p e n d s b o th o n th e d is ta n c e fro m th e r o ta tio n axis a n d th e d is ta n c e fro m th e e q u a to r ia l plan e.

In th e te c h n ic a l p a r t o f th is n o te we d eriv e v iria l re la tio n s valid u p to 1P N o rd er. W e show t h a t th e y are in d e e d sa tisfie d by o u r n u m e ric a l so lu tio n s.

1. I n tr o d u c tio n

In a recent p a p e r [1] we investigated p ost-N ew tonian m odels of selfgravitating gaseous disks th a t ro ta te according to th e K eplerian ro ta tio n law. T he analysis presented th ere is a continuation of our previous studies, w here such disk system s were investigated in N ew tonian th eo ry [2, 3].

In th e N ew tonian fram ew ork we posed th e following problem : Suppose one observes a selfgravitating sta tio n a ry gaseous disk around a central ob ject (m odeled by a point-m ass) th a t ro ta tes according to th e K eplerian ro ta tio n law, th a t is w ith th e ang ular velocity = w0/ r 3/2, w here r is th e distance from th e ro ta tio n axis, and w0 is a co n stan t. For th e disk consisting of te s t p articles we have w0 = y /G M c, w here M c is th e m ass of th e central object, and G is th e g rav itatio n al co n stan t. W h a t does th e observed value of w0 correspond to in th e case where th e m ass of th e disk is com parable w ith M c? Is it still th e central m ass M c, th e sum of th e two masses, or some n ontrivial com bination of them ? It tu rn s o u t th a t th e selfgravity speeds up th e ro ta tio n of th e disk— it ro ta tes faster th a n this would follow from th e K eplerian form ula involving th e central m ass M c only. M oreover, th e way in which w0 depends on th e central m ass and th e m ass of th e disk is prescribed by th e geom etry of th e disk. T hus, in principle, it

(2)

procedure was applied to th e accretion disk in th e AGN of N G C 4258, w here th e K eplerian ro ta tio n curve was m easured in th e m aser em ission [3].

In [1] we extended th e N ew tonian analysis to th e first post-N ew tonian appro xim atio n (1PN ).

Selfgravitating sta tio n a ry gaseous disks were investigated before in full relativ ity (cf. [4, 5]). We decided on th e post-N ew tonian scheme, because of its conceptual simplicity. In p articu lar, th e notion of th e K eplerian ro ta tio n has a clear m eaning in th e post-N ew tonian scheme.

T he m ain result o b tain ed in th e 1PN approx im atio n is th a t th e angu lar velocity profile is affected in two different ways— some p a rts of a disk can be speeded up and th e oth ers slowed down. Furtherm ore, th e sum of th e N ew tonian and post-N ew tonian com ponents of th e angular velocity is not anym ore a function of th e cylindrical radius only, b u t in general it depends on radial and vertical co ordinates [1].

In th is pap er we sketch briefly th e m ain equations th a t c o n stitu te th e 1PN m odel and th en derive virial-type relation th a t can be used to te s t th e obtain ed num erical solutions. Suitable virial te sts valid in th e N ew tonian case were presented in [6] and [2]. We discuss th em here for clarity. T h e post-N ew tonian virial identities given here are new and have not been discussed in [1]. In th e last section of this p ap er we also show th a t th ey are satisfied by our num erical m odels w ith th e accuracy sim ilar to th a t of N ew tonian solutions.

2. D e s c r i p t i o n o f t h e m o d e l

O ur 1PN black-hole-disk m odels are con stru cted assum ing th e m etric of th e form

d s2 = g,„ d X W - = ( - 1 - 2 U ( x f z) - 2<U < W » ! 1 (dx« ) 2 - 2 4 4 w )

+ ^ 1 - 2U ' ' O ' z ) ^ (dx2 + d y 2 + d z 2) , (1)

w here we use C artesian coordinates x0 = ct, x1 = x , x 2 = y , x 3 = z, and c is th e speed of light.

We w rite th e energy-m om entum ten so r as

T «y = ^IhU bH £(x ) + p (c2 + h )u a u ? + , (2) V 9 u BH

w here th e first com ponent describes th e point particle (it is p ro p ortion al to th e D irac d elta d istrib u tio n and m odels th e cen tral black hole) a t rest, located a t th e origin of th e coordinate system ; th e second one is th e energy-m om entum ten so r of th e disk m a tte r. Here M c denotes th e m ass of th e point particle; g is th e d e te rm in a n t of th e m etric g = - d e t(g MV). T he four-vectors uBH and u a d enote th e four-velocities of th e central point-m ass and th e fluid, respectively. T he sym bol p denotes th e baryonic rest-m ass density, h is th e specific enthalpy, and p is th e pressure.

In th e following sections we will also work w ith th e three-velocity, defined as v % = cu%/ u ° , i = 1, 2, 3.

In th e rem aining p a rt of th e article we use sta n d a rd cylindrical coordinates (r, z, 0). We consider a statio nary , selfgravitating, axially and equatorially sym m etric polytropic disk, ro ta tin g aro und a central point m ass M c according to th e K eplerian ro ta tio n a l law Vq = w0r -3 /2 . We assum e th a t th e disk is geom etrically bounded by th e inner and ou ter radius r-m and r out, respectively. We introduce th e n o tatio n according to which any q u a n tity £ (if it is necessary) is sep arated into its N ew tonian £ 0 and post-N ew tonian £ 1 p a rt according to th e general p a tte rn

£ = £o + £1/ c 2. Following [7] we derive basic equations which, separated into th e ir N ew tonian

(3)

and post-N ew tonian p a rts, read:

AUo = 4nG (po + MCS ( x ) ) , (3)

ho = -U o + ^ d r(v0^)2r + Co, (4)

A — = 2— — 0 — 1 6 n G r2p0v°, (5)

A U i = 4nG ^M cUoD(0)6(x) + pi + 2po + po (ho — 2Uo + 2r2(v °)2^ , (6) h i = —Ui — v0 —o + 2 h o (v °)2r2 — J d r (v (^ ) 4r ‘3 — 2 — 4hoUo — 2Uo2 — C i, (7) w here A denotes th e flat L aplacian w ith respect to coordinates (x i , x2, x 3), Co and C i are in teg ratio n con stan ts, and U D is th e g rav itatio n al p o ten tial due to th e disk only, i.e., Uo =

—G M c/ |x | + U D. T h ey follow from th e conservation law, V aT al3 = 0, th e continuity equation V a (pua ) = 0, and E in stein equations

R G

R^,v — — T^ v , (8)

w here R MV is th e Ricci ten so r and R denotes th e Ricci scalar.

T he above system of equations is closed by assum ing an equation of sta te . O ur num erical solutions are obtain ed for a polytropic eq u ation of sta te of th e form p = K p Y, or equivalently h o = K y / ( y — 1)p^- i (for th e 0th order solution) and h i = ( 7 — 1)hop i / p o (for th e 1PN p a rt), w here K and 7 > 1 are co nstants.

E q u atio n s (3-7) should be solved w ith respect to th e N ew tonian grav itatio n al p o ten tial Uo(r, z), th e p o st-N ew tonian g rav itatio n al p o ten tial Ui (r, z), th e ro ta tio n a l p o ten tial A o ( r , z ) and th e N ew tonian and post-N ew tonian enth alpy h o(r, z) and h i (r, z). Any o th er q u a n tity (the d ensity p(r, z), th e pressure p (r, z), etc.) can be o b tained from these five functions.

N um erical solutions are o b tain ed as follows. We use th e classic Self-Consistent Field (SCF) scheme (cf. [8]) to solve th e set of Eqs. (3) and Eq. (4). Given th e N ew tonian p o ten tial Yo and th e en th alpy h o, we can solve Eq. (5) a t once. Finally, we use again th e SC F scheme to solve th e set of Eqs. (6) and (7). For th e K eplerian ro ta tio n law th e above m eth od converges for all values of th e param eters th a t we have tested.

3. R e s u lts

T he m ain result of our p ost-N ew tonian scheme is th e correction to th e N ew tonian angular velocity profile. T he well-known theo rem by Poincare and W avre sta te s th a t N ew tonian sta tio n a ry b aro trop ic disks (or stars) ro ta te w ith th e angular velocity th a t can depend on th e distan ce r from th e ro ta tio n axis only [9]. It tu rn s o ut th a t already th e 1PN correction can be significant and in general it depends also on z. It can be expressed as

v ° (r, z) = — —00 dr v° + 2rhodr v ° . (9)

2rv o0

N ote th a t th e above form ula involves b o th geom etric and hydrodynam ical factors.

A cceptable 1PN solutions should satisfy th e following (quite strin gen t) conditions: i) 1 » |Uo|/ c2 » |Ui |/ c 4, ii) 2G M c/ c2 ^ r;n, iii) c » cs, w here cs is a speed of sound. Sam ple num erical m odels th a t do satisfy th e above conditions are presented in [1]. It tu rn s o ut th a t th e 1PN correction to th e velocity can be of th e order of 10% of th e N ew tonian value. T he reader

(4)

4. V i r ia l i d e n t i t i e s

In th is section we use C artesian and cylindrical coordinates. It is im plicitly assum ed th a t L atin indices refer to C artesian coordinates.

T h e virial id en tity th a t can b e used to test th e N ew tonian solution (including th e central point-m ass) was obtain ed in [6]. It reads

E pot + 2 E kin + 2 E therm = 0, (1 0)

w here Epot = \ f R3 d3x p(Uo — G M c/ |x |) is th e to ta l p o ten tial energy, Ekin = 2 Jr3 d3x pvoivO is th e bulk kinetic energy and E therm = | Jr3 d3x p is th e internal th erm al energy. We assum e, as a virial te st p aram eter, th e value

E pot + 2 E kin + 2E therm E pot + 2 E kin + 2E therm

E pot

In o rder to o b tain th e post-N ew tonian relations we rew rite Eqs. (5) and (6) in a slightly different form. E q u a tio n Eqs. (5) can be w ritte n in C artesian co ordinates as

A A % = —16nGpov0.

E q u a tio n (6) is split in two parts:

A U 1 = ^pi + 2po + po (ho — 2Uo + 2 r 2 ( v 0>)^ ) , (11)

A U f = 4nG M cU oD(0)^(x), (12)

w here Ui = U[ + U f. T he solution for U f is

TT„ = GMcUoD( 0)

Ul = i x ^ .

C onsider a vector

d = ( x i dt Ak + 2 A ^ j d iA k — 2 x idiAkd lA k . Its divergence reads

did1 = ( x l0iAk + 2 Ak^ A A k = — 16nG ^ x id A k + 2 A ^ povk. (13)

For a finite disk (po of com pact su p p o rt), A k ten ds to zero sufficiently fast, and

|x |2a i ^ 0, as |x| = \ / x2 + y2 + z2 ^ <x>.

Thus, by in teg ratin g Eq. (13) over R3, and m aking use of th e G auss theorem , we see th a t

0 = / ^ d3x ^ x idiAk + 2A ^ j povk.

In te g ratin g by p a rts, one can get rid of th e te rm w ith dtA k . T his yields

0 = ^ 3 d3^ —5 poAkvk — x ldi [povo j A ^ j ,

(5)

di b

i

= ( x l di U( + 2 U ?j A U [ , and analogously

0 = j 3 d3x ( ^ x l d

i

U[ + 2 U ^

(

p 1 + 2po + po {ho - 2Uo + 2 r 2(vQ)2) ) .

M any different forms of th e above relatio n can be obtain ed by ‘playing’ w ith Eq. (7). A helpful relation th a t can be used here is

- x l d

l

U i = U f.

In th e analogy to th e N ew tonian case we choose as virial te st param eters d = |(e^ + eb) / eal and d ' = |(e^ + d O/ d i l, where

e

'a

= f d3x 7 poA0v0 , (14)

J R 3 2

eb = - / d3x x l di fpov0) Aq, (15)

7r3 v '

e'

a

= -

J

^ d3x 2 U

(

pi + 2po + po

(

ho - 2Uo + 2 r 2(v0)2

))

, (16) eb =

J

g d3x x l di U(

(

p i + 2 p o + Po

(

ho - 2Uo + 2 r 2(v0) 2

))

. (17)

In Table 1 we rep o rt results of th e convergence te sts for a sam ple system . In our im p lem entation, num erical precision is controlled by th e resolution of th e grid, th e m axim um num ber L of Legendre polynom ials used in th e angular expansion of th e solutions of th e scalar and vector Poisson equations, and a value of th e m axim al difference betw een d ensity d istrib u tio n s o b tained in th e last two consecutive iteratio n s ptoi. (In each ite ratio n we com pute th e q u a n tity perr = m axi ,j |p(k+ 1 ^ - P(k) |. Here index k num bers subsequent iterations; indices i and j refer to different grid nodes. T he ite ratio n procedure is stopped, w hen perr < ptol.)

where only 0th o rder term s are differentiated.

T he above relation can be also w ritte n in term s of th e vector com ponents in cylindrical coordinates. Because of sym m etry assum ptions, we have A kv k = Aqvq , and

x ldi (pov0^) A k = x lV i (poV l) A k = poA^v0 + x ldi [povQ) Aq. T his yields

0 = y g d3x ^ - 2PoAqv0 - x ldi (pov0 ) A ^ j .

T he virial relation following from Eq. (11) can be o b tain ed in a sim ilar way. It is enough to consider th e divergence of th e vector

bi = ( x ld iU + 1 U ^ j d i U[ - 2x idiU[d lU .

It yields

dibi = ^ x ldiU( + 2U ?j A U [ , and analogously

(6)

T a b le 1. Typical dependence of th e results on th e resolution of th e num erical grid, th e m axim um num ber of th e Legendre polynom ials L, and th e tolerance coefficient ptoi. These results are o b tain ed for a polytropic fluid w ith polytropic index y = 5 /3 and th e K eplerian ro ta tio n law v ° = wo/ r 3/2. T he m ass of th e disk is M d = 0.327M c, th e inner and o u ter radii are r;n = 50RS and r out = 500RS respectively.

R esolution L ptol e e' e"

1 0 0 x 1 0 0 1 0 0 1 0-6 2.53 x 10-5 2.29 x 10-4 3.51 x 10- 4

2 0 0 x 2 0 0 1 0 0 1 0-6 6.36 x 10-6 5.87 x 10-5 8.87 x 10- 5 400 x 400 1 0 0 1 0-6 1.56 x 10-6 1.93 x 10-5 2.29 x 10- 5 800 x 800 1 0 0 1 0-6 3.66 x 10-7 3.65 x 10-6 4.62 x 10-6

1 2 0 0 x 1 2 0 0 1 0 0 1 0-6 1.44 x 10-7 1.56 x 10-6 2.49 x 10-6 1600 x 1600 1 0 0 1 0-6 6 . 6 6 x 1 0-8 5.43 x 10-7 1.39 x 10-6 400 x 400 50 1 0-6 1.56 x 10-6 1.93 x 10-5 2.27 x 10- 5 400 x 400 75 1 0-6 1.56 x 10-6 1.93 x 10-5 2.29 x 10- 5 400 x 400 1 0 0 1 0-6 1.56 x 10-6 1.93 x 10-5 2.29 x 10- 5 400 x 400 125 10-6 1.56 x 10-6 1.93 x 10-5 2.30 x 10- 5 400 x 400 150 10-6 1.56 x 10-6 1.93 x 10-5 2.30 x 10- 5 400 x 400 1 0 0 1 0-5 1.52 x 10-6 1.94 x 10-5 2.29 x 10- 5 400 x 400 1 0 0 10-6 1.56 x 10-6 1.93 x 10-5 2.29 x 10- 5 400 x 400 1 0 0 1 0-7 1.59 x 10-6 1.93 x 10-5 2.29 x 10- 5 400 x 400 1 0 0 1 0-8 1.59 x 10-6 1.93 x 10-5 2.29 x 10- 5

A c k n o w le d g m e n ts

T his research was carried ou t w ith th e su p ercom puter ‘D eszno’ purchased th an k s to th e financial su p p o rt of th e E u ro p ean Regional D evelopm ent Fund in th e fram ew ork of th e Polish Innovation Econom y O peration al P ro g ra m (co n tract no. P O IG . 02.01.00-12-023/08). T he work of P J was p artially sup p o rted by th e Polish N C N g ran t N etw orking and R& D fo r the E in ste in Telescope.

P M and M P acknowledge th e su p p o rt of th e Polish M inistry of Science and H igher E d u catio n g ran t IP2012 000172 (Iuventus P lus).

R e f e r e n c e s

[1] P. Ja ra n o w sk i, P. M ach , E . M alec, a n d M . P iró g , arX iv:1410.8527v1 [gr-qc] 30 O c t 2014 [2] P. M ach , E . M alec, a n d M . P iró g , A c ta P h y s. P ol. B 4 4 , 107 (2013)

[3] P. M ach , E . M alec, a n d M . P iró g , A c ta P h y s. P ol. B 4 3 , 2141 (2012) [4] S. N ish id a a n d Y. E rig u c h i, A p J . 4 2 7 , 429 (1994)

[5] S. N ish id a , Y. E rig u c h i, a n d A. L a n z a , A p J . 4 0 1 , 618 (1992) [6] P. M ach , M on. N o t. R . A stro n . Soc. 4 2 2 , 772 (2012)

[7] T . D a m o u r, P. Ja ra n o w sk i, a n d G. Schafer, P h y s. L e tt. B 5 1 3 , 147 (2001) [8] J.P . O s trik e r a n d J.W -K . M ark , A p J . 1 5 1 , 1075 (1968)

[9] J.L . T asso u l, T h eo ry o f R o ta tin g S ta rs, P rin c e to n U niv. P re s s, P rin c e to n , N J 1978

Cytaty

Powiązane dokumenty

Ce r´ esultat per- met de d´ eduire de fa¸con imm´ ediate (en utilisant un lemme de topologie g´ en´ erale) plusieurs th´ eor` emes de minimax bien connus.. Soient X et Y

Postanowiliśmy też o przedrukowaniu mało zna- nego artykułu Lemkina na temat władzy sędziego karnego, gdyż twórczość jego z okresu sprzed 1933 r., szczególnie z

We give characterization conditions for the inverse Weibull distribution and generalized extreme value distributions by moments of kth record values...

His letters are, therefore, an excellent source for his biography and for the intergenerational relations in a German bourgeois family in the second half of the 19 th century;

The positive impact of macroeco- nomic conditions on purchasing decisions of non-life insurance indicates that the good shape of the domestic economy in countries from SEE is

Economics: Horst Brezinski, Maciej Cieślukowski, Ida Musiałkowska, Witold Jurek, Tadeusz Kowalski • Econometrics: Witold Jurek • Finance: Maciej Cieślukowski, Gary Evans,

Zważywszy jednak na to, że przed stu laty nie było w pol- skiej adwokaturze żadnej kobiety adwokat, można się spodziewać, że w perspektywie niedługiego czasu udział adwokatek

Z kolei nieco inne czynności kuratora dominują w ramach środ- ka oddziaływania, jakim jest umieszczenie nieletniego poza zakła- dem poprawczym (art. 90 u.p.n.), co z kolei