• Nie Znaleziono Wyników

Teleoperation with a dexterous robot arm

N/A
N/A
Protected

Academic year: 2021

Share "Teleoperation with a dexterous robot arm"

Copied!
6
0
0

Pełen tekst

(1)

Teleoperation with a dexterous robot arm

A n d r é v a n d e r H a m , S a n d o r d e n B r a v e n , G e r H o n d e r d , iv^jm J o n g k i n d C o n t r o l L a b o r a t o r y 'a D e p a r t m e n t o f E l e c t r i c a l E n g i n e e r i n g D e l f t U n i v e r s i t y o f T e c h n o l o g y P O B o x 5031 2 6 0 0 G A D e l f t T h e N e t h e r l a n d s E - m a i l : a.c.vanderham@et.tudelft.nl

Abstract

I n n u c l e a r p o w e r plants s n a k e - a l i k e m a n i p u l a t o r s are used f o r t e l e m a n i p u l a t i o n . T h u s , the t e l e m a n i p u l a t o r a r m i s h i g h l y k i n e m a t i c a l l y redundant. T h i s p a p e r discusses a n e x p e r i m e n t u s i n g t w o d i s s i m i l a r robot arms c o n f i g u r e d t o b e u s e d f o r teleoperation. T h e t e l e m a n i p u l a t o r (remote) a r m i s k i n e m a t i c a l l y redundant. C o n t r o l schemes f o r 1:1 p o s i t i o n and force bilateral c o n t r o l a n d f o r s o l v i n g the c o n t r o l o f the k i n e m a t i c a l l y redundant m a n i p u l a t o r are presented a n d h a v e b e e n v e r i f i e d i n practice.

1. Introduction

T h r o u g h the u s e o f teleoperation systems i n a n u c l e a r e n v i r o n m e n t , a h u m a n operator w i l l n o t h a v e to b e e x p o s e d to h i g h l e v e l s o f r a d i a t i o n . T h e operator w i l l c o n t r o l a slave m a n i p u l a t o r , w h i c h i s situated i n the h o s t i l e e n v i r o n m e n t , b y generating position/force c o m m a n d s w i t h a m a s t e r s y s t e m .

T h i s p a p e r presents a teleoperation system w h e r e the operator controls the slave m a n i p u -l a t o r b y c o n t r o -l -l i n g a m a s t e r m a n i p u -l a t o r w h i c h c a n b e k i n e m a t i c a -l -l y d i s s i m i -l a r to the s-lave. I n o r d e r t o c o n t r o l a l l the cartesian degrees o f f r e e d o m o f the slave, the master m u s t at least have the same n u m b e r o f cartesian degrees o f f r e e d o m .

T h e t w o m a n i p u l a t o r s w i l l b e c o n t r o l l e d w i t h a bilateral c o n t r o l s y s t e m . T h i s m e a n s that the operator c a n n o t o n l y m o v e the slave m a n i p u l a t o r t o a desired p o s i t i o n b y c o n t r o l l i n g the master m a n i p u l a t o r , b u t h e c a n also f e e l a n d c o n t r o l the forces exerted b y the slave o n the e n v i r o n m e n t . T h i s a d d i t i o n a l f o r c e r e f l e c t i o n w i l l i m p r o v e the p e r f o r m a n c e o f the teleoperation s y s t e m .

T h e basis o f the b i l a t e r a l c o n t r o l s c h e m e i s f o r m e d b y p o s i t i o n c o n t r o l o f the m a n i p u l a t o r s . T h e s n a k e - a l i k e m a n i p u l a t o r s u s e d i n n u c l e a r p o w e r plants are h i g h l y k i n e m a t i c a l l y redundant. A c o n t r o l s c h e m e i s presented w h i c h , u n l i k e m o s t c o n t r o l schemes f o r s u c h robots, m a k e s f u l l u s e o f the k i n e m a t i c a l r e d u n d a n c y .

T h e b i l a t e r a l c o n t r o l system has been i m p l e m e n t e d a n d tested w i t h a k i n e m a t i c a l l y redundant robot as slave a n d a S c a r a robot as master.

2. Position control of a kinematically redundant robot

T h e p o s i t i o n o f a robot m a n i p u l a t o r is d e f i n e d as the p o s i t i o n a n d orientation o f the end-effector relative to the base f r a m e o f the robot i n cartesian space. G i v e n a certain set o f j o i n t p o s i t i o n s o f the robot ( 0 ) , the f o r w a r d k i n e m a t i c s are used to calculate the p o s i t i o n i n cartesian space ( X ) :

(2)

A r o b o t is c o n t r o l l e d b y c o n t r o l l i n g the separate axes o f the m a n i p u l a t o r . S o i n o r d e r to c o n t r o l the r o b o t i n cartesian space, a c o n v e r s i o n t r o m a cartesian space d e s c r i p t i o n i n t o a j o i n t s p a c e d e s c r i p t i o n i s n e e d e d . A straightforward m e t h o d is to use the inverse k i n e m a t i c s to c a l c u l a t e the d e s i r e d j o i n t p o s i t i o n s , g i v e n the desired cartesian p o s i t i o n .

F o r a k i n e m a t i c a l l y redundant robot the i n v e r s e k i n e m a t i c s p r o b l e m has n o c l o s e d f o r m s o l u t i o n . B e c a u s e a k i n e m a t i c a l l y redundant robot has m o r e j o i n t v a r i a b l e s than its n u m b e r o f cartesian degrees o f f r e e d o m , there are a n i n f i n i t e n u m b e r o f w a y s to reach a c e r t a i n cartesian p o s i t i o n .

T h e r e are h o w e v e r n u m e r i c a l s o l u t i o n s to s o l v e the inverse k i n e m a t i c s p r o b l e m o f a k i n e m a t i c a l l y redundant r o b o t T h e s o l u t i o n that is presented here uses the transpose J a c o b i a n f o r the c o n v e r s i o n f r o m c a r t e s i a n space i n t o j o i n t space. W h e n a m a n i p u l a t o r is i n contact w i t h the e n v i r o n m e n t , the m a p p i n g b e t w e e n the j o i n t torques ( t ) and the exerted f o r c e s ( F ) o n the e n v i r o n m e n t i s g i v e n b y :

T = J

T

(6)F,

(2)

w h e r e J ( 0 ) represents the J a c o b i a n o f the m a n i p u l a t o r . F i g u r e 1 s h o w s h o w this r e l a t i o n s h i p i s u s e d to a c c o m p l i s h a cartesian c o n t r o l s c h e m e .

Xd

JT( ê ) A 5 8

f

A e

^

5 8

Robot +

Amplifier

e

Figure 1: Transpose Jacobian inverse kinematics cartesian control scheme

T h e cartesian set p o i n t is c o n s t a n t l y c o m p a r e d w i t h the estimated cartesian p o s i t i o n . T h e r e s u l t i n g errors are m u l t i p l i e d w i t h gains and c a n be regarded as the cartesian forces that w h e n a p p l i e d to the end-effector o f the m a n i p u l a t o r , w i l l reduce the cartesian error. W i t h the transpose J a c o b i a n the cartesian error is t r a n s f o r m e d i n t o j o i n t displacements. T h e s e j o i n t d i s p l a c e m e n t s are added to the p r e v i o u s e s t i m a t i o n o f the d e s i r e d j o i n t p o s i t i o n s as i n d i c a t e d b y the intégration t e r m . T h e actual c o n t r o l is p e r f o r m e d o n j o i n t l e v e l . T h e estimated j o i n t p o s i t i o n s are u s e d as référence f o r the j o i n t p o s i t i o n c o n t r o l l e r s w h i c h use a s i m p l e P I D a l g o r i t h m . T h e c o n t r o l s c h e m e is based o n a f o r m o f stiffhess c o n t r o l o f a r o b o t w h i c h c a n be c o n t r o l l e d i n torque m o d e (figure 2). 6X Gains F ^ rm T T Robot

e

Gains F ^ rm T T Robot

-Kin(6)

(3)

B y substituting the standard m o d e l f o r each j o i n t , o n e requires a m o d e l based i n v e r s e k i n e m a t i c s estimator. F o r c o n v e r g e n c e o f the estimator the d y n a m i c s o f the m o t o r are d i s a d v a n -tageous a n d therefore m a y b e o m i t t e d to a l l o w faster c o n v e r g e n c e . I n essence the m o t o r m o d e l i s s i m p l i f i e d b y a p u r e integrator w i t h a certain g a i n . B y s w e e p i n g the m o t o r m o d e l g a i n together w i t h the stiffhess t e r m , the estimator b e c o m e s as d e s c r i b e d i n figure 1.

T h e inverse k i n e m a t i c s has been s o l v e d w i t h a n iterative a l g o r i t h m . T h i s i s u s u a l l y n o t bénéficiai t o the c o n t r o l speed o f the System. T h e e s t i m a t i o n o f the j o i n t p o s i t i o n s s h o u l d n o t take too l o n g . F o r s m a l l c h a n g e s i n the cartesian set p o i n t the e s t i m a t i o n i s rather fast. T h e r e f o r e a s l o p e filter i s a p p l i e d to l i m i t the set p o i n t changes t o a m a x i m u m cartesian v e l o c i t y i n o r d e r t o a c h i e v e a g o o d p e r f o r m a n c e o f the System.

T h e c o n v e r g e n c e speed o f the n u m e r i c a l a l g o r i t h m dépends o n the gains w i t h w h i c h the cartesian errors are m u l t i p l i e d . T h e s e gains s h o u l d be set f o r a sufficient h i g h c o n v e r g e n c e speed. It is d i f f i c u l t t o set t h e g a i n s f o r t h e m a x i m u m p o s s i b l e c o n v e r g e n c e speed because this m a x i m u m w i l l d i f f e r w i t h différent c o n f i g u r a t i o n s o f the robot m a n i p u l a t o r .

3. Bilateral control of two robot manipulators

I n o r d e r to c o n t r o l the s l a v e m a n i p u l a t o r , the operator needs a master System to generate p o s i t i o n and force c o m m a n d s . I n o u r case this interface i s p r o v i d e d b y a master m a n i p u l a t o r w i t h a force/torque sensor p l a c e d o n the end-effector o f the robot. T h e forces generated b y the operator w i l l b e c o n v e r t e d i n t o p o s i t i o n c o m m a n d s f o r a cartesian p o s i t i o n c o n t r o l l e r o f the r o b o t as s h o w n i n figure 3 .

Figure

3: Cartesian stiffness control

T h e desired p o s i t i o n d i s p l a c e m e n t (SX) i s calculated as:

àXd = GxFop,

(3)

w h e r e F o p i s the v e c t o r w i t h forces a n d torques generated b y the operator a n d G x i s a d i a g o n a l m a t r i x . T h e d e s i r e d d i s p l a c e m e n t i s added to a référence p o s i t i o n ( X r ) . I n this w a y the end-effector o f the r o b o t w i l l appear to act l i k e a s p r i n g w i t h a certain stiffness a l o n g the cartesian degrees o f f r e e d o m o f the m a n i p u l a t o r . A s the a c t i o n o f a gênerai s p r i n g w i t h the same cartesian degrees o f f r e e d o m as the m a n i p u l a t o r i s d e s c r i b e d b y :

F - KxôXf (A\

w h e r e K x is a d i a g o n a l m a t r i x w i t h the stiffness coefficients o n its d i a g o n a l , the end-effector o f the

m a n i p u l a t o r w i l l h a v e the same stiffness characteristics as this s p r i n g i f G x equals K x '1.

T h e bilatéral c o n t r o l System i s a c c o m p l i s h e d b y u s i n g the slave p o s i t i o n as référence f o r the p o s i t i o n c o n t r o l l e r o f the master m a n i p u l a t o r and the master p o s i t i o n ( X m ) as référence f o r the p o s i t i o n c o n t r o l l e r o f the s l a v e m a n i p u l a t o r . T h i s i s s h o w n i n figure 4 w h e r e the subscripts ' m ' a n d

(4)

Master-side

Ô X d m +

/C~~~\ +

cartesian

controlled

master

t

Fop

Slave-side

Fe

cartesian

controlled

G x

s

slave

Figure 4: Bilateral control System for wo robot manipulators

D u e t o the l i m i t e d b a n d w i d t h o f the p o s i t i o n c o n t r o l l e r o f the slave, the s l a v e p o s i t i o n w i l l deviate a l i t t l e f r o m the m a s t e r p o s i t i o n d u r i n g free m o t i o n (Fe=0). T h i s p o s i t i o n e r r o r is feit b y the

operator a n d h e w i l l a l w a y s h a v e t o exert a certain force o n the m a s t e r m a n i p u l a t o r t o m o v e the s l a v e m a n i p u l a t o r . W i t h this f o r c e h e i s able to c o n t r o l the speed o f the m o v e m e n t . T h e operator w i l l also f e e l a p o s i t i o n e r r o r that is caused w h e n the slave operator m a k e s contact w i t h the e n v i r o n m e n t .

T h e force r e f l e c t i o n c a n b e m a d e c l e a r w i t h a f e w équations that c a n b e d e r i v e d f r o m f i g u r e 4 . T h r o u g h the p o s i t i o n c o n t r o l l e r s o f both the m a s t e r a n d the slave, the f o l l o w i n g équations w i l l h o l d :

X = X

m

- Gx Fe,

(5)

*m

*

X

s

+ GxmF

OP-

(6)

S u b s t i t u t i o n o f e q u a t i o n 5 in e q u a t i o n 6 y i e l d s the next r e l a t i o n s h i p :

Gx

s

Fe = Gx

m

Fop

( 7 )

H e n c e , i f G xs i s c h o s e n e q u a l t o G x , ^ the forces exerted by the s l a v e m a n i p u l a t o r on the e n v i r o n -m e n t are e q u a l t o the forces exerted b y the operator on the -m a s t e r -m a n i p u l a t o r .

4. Implementation and results of the bilateral control System

T h e b i l a t e r a l c o n t r o l System has b e e n i m p l e m e n t e d f o r the O c t o v e r a r o b o t as the k i n e m a t i c a l l y redundant s l a v e m a n i p u l a t o r . T h i s is a m a n i p u l a t o r w h i c h has s i x j o i n t s to c o n t r o l f o u r cartesian degrees o f f r e e d o m , the p o s i t i o n (represented by three v a r i a b l e s ) a n d the o r i e n t a t i o n o f the e n d -effector i n the h o r i z o n t a l p l a n e (one v a r i a b l e ) . T h e master m a n i p u l a t o r is a B o s c h S c a r a r o b o t w h i c h h a s f o u r j o i n t s to c o n t r o l the same f o u r cartesian degrees o f f r e e d o m as the O c t o v e r a robot. B o t h robots are e q u i p p e d w i t h a s i x degrees of f r e e d o m force/torque sensor at the w r i s t of t h e m a n i p u l a t o r .

A transputer b a s e d system h a s b e e n u s e d to i m p l e m e n t the b i l a t e r a l c o n t r o l a l g o r i t h m s . T h e main feature o f this transputer s y s t e m is that it p r o v i d e s a m u l t i t a s k i n g e n v i r o n m e n t i n w h i c h several processes c a n r u n in p a r a l l e l . T h i s p r o p e r t y i s e s p e c i a l l y u s e d t o i m p l e m e n t separate c o n t r o l processes f o r the t w o different robots. T h e t w o m a n i p u l a t o r s are thus r e a l l y c o n t r o l l e d in p a r a l l e l .

(5)

T h e b i l a t e r a l c o n t r o l System that has b e e n presented c a n be d i v i d e d into f o u r different c o n t r o l l e v é i s as s h o w n i n figure 5. U p to a n d i n c l u d i n g the stiffness c o n t r o l l e v e l the c o n t r o l l e v é i s h a v e b e e n i m p l e m e n t e d separately f o r the t w o robots. T h e c o n n e c t i o n b e t w e e n the t w o robots is established i n the last l e v e l , the bilateral c o n t r o l l e v e l .

bilateral control

stifmess control stifmess control cartesian control cartesian control

joint control joint control Master Slave

Figure 5: Bilateral control structure

T h e c o n t r o l m e t h o d that has b e e n presented to c o n t r o l a k i n e m a t i c a l l y redundant r o b o t has b e e n i m p l e m e n t e d a n d tested f o r the O c t o v e r a robot. F i g u r e 6 s h o w s the r e s u l t i n g cartesian p o s i t i o n responses w h e r e the m a n i p u l a t o r i s m o v e d t r o m the ( X , Y ) p o s i t i o n (1.5,0.0) to (1.4,0.1). T h e s o l i d l i n e s i n d i c a t e d b y X s a n d Y s represent the cartesian set p o i n t after the slope filter w h i c h has b e e n set to a m a x i m u m cartesian v e l o c i t y o f 0.03 m/s. T h e dashed l i n e s i n d i c a t e the estimated cartesian p o s i t i o n . T h e a c t u a l cartesian p o s i t i o n i s represented b y the s o l i d l i n e s i n d i c a t e d b y X and Y .

1.42 r r i i i ë. o.oe| g i j i 1 1 i 1 Vj^y- • • • ! : > ^ Y y i 1 i i i tim» [s]

Figure 6: Cartesian responses for the kinematically redundant robot

T h e estimated cartesian p o s i t i o n f o l l o w s the cartesian set p o i n t v e r y fast. T h e actual p o s i t i o n i n the Y d i r e c t i o n f o l l o w s the estimated p o s i t i o n faster than i n the X d i r e c t i o n . T h i s différence results i n a déviation f r o m the desired p a t h a n d is d u e to different responses o f the j o i n t c o n t r o l l e r s o f the robot.

T h e b i l a t e r a l c o n t r o l system has b e e n i m p l e m e n t e d w i t h a l i n e a r stiffness o f 5 K N / m f o r b o t h robots. T h e stiffness o f the t w o robots has to be the same f o r a 1:1 force r e f l e c t i o n . F i g u r e 7 s h o w s the force a n d p o s i t i o n responses o f an e x p e r i m e n t w h e r e the slave m a n i p u l a t o r approaches a n object i n the X d i r e c t i o n . T h e object has a n estimated stiffness o f 5 0 K N / m .

(6)

'O 1 2 3 4 S 6 7 •m» [s]

0 1 2 3 4 5 6 7 tint* [s]

Figure 7: Force (left) and position (right) responses of the bilateral control system

D u r i n g free m o t i o n the slave m a n i p u l a t o r f o l l o w s the master m a n i p u l a t o r . T h e operator has to exert a f o r c e o n t h e m a s t e r i n o r d e r t o achieve this m o v e m e n t . W h e n the s l a v e m a k e s contact w i t h the e n v i r o n m e n t this is feit b y the operator. D u r i n g contact the forces exerted b y the slave are e q u a l to the forces exerted b y the operator o n the master. S o b o t h 1:1 p o s i t i o n a n d 1:1 f o r c e b i l a t e r a l c o n t r o l h a v e b e e n r e a l i z e d .

A t present t h e stiffhess o f the master i s set t o a constant v a l u e . P r e v i o u s research ( H a m , 1994) h a s p o i n t e d o u t that adaptation o f the stiffness greatly i m p r o v e s the p e r f o r m a n c e . T h e n e x t step i s to i m p l e m e n t t h e adaptive l a w s f o r this s y s t e m .

5. Conclusions

I n this p a p e r a t e l e o p e r a t i o n s y s t e m f o r t w o d i s s i m i l a r robot m a n i p u l a t o r s h a s b e e n presented. T h i s s y s t e m i s based o n cartesian p o s i t i o n c o n t r o l o f the m a n i p u l a t o r s a n d establishes b o t h 1:1 p o s i t i o n a n d 1:1 force b i l a t e r a l c o n t r o l .

A c o n t r o l m e t h o d h a s b e e n presented w h i c h uses a l l the j o i n t s o f a k i n e m a t i c a l l y redundant robot t o c o n t r o l t h e cartesian p o s i t i o n o f this robot.

T h e b i l a t e r a l c o n t r o l s y s t e m has b e e n i m p l e m e n t e d f o r a k i n e m a t i c a l l y redundant slave m a n i p u l a t o r a n d a S c a r a robot as master m a n i p u l a t o r . T h e system w o r k s as i n t e n d e d , the operator c a n m o v e the slave m a n i p u l a t o r to a d e s i r e d p o s i t i o n a n d w h e n the slave m a k e s contact w i t h the e n v i r o n m e n t h e c a n c o n t r o l the forces exerted b y the slave o n the

e n v i r o n m e n t .

References

B e r g e r , J . S . ,

Design and realisation of an extension of the operating system of transputers

and an application of this with the implementation of a complex robot control system.

M a s t e r s thesis ( i n D u t c h ) , D e l f t U n i v e r s i t y o f T e c h n o l o g y , C o n t r o l L a b o r a t o r y , 1 9 9 4 .

C r a i g , J . J . ,

Introduction to Robotics; mechanics and control.

A d d i s o n - W e s l y p u b l i s h i n g c o m p a n y , 1 9 8 6 .

H a m , A . C . van der, A bilateral position-force controller with gain scheduling for

telemanipulation.

I M A C S i n t e r n a t i o n a l s y m p o s i u m o n s i g n a l p r o c e s s i n g , r o b o t i c s a n d n e u r a l n e t w o r k s , V i l l e n e u v e d ' A s c q , F r a n c e , A p r i l 1994.

K l o m p , C ,

Sensor based fine motion control.

P h . D . thesis, D e l f t U n i v e r s i t y o f T e c h n o l o g y , C o n t r o l L a b o r a t o r y , 1 9 9 4 .

Pieterse, H . L . ,

Kinematics of the Octovera.

Internal report ( i n D u t c h ) , D e l f t U n i v e r s i t y o f T e c h n o l o g y , C o n t r o l L a b o r a t o r y , 1994.

Cytaty

Powiązane dokumenty

Therefore, in multicluster systems, and more gener- ally, in grids, jobs may require co-allocation, i.e., the simultaneous or coordinated access of single applications to resources

DENM ::= SEQUENCE { header ItsPduHeader, denm DecentralizedEnvironmentalNotificationMes sage } DecentralizedEnvironmentalNotificationMessage ::= SEQUENCE {

Podobnie jak hormon wzrostu u naczelnych, PRL wiąże się z tym samym receptorem – PRLR, należą- cym do rodziny receptorów cytokinowych, obecnym w komórkach:

Lewandowicz cytuje fragment listu Grzegorza RE I 50: „abyśmy posłali tam mnichów, ponieważ sama wyspa, która dotychczas nie miała klasztoru, także dzięki tej

It is also notable that other countries have many more regulations relating to internal quality assurance that apply to parties in the construction sector.. In many

Spór o socjobiologię w pierwszym rzędzie dotyczył więc idei gene­ tycznego determinizmu sposobów społecznego zachowania się istot ży­ wych, w szczególności

zagadnienie zaburzeń fazy snu REM, ich obraz kliniczny, diagnostykę i leczenie.. Temat

Select the area of the panel (by clicking) and the third icon from the left in the Options of FE Mesh Generation toolbar.. In the window shown