• Nie Znaleziono Wyników

On subordination for classes of non-Bazilevič type

N/A
N/A
Protected

Academic year: 2021

Share "On subordination for classes of non-Bazilevič type"

Copied!
12
0
0

Pełen tekst

(1)

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXIV, NO. 2, 2010 SECTIO A 49–60

RABHA W. IBRAHIM, MASLINA DARUS and NIKOLA TUNESKI

On subordination for classes of non-Bazileviˇ c type

Abstract. We give some subordination results for new classes of normalized analytic functions containing differential operator of non-Bazileviˇc type in the open unit disk. By using Jack’s lemma, sufficient conditions for this type of operator are also discussed.

1. Introduction and preliminaries. Consider the functions F in the open disk U :={z ∈ C : |z| < 1}, defined by

F (z) = zα (1 − z)α =

 n=0

(α)n n! zn+α

= zα+

n=1

(α)n n! zn+α

= zα+

n=2

(α)n−1

(n − 1)!zn+α−1, α≥ 1.

(1.1)

From (1.1), assuming α to be a parameter with the values α := n+mm , m∈ N, and having n = 0 in the first term of the series, we can write F in the form

(1.2) F (z) = z +

 n=2

(α)n−1

(n − 1)!zn+α−1.

2000 Mathematics Subject Classification. 34G10, 26A33, 30C45.

Key words and phrases. Fractional calculus, subordination, non-Bazileviˇc function, Jack’s lemma.

(2)

By employing (1.2), we define classes of analytic functions of fractional power.

Let A+α be the class of all normalized analytic functions F in the open disk U of the form

F (z) = z +

 n=2

an,αzn+α−1, α≥ 1,

satisfying F (0) = 0 and F(0) = 1. Moreover, let Aα be the class of all normalized analytic functions F in the open disk U of the form

F (z) = z−

n=2

an,αzn+α−1, an,α ≥ 0; n = 2, 3, . . . ,

satisfying F (0) = 0 and F(0) = 1.

Definition 1.1 (Subordination Principle). For two functions f and g an- alytic in U, we say that the function f is subordinate to g in U and write f (z) ≺ g(z) (z ∈ U), if there exists a Schwarz function w(z) analytic in U with w(0) = 0, and |w(z)| < 1, such that f(z) = g(w(z)), z ∈ U. In particular, if the function g is univalent in U, the above subordination is equivalent to f (0) = g(0) and f (U )⊂ g(U).

Now we define a differential operator as follows:

D0αF (z) = F (z) = z +

 n=2

an,αzn+α−1, α≥ 1,

D1αF (z) = F (z)

2 +zF(z)

2 = z +

n=2

(n + α)

2 an,αzn+α−1, ...

DkαF (z) = D

Dk−1F (z)

= z +

n=2

(n + α) 2

k

an,αzn+α−1. (1.3)

LetA be the class of analytic functions of the form f(z) = z + a2z2+ . . . . Obradoviˇc [8] introduced a class of functions f ∈ A such that for 0 < μ < 1,

(1.4) 

 f(z)

 z f (z)

μ

> 0, z∈ U.

He called it the class of function of non-Bazileviˇc type. There are many subordination results for this class (see [15]). In fact, this type of functions has been used to solve various problems (see [14]).

(3)

The main object of the present work is to apply a method based on the differential subordination in order to derive sufficient conditions for func- tions F ∈ A+α and F ∈ Aα to satisfy

(1.5) 

DαkF (z) z DkαF (z)

μ

≺ q(z), DkαF (z)= 0, z ∈ U, where q is a given univalent function in U such that q(z)= 0, μ = 0.

Moreover, we give applications of these results in fractional calculus. We shall need the following known results:

Lemma 1.1 ([4]). Let q(z) be univalent in the unit disk U and θ and φ be analytic in a domain D containing q(U ) with φ(w)= 0 when w ∈ q(U). Set Q(z) := zq(z)φ(q(z)), h(z) := θ(q(z)) + Q(z). Suppose that

1. Q(z) is starlike univalent in U , and 2. zhQ(z)(z) > 0 for z ∈ U.

If θ(p(z)) + zp(z)φ(p(z)) ≺ θ(q(z)) + zq(z)φ(q(z)), then p(z) ≺ q(z) and q is the best dominant.

Lemma 1.2 ([5]). Let q(z) be convex univalent in the unit disk U and ψ and γ ∈ C with {1 + zqq(z)(z) + ψγ} > 0. If p(z) is analytic in U and ψp(z) + γzp(z) ≺ ψq(z) + γzq(z), then p(z) ≺ q(z) and q is the best dominant.

2. Subordination results. In this section, we study subordination for normalized analytic functions in the classes A+α and Aα.

Theorem 2.1. Let a function q be univalent in the unit disk U such that q(z)= 0, zqq(z)(z) is starlike univalent in U and

(2.1) 



1 +zq(z) q(z) −

zq(z) q(z) + a

bq(z)

> 0, b= 0, q(z) = 0, z ∈ U.

If F ∈ A+α satisfies the subordination

 a

DkαF (z)

DαkF (z) z

μ + b



μ(1−z(DkαF (z))

DkαF (z) ) +z(DαkF (z))

(DkαF (z))



a

q(z)+ bzq(z) q(z) ,

then 

DαkF (z) z DkαF (z)

μ

≺ q(z) and q is the best dominant.

Proof. Let the function p be defined by p(z) :=

DkαF (z) z DαkF (z)

μ

, DαkF (z)= 0, z ∈ U.

(4)

By setting

θ(ω) := a

ω and φ(ω) := b

ω, b= 0,

it can easily be observed that θ(ω) is analytic inC − {0}, φ(ω) is analytic inC − {0} and that φ(ω) = 0, ω ∈ C − {0}. Also we obtain

Q(z) = zq(z)φ(q(z)) = bzq(z) q(z) and

h(z) = θ(q(z)) + Q(z) = a

q(z)+ bzq(z) q(z) . It is clear that Q(z) is starlike univalent in U,



zh(z) Q(z)

= 



1 +zq(z) q(z) −

zq(z) q(z) + a

bq(z)

> 0.

By straightforward computation, we have a

p(z) + bzp(z)

p(z) = a

DkαF (z)

DαkF (z) z

μ

+ b

μ

1 −z

DkαF (z) DkαF (z)

+z

DαkF (z)

DkαF (z)



a

q(z)+ bzq(z) q(z) .

Then by the assumption of the theorem, we see that the assertion of the

theorem follows by application of Lemma 1.1. 

Corollary 2.1. Assume that (2.1) holds and q is convex univalent in U . If F ∈ A+α and

 a

DkαF (z)

DαkF (z) z

μ + b

μ

1 −z

DαkF (z) DαkF (z)

+z(DkαF (z))

(DαkF (z))



≺ a

1 + Bz 1 + Az

μ

+ b μz(A− B) (1 + Az)(1 + Bz), then

DαkF (z) z DkαF (z)

μ

1 + Az 1 + Bz

μ

, −1 ≤ B < A ≤ 1 and q(z) =

1+Az 1+Bz

μ

is the best dominant.

(5)

Corollary 2.2. Assume that (2.1) holds and q is convex univalent in U . If F ∈ A+α and

 a

DkαF (z)

DkαF (z) z

μ + b

μ

1 −z

DαkF (z) DαkF (z)

+z

DkαF (z)

(DαkF (z))



≺ a

1 − z 1 + z

μ

+ 2μbz 1 − z2, for z∈ U, μ = 0, then

DαkF (z) z DkαF (z)

μ

1 + z 1 − z

μ

and q(z) =

1+z 1−z

μ

is the best dominant.

Corollary 2.3. Assume that (2.1) holds and q is convex univalent in U . If F ∈ A+α and

 a

DkαF (z)

DkαF (z) z

μ + b

μ

1 −z

DαkF (z) DαkF (z)

+z

DkαF (z)

DαkF (z)



≺ ae−μAz+ μbAz for z∈ U, μ = 0, then

DkαF (z) z DαkF (z)

μ

≺ eμAz and q(z) = eμAz is the best dominant.

The next result can be found in [3].

Corollary 2.4. Assume that k = 0 in Theorem 2.1. Then (F (z))

 z F (z)

μ

≺ q(z) and q is the best dominant.

Theorem 2.2. Let a function q(z) be convex univalent in the unit disk U such that q(z) = 0 and

(2.2) 



1 +zq(z) q(z) +1

γ

> 0, γ = 0.

Suppose that

DαkF (z)

DαkF (z)z

μ

is analytic in U . If F ∈ Aα satisfies the subordination

DαkF (z) z DkαF (z)

μ μγ

1 −z

DkαF (z) DkαF (z)

+ z

DkαF (z)

DkαF (z)



≺ q(z) + γzq(z),

(6)

then 

DαkF (z) z DkαF (z)

μ

≺ q(z), z ∈ U, DkαF (z)= 0 and q is the best dominant.

Proof. Let the function p be defined by p(z) :=

 z

DαkF (z) μ

, DkαF (z)= 0, z ∈ U.

By setting ψ = 1, it can easily be observed that p(z) + γzp(z)

=

DkαF (z) z DkαF (z)

μ μγ

1 −z

DαkF (z) DkαF (z)

+z

DαkF (z)

 (z)

DkαF (z)



≺ q(z) + γzq(z).

Then by the assumption of the theorem we see that the assertion of the

theorem follows by application of Lemma 1.2. 

Corollary 2.5. Assume that (2.2) holds and q is convex univalent in U . If F ∈ Aα and

DkαF (z) z DαkF (z)

μ μγ

1 −z

DkαF (z) DkαF (z)

+z

DαkF (z)

 (z)

DαkF (z)



1 + Az 1 + Bz

μ

+ μγz(A − B)(1 + Az)μ−1 (1 + Bz)μ+1, then

DαkF (z) z DkαF (z)

μ

1 + Az 1 + Bz

μ

, −1 ≤ B < A ≤ 1 and q(z) =

1+Az 1+Bz

μ

is the best dominant.

Corollary 2.6. Assume that (2.2) holds and q is convex univalent in U . If F ∈ Aα and

DkαF (z) z DkαF (z)

μ μγ

1 −z

DαkF (z) DkαF (z)

+z

DαkF (z)

 (z)

DkαF (z)



1 + z 1 − z

μ

1 + 2γμz 1 − z2

for z∈ U, μ = 0, then

DαkF (z) z DkαF (z)

μ

1 + z 1 − z

μ

and q(z) =

1+z 1−z

μ

is the best dominant.

(7)

Corollary 2.7. Assume that (2.2) holds and q is convex univalent in U . If F ∈ Aα and

DkαF (z) z DkαF (z)

μ μγ

1 −z

DαkF (z) DkαF (z)

+z

DαkF (z)

(z) (DkαF (z))



≺ eμAz(1 + μγAz) for z∈ U, μ = 0, then

DkαF (z) z DαkF (z)

μ

≺ eμAz and q(z) = eμAz is the best dominant.

The next result can be found in [3].

Corollary 2.8. Assume that k = 0 in Theorem 2.2. Then (F (z))

 z F (z)

μ

≺ q(z) and q is the best dominant.

3. Applications. In this section, we present some applications of Section 2 to fractional integral operators. Assume that f (z) = 

n=2ϕnzn−1 and let us begin with the following definitions:

Definition 3.1 ([12]). The fractional integral of order α is defined, for a function f, by

Izαf (z) := 1 Γ(α)

 z

0 f (ζ)(z− ζ)α−1dζ, α≥ 1,

where the function f is analytic in a simply-connected region of the com- plex z-plane (C) containing the origin and the multiplicity of (z − ζ)α−1 is removed by requiring log(z− ζ) to be real when (z − ζ) > 0.

Note that (see [12], [7])

Izαzμ= Γ(μ + 1)

Γ(μ + α + 1)zμ+α, (μ > −1).

Thus we have

Izαf (z) =

 n=2

anzn+α−1

where an:= Γ(n+α)ϕnΓ(n), for all n = 2, 3, . . . . This implies that z + Izαf (z)∈ A+α and z− Izαf (z)∈ Aα n≥ 0), so we get the following results:

(8)

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then Dkα

z + Izαf (z)

z

Dkα(z + Izαf (z)) μ

≺ q(z), z = 0, z ∈ U and q is the best dominant.

Proof. Consider the function F be defined by

F (z) := z + Izαf (z), z∈ U, z = 0.  Theorem 3.2. Let k = 0 in Theorem 2.2. Then

Dαk

z− Izαf (z)

z

Dkα(z − Izαf (z)) μ

≺ q(z), z = 0, z ∈ U and q is the best dominant.

Proof. Consider the function F be defined by

F (z) := z− Izαf (z), z∈ U, z = 0.  Let F (a, b; c; z) be the Gauss hypergeometric function (see [13]) defined, for z∈ U, by

F (a, b; c; z) =

 n=0

(a)n(b)n (c)n(1)nzn, where is the Pochhammer symbol defined by

(a)n:= Γ(a + n) Γ(a) =

1, (n = 0);

a(a + 1)(a + 2) . . . (a + n− 1), (n ∈ N).

We need the following definition of fractional operators of the Saigo type fractional calculus (see [10], [9]).

Definition 3.2. For α > 0 and β, η ∈ R, the fractional integral operator I0,zα,β,η is defined by

I0,zα,β,ηf (z) = z−α−β Γ(α)

 z

0 (z − ζ)α−1F



α + β,−η; α; 1 − ζ z

f (ζ)dζ where the function f (z) is analytic in a simply-connected region of the z- plane containing the origin, with the order

f (z) = O(|z|)(z → 0), > max{0, β − η} − 1

and the multiplicity of (z− ζ)α−1 is removed by requiring log(z− ζ) to be real when z− ζ > 0.

(9)

From Definition 3.2, with β < 0, we have I0,zα,β,ηf (z) = z−α−β

Γ(α)

 z

0 (z − ζ)α−1F



α + β,−η; α; 1 − ζ z

f (ζ)dζ

=

 n=0

(α + β)n(−η)n

(α)n(1)n

z−α−β Γ(α)

 z

0 (z − ζ)α−1

 1 −ζ

z n

f (ζ)dζ

:=

n=0

Bnz−α−β−n Γ(α)

 z

0 (z − ζ)n+α−1f (ζ)dζ

=

n=0

Bnz−β−1 Γ(α) f (ζ) := B

Γ(α)

 n=2

ϕnzn−β−1

where B :=

n=0Bn. Denote an := Γ(α)n, ∀ n = 2, 3, . . . , and let α = −β.

Thus z + I0,zα,β,ηf (z)∈ A+α and z− I0,zα,β,ηf (z)∈ Aα n≥ 0), so we have the following results:

Theorem 3.3. Assume that the hypotheses of Theorem 2.1 are satisfied.

Then Dkα

z + I0,zα,β,ηf (z)

z

Dkα(z + I0,zα,β,ηf (z)) μ

≺ q(z), z = 0, z ∈ U and q is the best dominant.

Proof. Consider the function F defined by

F (z) := z + I0,zα,β,ηf (z), z∈ U, z = 0.  Theorem 3.4. Assume that the hypotheses of Theorem 2.2 are satisfied.

Then Dkα

z− I0,zα,β,ηf (z)

z

Dkα(z − I0,zα,β,ηf (z)) μ

≺ q(z), z = 0, z ∈ U and q is the best dominant.

Proof. Consider the function F defined by

F (z) := z− I0,zα,β,ηf (z), z∈ U, z = 0.  Remark 3.1. Note that the authors have recently studied and defined several other classes of analytic functions related to fractional power (see [2], [1], [4]).

(10)

4. The classSμ(γ). A function F (z) ∈ A+α is said to be in the classSμ(γ) if it satisfies

DkαF (z) z DαkF (z)

μ

1 + z

1 − γz, (z ∈ U, γ = 1).

To discuss our problem, we have to recall here the following lemma due to Jack [15].

Lemma 4.1. Let w be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z0, then

z0w(z0) = kw(z0), where k is a real number and k≥ 1.

We get the following result:

Theorem 4.1. If F ∈ A+α satisfies (4.1) 

μ− μz

DkαF (z) DkαF (z) +z

DαkF (z)

DkαF (z)



< 1 + γ

2(1 − γ), (z ∈ U) for some 0 < γ < 1, 0 < μ < 1, then F (z)∈ Sμ(γ).

Proof. Let w be defined by

DkαF (z) z DαkF (z)

μ

= 1 + w(z)

1 − γw(z), (1 = γw(z)).

Then w(z) is analytic in U with w(0) = 0. It follows that



μ− μz

DkαF (z) DαkF (z) + z

DkαF (z)

DαkF (z))



= 

 z(γw(z) + 1) (1 − γw(z))(1 + w(z))



< 1 + γ

2(1 − γ), γ = 1.

Now we proceed to prove that|w(z)| < 1. Suppose that there exists a point z0∈ U such that

|z|≤|zmax0||w(z)| = |w(z0)| = 1.

Then, using Lemma 4.1 and letting w(z0) = e and z0w(z0) = ke, k ≥ 1, we obtain



μ− μz

DkαF (z0) DkαF (z0) +z0

DkαF (z0)

DkαF (z0))



= 

 z0(w(z0)γ + 1) (1 − γw(z0))(1 + w(z0))



= 

 keγ + 1 (1 − γe)(1 + e)



= k(γ + 1)

2(1 − γ) 1 + γ 2(1 − γ),

(11)

0 < γ < 1. Thus we have



μ− μz

DαkF (z) DαkF (z) +z

DkαF (z)

DkαF (z))



1 + γ

2(1 − γ), (z ∈ U)

which contradicts the hypothesis (4.1). Therefore, we conclude that|w(z)| <

1 for all z ∈ U that is

DkαF (z) z DαkF (z)

μ

1 + z

1 − γz, (z ∈ U, γ = 1).

This completes the proof of the theorem. 

Acknowledgement. This work is supported by UKM-ST-06-FRGS0107- 2009 and the authors would like to thank the referee for informative remarks given to improve the content of the paper.

References

[1] Darus, M., Ibrahim, R. W., Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math.29(4) (2008), 221–229.

[2] Ibrahim, R. W., Darus, M., On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. (Ruse)2(56) (2008), 2785–2794.

[3] Ibrahim, R. W., Darus, M., Subordination for new classes of non-Bazileviˇc type, UNRI-UKM Symposium, KE-4 (2008).

[4] Ibrahim, R. W., Darus, M., Differential subordination results for new classes of the familyE(Φ, Ψ), JIPAM. J. Ineq. Pure Appl. Math. 10(1) (2009), Art. 8, 9 pp.

[5] Jack, I. S., Functions starlike and convex of orderk, J. London Math. Soc. 3 (1971), 469–474 .

[6] Miller, S. S., Mocanu, P. T., Differential Subordinantions. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

[7] Miller, K. S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, Inc., New York, 1993.

[8] Obradoviˇc, M., A class of univalent functions, Hokkaido Math. J.27(2) (1998), 329–

335.

[9] Raina, R. K., On certain class of analytic functions and applications to fractional calculus operator, Integral Transform. Spec. Funct.5 (1997), 247–260.

[10] Raina, R. K., Srivastava, H. M., A certain subclass of analytic functions associated with operators of fractional calculus, Comput. Math. Appl.32 (1996), 13–19.

[11] Shanmugam, T. N., Ravichangran, V. and Sivasubramanian, S., Differential sandwich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl.3(1) (2006), 1–11.

[12] Srivastava, H. M., Owa, S. (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1989.

[13] Srivastava, H. M., Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.

[14] Tuneski, N., Darus, M., Fekete-Szeg¨o functional for non-Bazileviˇc functions, Acta Math. Acad. Paedagog. Nyh´azi. (N.S.)18(2) (2002), 63–65.

(12)

[15] Wang, Z., Gao, C. and Liao, M., On certain generalized class of non-Bazileviˇc func- tions, Acta Math. Acad. Paedagog. Nyh´azi. (N.S.)21(2) (2005), 147–154.

Rabha W. Ibrahim Maslina Darus

School of Mathematical Sciences School of Mathematical Sciences Faculty of Science and Technology Faculty of Science and Technology Universiti Kebangsaan Malaysia Universiti Kebangsaan Malaysia Bangi 43600, Selangor Darul Ehsan Bangi 43600, Selangor Darul Ehsan

Malaysia Malaysia

e-mail: rabhaibrahim@yahoo.com e-mail: maslina@ukm.my (corresponding author)

Nikola Tuneski

Faculty of Mechanical Engineering Karpoˇs II b.b., 1000 Skopje Republic of Macedonia e-mail: nikolat@mf.edu.mk Received February 8, 2010

Cytaty

Powiązane dokumenty

Sobolev, Extremal properties of some classes of conformal self-mappings of the half plane with fixed coefficients, (Russian), Sibirsk. Stankiewicz, On a class of

In this paper a relationship between subordination and inclusion the maps of some concentric discs is investigated in a case when f ranges over the class Nn, (n&gt;2) and P

Pewne nierówności całkowe dla funkcji całkowitych typu wykładniczego Некоторые интегральные неравенства для целых функций экспоненциального

Using the methods of differential subordination and superordi- nation, sufficient conditions are determined on the differential linear operator of meromorphic functions in the

R., Certain subordination results for a class of analytic functions defined by the generalized integral operator, Int.. S., Subordinating factor sequences for some convex maps of

The Radius of Convexity and Starlikeness for Certain Classes of Analytic Functions with Fixed Second Coefficients.. Promień wypukłości i gwiaździstości dla pewnych

If a, z and are given then the set D(a,z, Jf) = {w: w =f(z)l /(а)л/с Jf} is called the region of variability of the ratio f(z)/f(a) within.. the

The region D(r, k) of variability oj log/' (z) for a fixed z, zeK,, and f ranging over the class Lk of k-symmetric close-to-convex functions is a closed, convex domain symmetric