• Nie Znaleziono Wyników

Sub-threshold production of $K_{s}^{0}$ mesons and $\Lambda$ hyperons in Au+Au collisions at $\sqrt{^{s}NN}=2,4 $ GeV

N/A
N/A
Protected

Academic year: 2022

Share "Sub-threshold production of $K_{s}^{0}$ mesons and $\Lambda$ hyperons in Au+Au collisions at $\sqrt{^{s}NN}=2,4 $ GeV"

Copied!
7
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Sub-threshold production of K 0 s mesons and  hyperons in Au + Au collisions at √

s NN = 2 . 4 GeV

HADES Collaboration

J. Adamczewski-Musch

d

, O. Arnold

j,i

, C. Behnke

h

, A. Belounnas

p

, A. Belyaev

g

, J.C. Berger-Chen

j,i

, J. Biernat

c

, A. Blanco

b

, C. Blume

h

, M. Böhmer

j

, P. Bordalo

b

,

S. Chernenko

g,4

, L. Chlad

q

, C. Deveaux

k

, J. Dreyer

f

, A. Dybczak

c

, E. Epple

j,i

, L. Fabbietti

j,i

, O. Fateev

g

, P. Filip

a

, P. Fonte

b,1

, C. Franco

b

, J. Friese

j

, I. Fröhlich

h

, T. Galatyuk

e,d

,

J.A. Garzón

r

, R. Gernhäuser

j

, M. Golubeva

l

, R. Greifenhagen

f,2

, F. Guber

l

,

M. Gumberidze

d,e

, S. Harabasz

e,c

, T. Heinz

d

, T. Hennino

p

, S. Hlavac

a

, C. Höhne

k,d

, R. Holzmann

d

, A. Ierusalimov

g

, A. Ivashkin

l

, B. Kämpfer

f,2

, T. Karavicheva

l

, B. Kardan

h

, I. Koenig

d

, W. Koenig

d

, B.W. Kolb

d

, G. Korcyl

c

, G. Kornakov

e

, R. Kotte

f

, A. Kugler

q

, T. Kunz

j

, A. Kurepin

l

, A. Kurilkin

g

, P. Kurilkin

g

, V. Ladygin

g

, R. Lalik

c

, K. Lapidus

j,i

, A. Lebedev

m

, L. Lopes

b

, M. Lorenz

h

, T. Mahmoud

k

, L. Maier

j

, A. Mangiarotti

b

,

J. Markert

d

, S. Maurus

j

, V. Metag

k

, J. Michel

h

, D.M. Mihaylov

j,i

, S. Morozov

l,n

, C. Müntz

h

, R. Münzer

j,i

, L. Naumann

f

, K. Nowakowski

c

, M. Palka

c

, Y. Parpottas

o,3

, V. Pechenov

d

, O. Pechenova

d

, O. Petukhov

l

, J. Pietraszko

d

, W. Przygoda

c

, S. Ramos

b

, B. Ramstein

p

, A. Reshetin

l

, P. Rodriguez-Ramos

q

, P. Rosier

p

, A. Rost

e

, A. Sadovsky

l

, P. Salabura

c

, T. Scheib

h

, H. Schuldes

h

, E. Schwab

d

, F. Scozzi

e,p

, F. Seck

e

, P. Sellheim

h

,

I. Selyuzhenkov

d,n

, J. Siebenson

j

, L. Silva

b

, Yu.G. Sobolev

q

, S. Spataro

s

, S. Spies

h

, H. Ströbele

h

, J. Stroth

h,d

, P. Strzempek

c

, C. Sturm

d

, O. Svoboda

q

, M. Szala

h

, P. Tlusty

q

, M. Traxler

d

, H. Tsertos

o

, E. Usenko

l

, V. Wagner

q

, C. Wendisch

d

, M.G. Wiebusch

h

, J. Wirth

j,i

, Y. Zanevsky

g,4

, P. Zumbruch

d

aInstituteofPhysics,SlovakAcademyofSciences,84228Bratislava,Slovakia

bLIP-LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,3004-516Coimbra,Portugal cSmoluchowskiInstituteofPhysics,JagiellonianUniversityofCracow,30-059Kraków,Poland dGSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany eTechnischeUniversitätDarmstadt,64289Darmstadt,Germany

fInstitutfürStrahlenphysik,Helmholtz-ZentrumDresden-Rossendorf,01314Dresden,Germany gJointInstituteofNuclearResearch,141980Dubna,Russia

hInstitutfürKernphysik,Goethe-Universität,60438Frankfurt,Germany iExcellenceCluster‘OriginandStructureoftheUniverse’,85748Garching,Germany jPhysikDepartmentE62,TechnischeUniversitätMünchen,85748Garching,Germany kII.PhysikalischesInstitut,JustusLiebigUniversitätGiessen,35392Giessen,Germany lInstituteforNuclearResearch,RussianAcademyofScience,117312Moscow,Russia mInstituteofTheoreticalandExperimentalPhysics,117218Moscow,Russia

nNationalResearchNuclearUniversityMEPhI(MoscowEngineeringPhysicsInstitute),115409Moscow,Russia oDepartmentofPhysics,UniversityofCyprus,1678Nicosia,Cyprus

pInstitutdePhysiqueNucléaire,CNRS-IN2P3,Univ.Paris-Sud,UniversitéParis-Saclay,F-91406OrsayCedex,France qNuclearPhysicsInstitute,TheCzechAcademyofSciences,25068Rez,CzechRepublic

rLabCAF.F.Física,Univ.deSantiagodeCompostela,15706SantiagodeCompostela,Spain sDipartimentodiFisicaandINFN,UniversitàdiTorino,10125Torino,Italy

Y. Leifels

GSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany

https://doi.org/10.1016/j.physletb.2019.03.065

0370-2693/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Relativisticheavy-ioncollisions(HICs)provideauniqueoppor- tunity tostudymatter at2–3timesnuclear groundstate density (similar asexpected forneutron star mergers [1,2]) in the labo- ratory.Inparticular, kaonsand hyperonsare promisingprobes withrelevance forvariousastrophysicalprocesses[3–8].However, HICs are highly dynamical processes and therefore it is difficult to directly address fundamental aspects. Numerous works inves- tigated kaon production in HICs in the few-GeV energy regime in the past.Comparisons ofexperimental data (spectra andflow anisotropies)[9–13] totransport modelcalculationsseemto con- firm arepulsive K-Npotential [14–21],whichhas beenpredicted by various effective approaches. Furthermore,constraints for the equation-of-state(EOS)ofnuclearmatterhavebeendeducedfrom kaonproduction,undertheassumptionofenergyaccumulationin sequentialnucleon-nucleoncollisions,e.g.NN→ N[22–24].

DataonproductionfromHICsatlow energiesarescarce.At SIS18energies(1–2AGeV)onlydatafromsmallcollisionsystems are available [25,26].While the -nucleonpotential is knownto beattractiveatgroundstatedensitiesfromhypernucleiformation [27],itsdensitydependencethereforestillremainsvague[28].

Inthispaper,we reportthe firstobservationofK0s andhy- peronsemittedfromcentralAu+Aucollisionsat

sNN=2.4 GeV.

Both kaons and  hyperons are produced about 150 MeV be- low their free NN-threshold and hence are sensitive to the en- ergy dissipation in the collision system. We compare the scaling ofthe multiplicitiesasfunction ofthe centralityofthe collisions tothepreviouslypublished dataonchargedkaonsandφmesons [29] andthespectraandrapiditydistributionstopredictionsfrom threestate-of-the-artmicroscopictransportmodels(UrQMD,HSD, IQMD) [30–32].Based onthiswe discussthe validityof thepre- viouslydrawnconclusionsabouttheK-Npotentialandtheenergy dissipationduringthecollisioninlightofthenewdata.

The data have been collected with HADES, located at the GSI Helmholtz Center forHeavy Ion Researchin Darmstadt, Ger- many.HADES is acharged-particle detector consistingofa 6-coil toroidal magnet centered around the beam axis and six identi- cal detectionsections located betweenthe coils covering almost the full azimuthal angle. Each sector is equipped with a Ring- ImagingCherenkov(RICH)detectorfollowed byMini-Drift Cham- bers(MDCs),twoinfrontofandtwobehindthemagneticfield,as wellasascintillator hodoscope(TOF)andaResistivePlateCham- ber(RPC).Attheendofthesystemaforwardhodoscopeusedfor event plane determination is located. The RICH detector is used mainlyforelectron/positronidentification,theMDCsarethemain tracking detectors, while the TOF and RPC are used fortime-of- flightmeasurementsincombinationwithadiamondstart-detector

E-mailaddress:hades-info@gsi.de(J. Stroth).

1 AlsoatCoimbraPolytechnicISEC,Coimbra,Portugal.

2 AlsoatTechnischeUniversitätDresden,01062 Dresden,Germany.

3 AlsoatFrederickUniversity,1036 Nicosia,Cyprus.

4 Deceased.

located in front of the 15-fold segmented target. The trigger is based on the hit multiplicity in the TOF covering a polar angle rangebetween45 and85. AdetaileddescriptionoftheHADES detectorisgivenin[33].

Intotal,2.109 Au+Aueventsareusedinthepresentanal- ysis corresponding to the 40% most central events.The latter is estimated based on comparison of the event-by-event hit multi- plicityintheTOFandRPCdetectorscomparedtoaGlaubermodel, fordetailssee[34].

K0s mesons are identified via their decayto

π

++

π

(BR = 69.2%, c

τ

=2.68 cm).  hyperons are identified through their decay to p+

π

(BR =63.9%, c

τ

=7.89 cm). Note that the re- constructedyieldcontainsalsoacontributionfromthe(slightly heavier)0 baryondecayingelectromagneticallyexclusivelyintoa

anda photon.Thisdecayprocesscannot bedetectedwiththe presentexperimental setup; hence, the yieldhasto be under- stood asthat of + 0 throughout the paper. Pion and proton candidates used for the invariant mass analysisare identified by thecurvatureoftheir trackinthemagneticfield,averyloosecut on the reconstructed particle mass,and a careful track selection based on several quality parameters delivered by a Runge-Kutta tracking algorithm. The following conditions on the decaytopol- ogy of both hadrons are required to suppress the combinatorial backgroundofuncorrelatedpairs:(1)Aminimaldistancebetween theprimaryeventvertexandthedecayvertex,(2)aminimaldis- tance ofclosest approach(DCA) betweenthe proton,respectively thepiontrack,andtheprimaryvertex,(3)amaximalvalueonthe DCAbetweenthetwodecaytracksofonemotherparticleandon theDCAofthereconstructedmotherparticletrajectorytothepri- maryvertex,aswellasaminimumopeningangle[36].

The remaining background is subtracted using a mixed-event technique where onlytracks fromeventswithin the samemulti- plicity class and fromthe same target stripeare combined [36].

Examples of the invariant mass distributions used for signal ex- tractions are displayed in Fig. 1.The signal counts are extracted by fittinga Gaussian and integratingthe data in a ±2

σ

-region around thenominalmass,whilethe normalizationregion forthe mixed-eventbackgroundisplacedbetweenfour-five

σ

outsidethe signalregion.Typicalsignal-to-backgroundratiosareabout1–9for K0s andabout0.5–5 for.Intotal,about190000 K0s mesonsand about290000hyperonsarereconstructed.

K0s yieldsaredeterminedin15rapiditybins,coveringthecen- ter of mass rapidity ycm= y0.74 between −0.65 and +0.85 in steps of 0.1 units in rapidity, and up to 19 transverse mass (mt=

p2t +m20)binsinstepsof40MeV/c2.hyperonsareiden- tified in12 rapidity bins,ranging from ycm= −0.65 to+0.55in steps of 0.1units in rapidity,andup to 16 transverse mass bins instepsof50MeV/c2.Therawsignalyieldsarecorrectedineach phase space cell foracceptanceand efficiencyusing Monte-Carlo simulations basedon Geantanda detaileddescriptionofthede- tector response, exposed to exactly the same reconstruction and analysis steps asthe experimental data.As input forthe simula-

(3)

Fig. 1. ExamplesofK0s (left)and(right)signalsfor0–40%mostcentralevents, overmixed-eventbackgroundforthebin0.05<ycm<0.05 andreducedtrans- versemassesbetween80–120MeV/c2and100–150MeV/c2,respectively.

Fig. 2. Reducedtransversemass(mtm0)spectraofK0s(left)and(right)forthe 0-40%mostcentral events.Forabetterrepresentation,the spectraarescaledby consecutivefactorsof10foreachrapiditybinasindicatedinthelegendandonly statisticalerrorsareplotted.ThedottedcurvesarefitswithEq. (1) tothedata.

tion,thermaldistributionsofK0s andhyperonswithaninverse slopeof90MeVwere embeddedintotheexperimental data.The combinedcorrectionfactorsfortheefficiencyandacceptancecor- respond to about 50 for K0s and about 100 for  hyperons at mid-rapidity, including the branching ratio to the

π

++

π

and

π

+p final state, respectively [35,36]. In order to suppressthe largercombinatorialbackgroundinthep+

π

sample,morestrin- gentcutsonthedecaytopologywereapplied thanincaseofthe

π

+

π

sample,resultinginthelowerdetectionefficienciesforthe

comparedtotheK0s.

Theacceptanceandefficiencycorrecteddistributionsofreduced transversemassspectraforsubsequentslicesofrapidityforK0s and

hyperons are presented in Fig. 2. Displayed is the number of countsperevent,pertransversemassandperunitinrapidity,di- videdby m2t. Thisrepresentation ischosen to ease a comparison withsingle slope Boltzmann fits to the resultingdistribution ac- cordingto

1 m2t

d2N

dmtdycm

=

C

(

ycm

)

exp



(

mt

m0

)

c2 TB

(

ycm

)



,

(1)

whichdescribethespectrasatisfactorily.Therapiditydistributions, shownin Fig.3 are obtained by integratingthe dataas function ofthetransversemomentum pt andusingBoltzmannfitfunctions forextrapolationsinthenotcovered pt regions.Thesystematicer- rorsoftheyieldsineachrapidity binareduetothevariationsof topologycuts, the normalizationregionof themixed-event back-

Fig. 3. RapiditydistributionofKs0(left)and(right).Theclosedsymbolsdepictthe measureddatapoints,whereastheopensymbolsshowthedatapointsreflected aroundthecenter-of-massrapidityycm=0.Theerrorbarsdisplaythestatistical errorswhilethesystematicuncertaintiesareindicatedbytheopenboxes.Forthe extrapolationtounmeasuredrapidityvaluesaGaussian functionisused(dotted curve).

ground and by the comparison of the spectra measured in the forwardandbackwardhemisphere.Thedecaylengthdistributions of the two hadrons are determined to ensure the quality of the correctionprocedure.Weobservelifetimesinagreementwiththe PDGvalues,i.e.K0s:

τ

exp=87.1.1 ps,

τ

P D G=89.1.6 ps;:

τ

exp=255±7 ps,

τ

P D G=263±2 ps[37].

Multiplicitiesare obtainedbyintegratingtherapidity distribu- tionandusingaGaussianfitforextrapolationtofullphasespace, see dottedcurve in Fig. 3. The statisticalerroris takenfrom the fit directly.The systematicuncertaintyof theextrapolation ises- timatedbasedonvariationwithinthesystematicerrorsandusing inaddition tothe Gaussian fittherapidity distributions obtained fromthethreedifferenttransportmodelsforextrapolation,asde- scribedbelow.

Weobtainatotalmultiplicityof(1.56±0.03stat+0.12

0.12sys)×102 K0s and(4.72±0.06stat+00..2175sys)×102.

The extracted inverse slope parameters obtained from the Boltzmannfitstothemtspectraforeachrapidityintervalarefitted usingtheansatz TB=coshTe f f(ycm) inordertoobtaintheeffectivein- verseslopeTe f f.Astheinverseslopecontainsacontributionfrom the velocity ofthe radial expansion ofthe fireball,whichis pro- portionalto theparticle mass,one expectsa largerinverseslope for the  hyperons. We find Te f f =93±1±4 MeV for the K0s and Te f f =98±1±4 for the  hyperons,suggesting no strong differencebetweenradialflowoftheK0s andhyperons.

Inaddition,theanalysisprocedureisrepeatedinthesameway forfour centrality classes.These classescorrespond to 10% steps incentrality,which canbetranslatedintothe averagenumberof participantsApart[34].TheresultsaresummarizedinTable1.

A comparisonto theworld data is presentedin Fig.4, where the mid-rapidity yields for central Au+Au (Pb+Pb) collisions as function of√

sNN aredisplayed. Whileonly experimentaldataon K0s productionexistsforcentralHICsatenergies√

sNN>17.2 GeV [38–41],thehyperonwasstudiedmoreextensively[40,42–48].

Its yield rises almost exponentially with energy up to √ sNN≈ 5 GeVandthenlevelsoff.

As both the K0s and  are produced below their free NN- threshold,therequiredenergymustbesuppliedfromthecollision system. Hence, one expects their yields to rise as a function of thegeometricaloverlapofthenuclei, whichisanapproximateof thenumberofnucleonstakingpartinthecollision.Toinvestigate this,weanalysethemultiplicitiespermeannumberofparticipants Mult/ApartasafunctionofApart,asshowninFig.5andinclude also themultiplicities of chargedkaons andφ mesonsmeasured in the same collision system[29]. If final state interactions play a minor role, the strength of this rise characterizes the amount

(4)

0.06

 0–40% 4.72±0.06+00..2175 98±1±5

0–10% 8.22±0.11+00..5592 106±1±2 10–20% 4.90±0.09+00..2170 97±1±2 20–30% 3.17±0.08+00..1436 90±1±3 30–40% 1.92±0.08+00..0928 84±1±4

Fig. 4. Compilationofmid-rapidityyieldsforcentralAu+Au(Pb+Pb)collisionsasa functionof

sNNofK0s (red)and(blue)from[38–48].Ourresultsareshownby thetwoleftmostbullets.

Fig. 5. MultiplicitiespermeannumberofparticipantsMult/Apartasafunctionof

Apart.AllhadronyieldsarefittedsimultaneouslywithafunctionoftheformMult

∝ Apartαwiththeresult:α=1.45±0.06.

of surplusenergy provided by the system, over the contribution fromfirstchance NNcollisions.Ifone assumesthatenergyaccu- mulates insequential nucleon-nucleoncollisions (asdiscussed in theintroduction)incombinationwiththesteepenergyexcitation function for strange hadron production, one expects to observe significantlydifferentslopes,duetotheclearhierarchyinthepro- duction thresholds,≈ −150 MeV forK+,K0, (NN→NK) and

≈ −450 MeV, ≈ −490 MeV forthe K (NNNNK+K) andthe φmeson(NN→NNφ).However,theglobalfitofthefunctionMult

Fig. 6. MultiplicitiespermeannumberofparticipantsMult/Apart,asafunctionof

ApartforK0s(left)and(right)comparedtovarioustransportmodelcalculations (seelegends).

Table 2

ValuesoftheparameterαextractedforK0sand dataandvariousmodels,asdisplayedinFig.6.

α data (K+,−,0,,φ) 1.45±0.06

UrQMD (K0s,) 1.69±0.04 HSD no pot. (K0s,) 1.35±0.02 IQMD no pot. (K0s,) 1.51±0.03 HSD pot. (K0s,) 1.30±0.02 IQMD pot. (K0s,) 1.42±0.03

∝ Apartα toall thehadron yields returnsa satisfactoryvalue of

χ

2/NDF=0.59,with

α

=1.45±0.06.5

This points to a more involved picture than assumed in the past, asthetotal amountofproduced strangenessincreaseswith thenumberofparticipantsandmightbeonlyredistributed(statis- tically)tothefinal hadronspeciesatfreeze-out[49].Thisimplies that thecreatedsystemismoreinterrelatedthanexpectedinthe past.

In the following,we will comparethe K0s and datato pre- dictionsfromthreestate-of-the-arthadronictransportmodels,the Isospin QuantumMolecularDynamicsmodel(IQMDv.c8)[31],the HadronStringDynamics(HSDv.711n)model[30] andtheUltrarel- ativistic QuantumMolecular Dynamics model(UrQMDv 3.4)[32].

It has been shown that none of the standard code versions can reproduce the observed φ/K multiplicity ratio measured in the sameexperiment[50].6

All three are semi-classical models simulating a HIC on an event-by-event basis. While UrQMD produces particles via inter- mediate resonanceexcitations, inHSDandIQMD alsodirectpro- ductionviatwo-to-threeparticleprocessesisincludedhoweverin IQMD only (1232) resonances are implemented. In contrast to IQMDandHSD,neithermean-fieldN-NpotentialsnorexplicitK-N potentialsareincludedinthepresentedversion ofUrQMD. IQMD is, due to missinghigh-energy processes, not applicable at ener- giesbeyond2 A GeV,butitisverywelltestedintheSIS18energy regime. HSDallowsinaddition,thepropagationofoff-shellparti- cles,however,thisismorerelevantforantikaonproduction.

WetrytoextractparticlespecificpropertiesofK0s mesonsand

hyperonsliketheK-Nand-Npotential,whichaffectboththeir productionandpropagationinthemedium.

We startwiththecomparisonofcentrality dependenceofthe integrated yield, see Fig. 6 and Table 2. We find that HSD and IQMDwithoutan implementationoftheK-Npotential,aswellas

5 WhileincaseoftheKthesimilarscalingwasexplainedbyacouplingtothe K+,0yieldviastrangenessexchangereactions,e.g.π0+ K+p [12],nosuch processispossibleincaseoftheφmeson.

6 TheUrQMDversionpredictingthemeasuredφ/K[29] ratioaftertuningthe cross-sectionstomatchdatafromp+pcollisionsisnotpubliclyavailableyet[50].

(5)

Fig. 7. ComparisonoftheshapeoftherapiditydistributionofK0s(left)and(right) tovarioustransportmodelversions.Themodelcurvesarenormalizedtotheinte- gralofthedata,seetextfordetails.Dataaresymmetrizedaroundmid-rapidity.

UrQMD, overpredict the yields by a large factor. Also the model curvesdifferamongeachotherbyuptoafactor2.5,whichpoints totheuseofdifferentparametrizations forelementary crosssec- tions.

InHSDandIQMD,arepulsive K-Npotentialof40MeV atnu- cleargroundstate density

ρ

0 isincluded,whichincreaseslinearly withdensity.Ifturnedon,theK0s curvescomemuchclosertothe dataandalsothe

α

parameteris reduced. TheIQMD predictions arebyfartheclosesttothedatawithadeviationoftheyieldsof theorderof10%7 andanagreementwithinerrorsoftheextracted valuesof

α

.Thereductionoftheyieldand

α

valuescanbeunder- stoodqualitativelybyaneffectiveshiftintheproductionthreshold of kaons. As the effect of the density dependence is more pro- nouncedforcentral events,also therise withApartis reduced.

Dueto the associated productionof kaons and hyperons,also theyieldsareaffectedbytheinclusionofaK-Npotential.Note thattheemployedversionofUrQMDdoesnot includeanypoten- tial,whilebothversionsofHSDandIQMDassumethestrengthof the-Nmeanfieldtobe2/3oftheN-Nmeanfield,motivatedby theadditivequarkmodel[14].

Next, we compare the shape of the rapidity distributions for 0–10%mostcentralevents.Forthis,wehavesymmetrizedthedis- tributions with respect to mid-rapidity. In order to compare the shapes, the model curves are normalized to the area of the ex- perimentalones, seeFig.7.Thewidthoftherapiditydistribution isparticularlysensitivetothestoppingofbaryonsinthecollision zone.Repulsive potentialsinfluence theshape ofthe distribution further by pushing the particles away from the bulk of matter atmid-rapidity. Indeed,we findthat the inclusion of apotential improvesthe descriptionsignificantly. Incontrast tothe previous observable,alsotheUrQMDcalculation givesafairdescriptionof theshape, without anypotential. Incase ofthe ,the inclusion ofthe K-N potential does not affect the shape and we find that UrQMDdescribesthedatabest.

Finally,westudythetransversemomentumdistributionatmid- rapidity for the most central eventclass, see Fig. 8. Besides the

7 Note,thatpreliminarydataonyieldsofchargedpionsshowadeviationatthe orderof20%todataoftheFOPIexperiment,whicharewelldescribedbyIQMD [51].Dueto π induced strangenessproduction channels, this differenceis also transportedtotheK0sandyields.

Fig. 8. Comparisonoftheshapeofthept-spectrafor±0.15rapidityunitsaround mid-rapidityofK0s (left)and (right) tovarioustransportmodelversions.The modelcurvesarenormalizedtotheintegralofthedata.

Table 3

Summaryofthecomparisonofdatatomicroscopictransportmodelsbasedonthe χ2normalizedtothenumberofdatapoints.

Model KN potential K0s  α

pt y Mult pt y Mult

UrQMD no 105 4.1 1619 2.3 3.6 3020 16

HSD yes 7.0 2.7 670 39 6.3 626 6.3

IQMD yes 6.0 2.0 99 38 12 214 0.3

production mechanism [52] and the radial expansion velocity of thesystem,thelowtransversemomentumpartisparticularlysen- sitivetotheK/-Npotentials[10].8

Onceagain, inordertocomparetheshapes, themodelcurves arenormalizedtotheareaoftheexperimentalones.Clearly,forK0s the data favourmodels which includepotentials. However, again UrQMDwithoutanypotentialshowsacompletelydifferentbehav- ior comparedtothetwo othercalculationswithoutthepotential, undershootingthelow pt partofthespectrum.Hence,production via intermediate resonances seems to(over-) mimic theeffect of thepotential.

In addition, similar as in case of the rapidity distribution, UrQMDoffersthebestdescriptionofthept spectra.

In total, we find that none of the model predictions can de- scribethe yield,theApart scalingandtheshape oftherapidity andpt spectraofK0s andsimultaneously,seealsothe

χ

2 values normalizedtothenumberofdatapointslisted inTable3forthe investigated observables.Furthermore, we observe that effects of arepulsive K-Npotential canbe tosome extendcompensatedby production via intermediate resonances. Hence, any further con- clusionsareweakenedbytheambiguitiesofdifferentmicroscopic effects and the incomplete description of the presented observ- ables within all investigated models. Therefore, it is premature to drawconclusions on thestrength ofthe potentialsbased only thepresentedobservables, anditisnecessarytocompareandde- scribeasmany (related) observablesaspossiblewithin the same model.Toenableacomprehensiveadjustmentofmodelsandnew approacheswhichareunderdevelopment[53–56] toourdata,dif- ferential transverse massversus rapidity yields are shownin the Appendixandafurtheranalysisondirectedflowofhadrons,which isknowntobe stronglyinfluencedby mean-fieldpotentials,isin preparation.

8 Notethatthisdependsontheformoftheimplementedpotentialandhence doesnotholdtrueforallmodels,seee.g.[11].

(6)

lationinsequentialnucleon-nucleoncollisionsshouldthereforebe revisited.

Our comparison of the yields, the universal scaling and the shapesof rapidity and pt spectra to three microscopic transport models doesnot yet lead toa consistent picture. Includinga re- pulsiveKNpotentialtheIQMDpredictionsarebyfarclosesttothe data,witharemainingdeviationoftheyieldsoftheorderof10%

andan agreementwithin errorsoftheextractedvaluesof

α

.The shapeofthekaonrapiditydistributioniswelldescribedifarepul- siveK-NpotentialisincludedinHSDandinparticularinIQMD.On theotherhand,UrQMDreproducestherapiditydistributionwith- out such a potential,probably becauseofthe particleproduction through intermediate resonances, but fails to reproduce the ob- served scalingof theyields with centrality.Yet, theshape ofthe

rapidity distributionsandthe pt spectraare bestdescribed by UrQMD. Due to the observed ambiguities andthe imperfect de- scription of the presented observables, it is premature to adjust the strength ofthe potential basedon the presented observable.

Furthermodelrefinements anddata-to-modelcomparisonsbased onadditionalobservablese.g.directedflowofstrangehadronsare necessarybeforefirmconstraintscanbededuced.

Acknowledgements

The HADES collaboration thanks J. Aichelin, M. Bleicher, E.

Bratkovskaya,C.HartnackandJ.Steinheimerforelucidatingdiscus- sions.Wegratefullyacknowledgesupportbythefollowinggrants:

LIP Coimbra, PTDC/FIS/113339/2009; SIP JUC Cracow, Cracow (Poland) National Science Center, 2016/23/P/ST2/040 POLONEZ, 2017/25/N/ST2/00580,2017/26/M/ST2/00600;TUDarmstadt,Darm- stadt (Germany) and J. W. Goethe-University, Frankfurt (Ger- many), ExtreMe Matter Institute EMMI at GSI Darmstadt; TU München, Garching (Germany), MLL München, DFG EClust 153, GSITMLRG1316F,BmBF05P15WOFCA,SFB1258,DFGFAB898/2-2;

NRNU MEPhI Moscow, Moscow (Russia), in framework of Rus- sian Academic Excellence Project 02.a03.21.0005, Ministry of Sci- enceandEducationoftheRussianFederation3.3380.2017/4.6;JLU Giessen,Giessen(Germany),BMBF:05P12RGGHM;IPNOrsay,Orsay Cedex (France), CNRS/IN2P3; NPI CAS, Rez, Rez (Czech Repub- lic),MSMTLM2015049,OPVVVCZ.02.1.01/0.0/0.0/16013/0001677, LTT17003.

Appendix

Theobservablesshownin thetext arebasedon thedatapre- sentedinFigs.9and10.Thedataareorganizedinbinsofmtm0 vs. ycm forfourcentralityclasses.Thedetailsofthecentralityse- lectionaredescribedin[34].

References

[1]M.Hanauske,K.Takami,L.Bovard,L.Rezzolla,J.A.Font,F.Galeazzi,H.Stoecker, Phys.Rev.D96 (4)(2017)043004.

[2] J.Adamczewski-Musch,etal.,HADESCollaboration,submitted,inreviewpro- cess.

[3]D.B.Kaplan,A.E.Nelson,Phys.Lett.B175(1986)57.

Fig. 9. DifferentialyieldofK0s asfunctionofrapdidityandreducedtransversemass forthefourcentralityclasses.

Fig. 10. Differentialyieldofasfunctionofrapidityandreducedtransversemass forthefourcentralityclasses.

[4]V.R.Pandharipande,Nucl.Phys.A178(1971)123.

[5]H.A.Bethe,M.B.Johnson,Nucl.Phys.A230(1974)1.

[6]N.K.Glendenning,S.A.Moszkowski,Phys.Rev.Lett.67(1991)2414.

[7]S.Balberg,A.Gal,Nucl.Phys.A625(1997)435.

[8]C.H.Lee,G.E.Brown,D.P.Min,M.Rho,Nucl.Phys.A585(1995)401.

[9]M.L.Benabderrahmane,etal.,FOPICollaboration,Phys.Rev.Lett.102(2009) 182501.

[10]G.Agakishiev,etal.,Phys.Rev.C82(2010)044907.

[11]G.Agakishiev,etal.,HADESCollaboration,Phys.Rev.C90(2014)054906.

[12]A.Förster, F.Uhlig,I.Bottcher,D.Brill,M.Debowski,et al.,Phys.Rev.C75 (2007)024906.

[13]V.Zinyuk,etal.,FOPICollaboration,Phys.Rev.C90(2014)025210.

(7)

[14]C.Hartnack,H.Oeschler,Y.Leifels,E.L.Bratkovskaya,J.Aichelin,Phys.Rep.510 (2012)119.

[15]A.Mishra,E.L.Bratkovskaya,J.Schaffner-Bielich,S.Schramm,H.Stoecker,Phys.

Rev.C70(2004)044904.

[16]S.Pal,C.M.Ko,Z.w.Lin,B.Zhang,Phys.Rev.C62(2000)061903.

[17]V.Metag,M.Nanova,E.Y.Paryev,Prog.Part.Nucl.Phys.97(2017)199.

[18]E.E.Kolomeitsev,B.Kampfer,D.N.Voskresensky,Nucl.Phys.A588(1995)889.

[19]J.Schaffner-Bielich,J.Bondorf,A.Mishustin,Nucl.Phys.A625(1997)325.

[20]M.F.M.Lutz,A.Steiner,W.Weise,Nucl.Phys.A574(1994)755.

[21]W.Cassing,E.L.Bratkovskaya,U.Mosel,S.Teis,A.Sibirtsev,Nucl.Phys.A614 (1997)415.

[22]C.T.Sturm,etal.,KAOSCollaboration,Phys.Rev.Lett.86(2001)39.

[23]C.Fuchs,A.Faessler,E.Zabrodin,Y.M.Zheng,Phys.Rev.Lett.86(2001)1974.

[24]C.Hartnack,H.Oeschler,J.Aichelin,Phys.Rev.Lett.96(2006)012302.

[25]M.Merschmeyer,etal.,FOPICollaboration,Phys.Rev.C76(2007)024906.

[26]G.Agakishiev,etal.,HADESCollaboration,Eur.Phys.J.A47(2011)21.

[27]C.J.Batty,E.Friedman,A.Gal,Phys.Rep.287(1997)385.

[28]S.Weissenborn,D.Chatterjee,J.Schaffner-Bielich,Nucl.Phys.A881(2012)62.

[29]J.Adamczewski-Musch,etal.,HADESCollaboration,Phys.Lett.B778(2018).

[30]W.Cassing,E.L.Bratkovskaya,Phys.Rep.308(1999)65.

[31]C.Hartnack,R.K.Puri,J.Aichelin,J.Konopka,S.A.Bass,H.Stoecker,W.Greiner, Eur.Phys.J.A1(1998)151.

[32]S.A.Bass,etal.,Prog.Part.Nucl.Phys.41(1998)225.

[33]G.Agakishiev,etal.,HADESCollaboration,Eur.Phys.J.A41(2009)243.

[34]J.Adamczewski-Musch,etal.,HADESCollaboration,Eur.Phys.J.A54 (5)(2018) 85.

[35]T.Scheib,PhDThesis,J.W.Goethe-UniversityFrankfurt,2017.

[36]S.Spies,MasterThesisJ.W.Goethe-UniversityFrankfurt,2018.

[37]K.A. Olive,et al.,ParticleDataGroupCollaboration,Chin. Phys.C38(2014) 090001.

[38]C.Blume,C.Markert,Prog.Part.Nucl.Phys.66(2011)834.

[39]F.Antinori,etal.,J.Phys.G31(2005)1345.

[40]E.Andersen,etal.,Phys.Lett.B449(1999)401;

F.Antinori,etal.,Nucl.Phys.A661(1999)130c.

[41]C.Adler,etal.,Phys.Lett.B595(2004)143.

[42]C.Pinkenburg,etal.,E895Collaboration,Nucl.Phys.A698(2002)495.

[43]S.Albergo,etal.,Phys.Rev.Lett.88(2002)062301.

[44]S.Ahmad,etal.,Phys.Lett.B382(1996)35.

[45]F.Antinori,etal.,Phys.Lett.B595(2004)68;

F.Antinori,etal.,J.Phys.G32(2006)427.

[46]C.Adler,etal.,Phys.Rev.Lett.89(2002)092301;

J.Adams,etal.,Phys.Rev.Lett.98(2007)062301.

[47]K.Adcox,etal.,Phys.Rev.Lett.89(2002)092302.

[48]B.B.Abelev,etal.,ALICECollaboration,Phys.Rev.Lett.111(2013)222301.

[49]E.E.Kolomeitsev,B.Tomasik,D.N.Voskresensky,Phys.Rev.C86(2012)054909.

[50]J.Steinheimer,M.Bleicher,J.Phys.G43(2016)015104.

[51]W.Reisdorf,etal.,FOPICollaboration,Nucl.Phys.A781(2007)459.

[52]J.Steinheimer,M.Bleicher,EPJWebConf.97(2015)00026.

[53]H. Petersen,D.Oliinychenko,M.Mayer, J.Staudenmaier,S.Ryu,arXiv:1808. 06832 [nucl-th].

[54]V.Steinberg,J.Staudenmaier,D.Oliinychenko,F.Li,A.Erkiner,H.Elfner,arXiv:

1809.03828 [nucl-th].

[55]K.Gallmeister,M.Beitel,C.Greiner,Phys.Rev.C98 (2)(2018)024915.

[56]J.Aichelin,E.Bratkovskaya,A.LeFaevre,V.Kireyev,Y.Leifels,J.Phys.Conf.Ser.

1070 (1)(2018)012005.

Cytaty

Powiązane dokumenty

The corrected multiplicity distribution of K 0 S mesons in 7 TeV data compared with the hadron-level distributions in the MC samples for a variety of tunes, normal- ized to unity..

(1) and a Siemens–Rasmussen model function including a radial expansion velocity as parameter fixed by using the kinematic distribution of the protons in the same collision system

Figure 7 (right) shows the rapidity densities dn/dy of  + at mid-rapidity per mean number of wounded nucleons divided by the corresponding values for inelastic p+p collisions as

For the extraction of photon reconstruction and identifi- cation efficiencies, the photon energy scale, and expected properties of the isolation transverse energy distributions,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

35 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

50b High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia. 51 II Physikalisches Institut, Justus-Liebig-Universit¨at Giessen,