• Nie Znaleziono Wyników

Gray box modelling of MSW biodegradation; Revealing its dominant (bio)chemical mechanism

N/A
N/A
Protected

Academic year: 2021

Share "Gray box modelling of MSW biodegradation; Revealing its dominant (bio)chemical mechanism"

Copied!
32
0
0

Pełen tekst

(1)

Gray box modelling of MSW biodegradation

Revealing its dominant (bio)chemical mechanism

André G. van Turnhout1,Timo J. Heimovaara1

Robbert Kleerebezem2

1Department of Geosciences and Engineering

Delft University of Technology

2Department of Biotechnology

Delft University of Technology

14th International Waste Management and Landfill Symposium, Sardinia 2013

(2)

Outline

1 Motivation

Control and Prediction of Emission Potential

2 Landfill Simulator Data

Experiments carried out by Roberto Valencia

3 Biogeochemical Process Model

Gray box approach

Model Verification: Literature parameter ranges and Bayesian Inference using measured data

4 Results

Model fit and parameter distributions

5 Conclusion

(3)

Outline

1 Motivation

Control and Prediction of Emission Potential

2 Landfill Simulator Data

Experiments carried out by Roberto Valencia

3 Biogeochemical Process Model

Gray box approach

Model Verification: Literature parameter ranges and Bayesian Inference using measured data

4 Results

Model fit and parameter distributions

5 Conclusion

(4)

Release from Aftercare: Emission Potential

Three pilot projects for Landfill Stabilization in the Netherlands.

I leachate recirculation;

I landfill Aeration.

Aim is to reduce Emission Potential to such a level that leachate and gas no longer pose a threat.

I concentration of potential contaminants in waste body;

I leaching process ;

I occurrence of preferential flow.

0 10 20 30 40 50 0 500 1000 1500 2000 2500 3000 3500 4000 time (years) concentration

Solid (mass/tot vol) D (mass/immob wat vol) C (mass/mob wat vol)

(5)

Release from Aftercare: Emission Potential

Three pilot projects for Landfill Stabilization in the Netherlands.

I leachate recirculation;

I landfill Aeration.

Aim is to reduce Emission Potential to such a level that leachate and gas no longer pose a threat.

I concentration of potential contaminants in waste body;

I leaching process ;

I occurrence of preferential flow.

0 10 20 30 40 50 0 500 1000 1500 2000 2500 3000 3500 4000 time (years) concentration

Solid (mass/tot vol) D (mass/immob wat vol) C (mass/mob wat vol)

(6)

Organic Matter as a Control of Emission Potential.

Contaminants present in Solid Waste.

I nitrogen;

I carbon source for Methane and CO2.

Source of substrate for micro-organisms present in waste body.

I biological degradation controls local pH and redox conditions;

I inorganic chemistry highly dependent on pH and redox;

Dissolved Organic Carbon enhances solubility of micro-contaminants due to complexation

I heavy metals (Cu, Cr , Pb, etc.)

I organic micro pollutants (i.e. polycyclic aromatic hydrocarbons, PAH)

(7)

Organic Matter as a Control of Emission Potential.

Contaminants present in Solid Waste.

I nitrogen;

I carbon source for Methane and CO2.

Source of substrate for micro-organisms present in waste body.

I biological degradation controls local pH and redox conditions;

I inorganic chemistry highly dependent on pH and redox; Dissolved Organic Carbon enhances solubility of micro-contaminants due to complexation

I heavy metals (Cu, Cr , Pb, etc.)

I organic micro pollutants (i.e. polycyclic aromatic hydrocarbons, PAH)

(8)

Organic Matter as a Control of Emission Potential.

Contaminants present in Solid Waste.

I nitrogen;

I carbon source for Methane and CO2.

Source of substrate for micro-organisms present in waste body.

I biological degradation controls local pH and redox conditions;

I inorganic chemistry highly dependent on pH and redox;

Dissolved Organic Carbon enhances solubility of micro-contaminants due to complexation

I heavy metals (Cu, Cr , Pb, etc.)

I organic micro pollutants (i.e. polycyclic aromatic hydrocarbons, PAH)

(9)
(10)

Outline

1 Motivation

Control and Prediction of Emission Potential 2 Landfill Simulator Data

Experiments carried out by Roberto Valencia

3 Biogeochemical Process Model

Gray box approach

Model Verification: Literature parameter ranges and Bayesian Inference using measured data

4 Results

Model fit and parameter distributions

5 Conclusion

(11)

Experimental Setup

(12)

Example of Experimental Data

0 200 400 600 800 0 20 40 60 t (d) CO 2 &CH 4 (m 3) Biogas 0 200 400 600 800 0 0.5 1 t (d) VFA l (M) VFAl 0 200 400 600 800 4 6 8 10 t (d) pH pH 0 200 400 600 800 0 0.05 0.1 0.15 0.2 NH 4 +&NH 3 (M) t (d) NH 4 &NH 3 (M) 0 200 400 600 800 0 0.2 0.4 0.6 0.8 pCH4 t (d) pCH 4 (atm) 0 200 400 600 800 0 0.5 1 pCO2 t (d) pCO 2 (atm)

(13)

Outline

1 Motivation

Control and Prediction of Emission Potential

2 Landfill Simulator Data

Experiments carried out by Roberto Valencia 3 Biogeochemical Process Model

Gray box approach

Model Verification: Literature parameter ranges and Bayesian Inference using measured data

4 Results

Model fit and parameter distributions

5 Conclusion

(14)

Predictive Modeling of Temporal Dynamics

Using “fundamental parameters”.

I parameters from literature;

I based as much as possible on accepted theory (i.e.

thermodynamics).

Not too complex.

I lumped process model.

Approach aimed towards providing insight.

I State variables are related to measurable quantities.

(15)

Conceptual Model

No transport limitations

I Continuous Stirred Tank Reactor (CSTR)

Hydrolysis

I rate limited

Microbial growth

I kinetic redox reaction

I multiple species

I multiple terminating electron acceptors (NO3−,

SO42−, CO2)

Landfill gas production (CH4, CO2 and NH3) I equilibrium gas partitioning

Solubility control (equilibrium, acid-base)

(16)
(17)
(18)

Rate Equation

Rate dependent reactions: Matlab

dMil dt = n X j=1 νi ,j · kjmax · m Y a=1 fa ! · Cj· Vl− ϕl →gi dMig dt = ϕ l →g i − xi· Fout ϕl →gi = kla·  Cilxi· p Hi 

Multiphase geochemical equilibrium: Orchestra

Mi = Ki ms

Y

j=1,j6=i

(19)

Rate Equation

Rate dependent reactions: Matlab

dMil dt = n X j=1 νi ,j · kjmax · m Y a=1 fa ! · Cj· Vl− ϕl →gi dMig dt = ϕ l →g i − xi· Fout ϕl →gi = kla·  Cilxi· p Hi 

Multiphase geochemical equilibrium: Orchestra

Mi = Ki ms

Y

j=1,j6=i

(20)

Outline

1 Motivation

Control and Prediction of Emission Potential

2 Landfill Simulator Data

Experiments carried out by Roberto Valencia 3 Biogeochemical Process Model

Gray box approach

Model Verification: Literature parameter ranges and Bayesian Inference using measured data

4 Results

Model fit and parameter distributions

5 Conclusion

(21)

Verification: Bayesian Inference

Parameter optimization using Bayesian Inference.

I MCMC method;

I PDF of optimal parameter space; P(θ | D) = P(θ)P(D | θ)

P(D) Prior estimate

I bandwidth reported in literature

I extremely wide search space

Verification

I parameter within literature bandwidth: reliable

I parameter outside: parameter compensates model error?

(22)

Verification: Bayesian Inference

Parameter optimization using Bayesian Inference.

I MCMC method;

I PDF of optimal parameter space; P(θ | D) = P(θ)P(D | θ)

P(D)

Prior estimate

I bandwidth reported in literature

I extremely wide search space Verification

I parameter within literature bandwidth: reliable

I parameter outside: parameter compensates model error?

(23)

Verification: Bayesian Inference

Parameter optimization using Bayesian Inference.

I MCMC method;

I PDF of optimal parameter space; P(θ | D) = P(θ)P(D | θ)

P(D)

Prior estimate

I bandwidth reported in literature

I extremely wide search space

Verification

I parameter within literature bandwidth: reliable

I parameter outside: parameter compensates model error?

(24)

Outline

1 Motivation

Control and Prediction of Emission Potential

2 Landfill Simulator Data

Experiments carried out by Roberto Valencia

3 Biogeochemical Process Model

Gray box approach

Model Verification: Literature parameter ranges and Bayesian Inference using measured data

4 Results

Model fit and parameter distributions

5 Conclusion

(25)

Model Fit & Parameter Distributions

0 500 1000 0 20 40 60 t (d) CO 2 &CH 4 (m 3) Biogas 0 500 1000 0 0.5 1 t (d) VFA l (M) VFAl 0 500 1000 4 6 8 10 t (d) pH pH 0 500 1000 0 0.05 0.1 0.15 0.2 NH 4 +&NH 3 (M) t (d) NH 4 &NH 3 (M) 0 500 1000 0 0.2 0.4 0.6 0.8 pCH4 t (d) pCH 4 (atm) 0 500 1000 0 0.5 1 pCO2 t (d) pCO 2 (atm) 0.040 0.06 0.08 100 200 300 kmax hyd d−1 0 0.5 1 0 200 400 kmax meth d−1 0 2 4 0 100 200 kmax sulph d−1 4 6 8 x 10−3 0 100 200 300 kmax NH 4 d−1 0 0.2 0.4 0 100 200 300 Ks,meth mol L−1 0 5 10 0 100 200 300 Ks,sulph mol L−1 0 0.05 0 200 400 Ci,methanogens mol L−1 0 0.5 1 0 200 400 Ci,sulphate reducers mol L−1

(26)

Model Fit & Parameter Distributions

0 200 400 0 10 20 30 40 t (d) CO 2 &CH 4 (m 3) Biogas 0 200 400 0 0.2 0.4 0.6 0.8 t (d) VFA l (M) VFAl 0 200 400 5 6 7 8 t (d) pH pH 0 200 400 0 0.05 0.1 0.15 0.2 NH 4 +&NH 3 (M) t (d) NH 4 &NH 3 (M) 0 200 400 0 0.2 0.4 0.6 0.8 pCH4 t (d) pCH 4 (atm) 0 200 400 0 0.5 1 pCO2 t (d) pCO 2 (atm) 0.04 0.06 0.080 100 200 300 kmax hyd d−1 0.5 1 1.5 0 200 400 kmax meth d−1 0 2 4 0 100 200 300 kmax sulph d−1 0 0.005 0.01 0 100 200 300 kmax NH 4 d−1 0 0.1 0.2 0 100 200 300 Ks,meth mol L−1 0 0.5 1 x 10−3 0 200 400 Ks,sulph mol L−1 0.01 0.02 0.030 100 200 300 Ci,methanogens mol L−1 0 0.5 1 0 100 200 300 Ci,sulphate reducers mol L−1

(27)
(28)

Correlation between Parameters

0 0.5 1 Ci,sulphate reducers 0 0.020.04 Ci,methanogens 0 5 10 Ks,sulph 0 0.2 0.4 Ks,meth 4 6 8 x 10−3 kmaxNH 4 0 2 4 kmax sulph 0 0.5 1 kmax meth 0.04 0.06 0.08 0 0.5 1 kmax hyd Ci,sulphate reducers 0 0.02 0.04 Ci,methanogens 0 5 10 Ks,sulph 0 0.2 0.4 Ks,meth 4 6 8 x 10−3 k max NH 4 0 2 4 k max sulph 0 0.5 1 k max meth 0.04 0.06 0.08 k max hyd

(29)

Summary

“Gray box” Bio-geochemical model is able to describe measured multi-parameter dynamics in Column Experiments of Roberto Valencia.

Limited amount of parameter fitting;

Parameters that fall outside literature range are:

I highly correlated with each other (inhibition constants); I not based on direct measurements (sulphate dynamics);

I indication of mass-transport limitations in model.

Outlook

I Test approach in systems where mass-transport is

included.

I Model will allow prediction of future development of emission potential.

(30)

Compounds in Model

(31)

Rate Dependent Reactions and Inhibition

(32)

Geochemical Equilibria

Cytaty

Powiązane dokumenty

Gdyby jednak duch Prusa próbował z zaświatów za pośrednictwem jakiegoś „ziemskiego korespondenta” (w takiej roli wystąpił niegdyś Andrzej Tauber- Ziółkowski)

Na długie lata – głównie z racji zdobiących go drzeworytów, wykonanych przez Erharda Reuwicha z Utrechtu i przed- stawiających widoki odwiedzanych przez pielgrzymów miast

The parameter estimation procedure has been performed in GNU Octave, where the objective function involved two solutions of the problem described in Section 2 (for

■a qualitative analysis of items according to guidelines (avoid Type K, negations in stem, “all of the above”, “none of the above”, non-functioning distractors and

Tu dużej rangi nabiera zarządzanie portfelem produktów jako wartość dla klienta oraz zarządzanie wartością portfela innowacji, które nie jest traktowane jako wprowadzenie

Linearized expressions, neglecting the dependency of the force on the mean wind speed and the coupling between flap and edge wise blade motion – among other things, are adopted

No. Al 5 2009 Journal of Marine Engineering and Technology 3.. Systematic modelling, verification calibration and validation of a ship propulsion simulation model.. at the

Membrane extraction (pertraction) enables a large contacting surface area between fermentation broth (aqueous phase) and solvent without the formation of an