• Nie Znaleziono Wyników

Series of iterated logarithms; Szeregi iterowanych logarytmów - Digital Library of the Silesian University of Technology

N/A
N/A
Protected

Academic year: 2022

Share "Series of iterated logarithms; Szeregi iterowanych logarytmów - Digital Library of the Silesian University of Technology"

Copied!
10
0
0

Pełen tekst

(1)

Seria: MATEMATYKA STOSOWANA z. 3 Nr kol. 1899

Michał RÓŻAŃSKI, Marcin SZWEDA, Roman WITUŁA Institute of Mathematics

Silesian University of Technology

SERIES OF ITERATED LOGARITHMS

Summary. In this paper certain properties of the series of iterated logarithms are discussed in more general context.

SZEREGI ITEROWANYCH LOGARYTMÓW

Streszczenie. W artykule pewne własności szeregów iterowanych loga- rytmów są rozważane w znacznie ogólniejszym kontekście.

1. Basic notions and properties

Let α ∈ (1, +∞). Let us put

a0(α) := 1, an+1(α) := αan(α) and

log(0)α x:= x, log(n+1)α x:= logα(log(n)α x), for every n ∈ N0:= N ∪ {0} and x ∈ [an(α), +∞).

First the basic properties of sequence {an(α)}n∈Nwill be presented.

2010 Mathematics Subject Classification: 40A05, 40A30.

Corresponding author: R. Wituła (Roman.Witula@polsl.pl).

Received: 06.11.2013 r.

M. Różański and M. Szweda are currently the last-year students of bachelor’s degree.

(2)

Theorem 1.Sequence {an(α)}n∈N is increasing for every α ∈ (1, +∞). Limit

n→+∞lim an(α) is finite if and only if α ∈ (1,√ee]. Moreover, we have

n→+∞lim an(ee) = e.

The following corollary is an important consequence of Theorem 1.

Corollary 2.For every α ∈ (1,√e

e] and for every k ∈ N, k ­ 3, we have sup{n ∈ N0: an(α) ¬ k} = +∞.

If α > e

e then lim

n→+∞an(α) = +∞. Therefore for every k ∈ N there exists n(k; α) ∈ N such that an > k for every n ∈ N satisfying n ­ n(k; α). In consequ- ence, the integer number

tk(α) := max{n ∈ N0: an(α) ¬ k}

is well defined.

Remark 3.In papers [1, 5, 8] there are discussed the properties of sequence {an(α)}n∈N, among others, Theorem 1 is proven there.

Furthermore, it is shown there that if α ∈ (0, 1) then sequence {an(α)}n∈N is convergent if and only if α ∈ [e−e,1) (see [1, 8]). Cooper [5] proved that if

e

e < α < β and for every u ∈ N the positive integer v = v(u) is defined by inequalities

av(α) < au(β) ¬ av+1(α),

then the difference v −u is constant for all sufficiently large values u ∈ N. Roughly speaking, every sequence {an(α)}n∈N with α >√e

egrows at the same rate.

2. Convergence of the series of iterated logarithms

It is a classical result (see [3, 4, 6, 9, 11]) that for every α ∈ (√e

e,+∞) and for every l ∈ N the series P

k∈N

min{l,tk(α)}

Q

n=0

log(n)α k

!−1

is divergent.

We are going to consider the convergence of the series of iterated logarithms having the most general form with respect to the upper index of multiplication, i.e. having the form P

k∈N tk(α)

Q

n=0

log(n)α k

!−1

, where α ∈ (√e

e,+∞).

(3)

Theorem 4.Let α ∈ (√e

e,+∞). Then the series P

k∈N tk(α)

Q

n=0

log(n)α k

!−1

is conver- gent if and only if α ∈ (√ee, e).

Proof. Since the sequence {an(α)}n∈Nis increasing, we have tk = n for any positive integer k ∈ Jn(α) := N ∩ [an(α), an+1(α)), n ∈ N. It is easy to show that

In(α) − X

k∈Jn(α) n

Y

i=0

log(i)α k

!−1

¬

n

Y

i=0

log(i)α (an(α))

!−1

=

=

n

Y

i=0

ai(α)

!−1

¬ α−n,

by the inequality ai(α) ­ α, i ∈ N, where

In(α) :=

an+1(α)

Z

an(α) n

Y

i=0

log(i)α x

!−1

dx=

= [(ln α)n+1log(n+1)α x]aan+1n(α)(α)= (ln α)n+1, n∈ N.

Hence we obtain at once that the series P

k∈N tk(α)

Q

n=0

log(n)α k

!−1

is convergent if and only if α ∈ (√ee, e), which completes the proof. 

Remark 5.Theorem 4 was discovered independently by many authors: Keung- Yan-Cheong and Cover [10], Beigel [2], Gurarie, Goldstern, Martin [7], and Wituła (his formulation, unpublished to date, is presented above).

3. Certain generalization of the problem of

convergence of the series of iterated logarithms

We prove now the theorem which, independently of its internal beauty, will lead us to consider the problem of convergence of the series of iterated logarithms from the other point of view by comparing the convergence of series and the convergence of the proper element of these series.

(4)

Theorem 6.Let an, b(i)n ∈ (0, +∞), i, n ∈ N. Assume that limn→+∞an = 0, X

n∈N

b(i)n = +∞ and lim

n→+∞

an

b(i)n

= 0 for every i ∈ N.

Then there exists an increasing sequence {r(n)}n∈N of positive integers such that X

n∈N

ar(n)<+∞ and X

n∈N

b(i)r(n)= +∞, for every i ∈ N.

Proof. Let us consider two increasing sequences {k(n)}n∈Nand {s(n)}n∈N of po- sitive integers such that

(i) k(n) ¬ s(n) < k(n + 1), n ∈ N,

(ii) 2tan ¬ min{1, b(i)n }, for n, t ∈ N, n ­ k(t) and i = 1, . . . , t,

(iii) s(t)P

n=k(t)

b(i)n ­ 1, for every i, t ∈ N, i ¬ t and

s(t)−1

P

n=k(t)

b(i)n <1, for some i ¬ t if s(t) > k(t).

Observe that if s(t) = k(t) then

s(t)

X

n=k(t)

an= ak(t)¬ 2−t.

On the other hand, if s(t) > k(t) then by (iii) we can choose an index i ¬ t such that

s(t)−1

X

n=k(t)

b(i)n <1.

Hence we obtain the estimation

s(t)

X

n=k(t)

an=

s(t)−1

X

n=k(t)

an+ as(t)¬ 2−t

s(t)−1

X

n=k(t)

b(i)n + 2−t<2−t+1.

As a consequence of this fact we get

X

t∈N s(t)

X

n=k(t)

an¬X

t∈N

2−t+1<+∞.

(5)

Using (iii) we obtain

X

t∈N s(t)

X

n=k(t)

b(i)n = +∞ for every i ∈ N.

Finally, we deduce from the above that the increasing sequence {r(n)}n∈N of all elements of set {n ∈ N: (∃t ∈ N)(k(t) ¬ n ¬ s(t))} possesses the desired proper-

ties. 

Corollary 7.Let us fix α ∈ (√e

e,+∞) and l ∈ N. Let us also set

an=

min{l,tn(α)}

Y

k=0

log(k)α n

−1

and

b(i)n =

min{l+1,tn(α)}

Y

k=0

log(k)α n

−1

for every i, n ∈ N. Then there exists an increasing sequence {r(n)}n∈N of positive integers such that

X

n∈N

min{l,tr(n)(α)}

Y

k=0

log(k)α (r(n))

−1

= +∞

and

X

n∈N

min{l+1,tr(n)(α)}

Y

k=0

log(k)α (r(n))

−1

<+∞.

Corollary 8.Let us put

an =

tn(α)

Y

k=0

log(k)α n

−1

and

b(i)n =

min{i,tn(α)}

Y

k=0

log(k)α n

−1

(6)

for every i, n ∈ N and α ∈ (√e

e,+∞). Then there exists an increasing sequence {r(n)}n∈N of positive integers such that

X

n∈N

tr(n)(α)

Y

k=0

log(k)α (r(n))

−1

<+∞

and

X

n∈N

min{i,tr(n)(α)}

Y

k=0

log(k)α (r(n))

−1

= +∞ for every i ∈ N.

We note that, if α ∈ (√e

e, e) then we can define r(n) = n, n ∈ N.

4. Generalisations to the bigger class of functions – obeying logarithms

The next theorems are the generalizations of two previous corollaries. Before their formulation we need some auxiliary definitions.

We assume that f : (0, +∞) → (0, +∞) is a function satisfying conditions

x→+∞lim f(x) = +∞ and lim

x→+∞

f(x) x = 0 and then we use the notations

f0(x) := x, fk(x) := f(fk−1(x)) for k ∈ N, x ∈ (0, +∞), and

t(x) := sup {s ∈ N0: fw(x) ­ 1 for every w = 0, 1, . . . , s} for x ∈ [1, +∞).

Theorem 9.Let {xn}n∈N be a sequence of positive real numbers such that xn­ 1, n ∈ N and lim

n→+∞xn= +∞

and let u(i)n , n∈ N, i ∈ N and vn, n∈ N be the sequences of positive integers such that the following conditions are satisfied

(i) u(i)n < vn¬ t(xn), i, n∈ N,

(7)

(ii) lim

n→+∞

vn

Y

w=u(i)n +1

fw(xn)

−1

= 0 for every i ∈ N,

(iii)

X

n=1

u(i)n

Y

w=0

fw(xn)

−1

= +∞ for every i ∈ N.

Then there exists a subsequence {yn}n∈N of sequence {xn}n∈N such that

X

n∈N vn

Y

w=0

fw(yn)

!−1

<+∞

and

X

n∈N

u(i)n

Y

w=0

fw(yn)

−1

= +∞

for every i ∈ N.

Proof. Let us define

an =

vn

Y

w=0

fw(xn)

!−1

and

b(i)n =

u(i)n

Y

w=0

fw(xn)

−1

for every i, n ∈ N. Observe that anand b(i)n satisfy the assumptions of Theorem 6.

Therefore Theorem 9 follows from Theorem 6. 

The following result is an existential version of Theorem 9.

Theorem 10.

1. Let k ∈ N0. Then there exists an increasing sequence {xn}n∈N of positive reals such that

lim sup(xn+1− xn) = +∞,

X

n∈N k

Y

w=0

fw(xn)

!−1

= +∞

(8)

and

X

n∈N k+1

Y

w=0

fw(xn)

!−1

<+∞.

2. Suppose that r : N → R satisfies condition limn→+∞r(n) = +∞. Then there exists an increasing sequence {xn}n∈N of positive reals such that

lim sup(xn+1− xn) = +∞,

X

n∈N k

Y

w=0

fw(xn)

!−1

= +∞

for every positive integer k ∈ N, and

X

n∈N

r(n)

Y

w=0

fw(xn)

−1

<+∞.

Proof.

1. Let k ∈ N0. Then we can find an increasing sequence {yn}n∈N of positive reals such that

y1­ 1, y2n+1− y2n ­ n, n∈ N, t(x) ­ k + 1 for every x ­ y1, fk(x) ­ fk+1(x) ­ 2n+1, x­ yn, n∈ N.

For every n ∈ N we shall choose a finite and increasing sequence zu(n), u = 1, . . . , v(n), v(n) ∈ N, of elements belonging to interval (y2n−1, y2n) and satis- fying the inequality

1 ¬

v(n)

X

u=1 k

Y

w=0

fw(z(n)u )

!−1

<2.

The increasing sequence {xn}n∈Nof all elements zu(n), n, u ∈ N, 1 ¬ u ¬ v(n), possesses the desired properties.

2. Let {r(n)}n∈N denote a sequence of positive integers such that lim

n→+∞r(n) = +∞. Then there exists an increasing sequence {yn}n∈Nof positive reals such that

y1­ 1, y2n+1− y2n ­ n, n∈ N,

t(x) ­ r(n) and fk(x) ­ 2n, x­ yn, n∈ N, k = 0, 1, . . . , n + 1.

(9)

Let zu(n), u = 1, . . . , v(n), be chosen from interval (y2n−1, y2n), n ∈ N, in such a way that

1 ¬

v(n)

X

u=1

r(n)−1

Y

w=0

fw(z(n)u )

−1

<2.

It is clear that the increasing sequence {xn}n∈Nof all elements zu(n), where n, u ∈ N,1 ¬ u ¬ v(n), possesses the desired properties and therefore the proof is com-

pleted. 

Final remark.It is worth to note that Ukrainian mathematician Sljusarczuk has presented in works [12,13] the new logarithmic type (and many others) criteria for convergence of real series. Definitely, they generalize the classical criteria and are associated with the refinement of a logarithmic scale. For example the following one holds.

Theorem 11.Let an>0, n ∈ N and fix p ∈ N. Let us put Lk(n) := log(n)e n, for every k = 0, 1, 2, . . .

If lim sup

n→∞

L−1p+1(n) log

 an

p−1

Q

k=0

Lk(n)

−1

> 1 then the series P an is convergent.

On the other hand, if there exists n0∈ N such that

L−1p+1(n) log

"

an p−1

Y

k=0

Lk(n)

#−1

¬ −1

for every n ­ n0 then the seriesP an is divergent.

For example, from this theorem we can deduce that the series

X

n=100

L3(n)−1−L−15 (n) nL1(n)L2(n) is convergent but the series

X

n=100

L3(n)−1−L−14 (n) nL1(n)L2(n)

is divergent. For these series Theorem 6 could be also applied. Moreover we can formulate the theorems – substitutes of Theorems 9 and 10.

(10)

References

1. Andrews J.J., Lacher R.C.: Stacked exponents. Aequationes Math. 16 (1977), 137–147.

2. Beigel R.: Unbounded searching algorithms. SIAM J. Comput. 19 (1990), 522–

537.

3. Brink R.W.: A new integral test for the convergence and divergence of infinite series. Trans. Amer. Math. Soc. 19 (1918), 186–204.

4. Brink R.W.: A simplified integral test for convergence of infinite series. Amer.

Math. Monthly 38 (1931), 205–208.

5. Cooper R.: The relative growth of some rapidly increasing sequences. J. Lon- don Math. Soc. 29 (1954), 59–62.

6. Daniel J.W.: Summation of series of positive terms by condesation transfor- mations. Math. Computation 23 (1969), 91–96.

7. Gurarie D., Goldstern M., Martin R.: How to produce a ”harmonic conver- gence”. American Math. Monthly 99 (1992), 165–166.

8. Jegorov A.: Equations and limits. Kvant 10 (1977), 34–39 (in Russian).

9. Knopp K.: Infinite Series. PWN, Warsaw 1956 (in Polish).

10. Leung-Yan-Cheong S.K., Cover T.M: Some equivalences between Shannon en- tropy and Kolmogorov complexity. IEEE Trans. Info. Th. 24 (1978), 331–338.

11. Prus-Wiśniowski F.: Real Series. Szczecin Univ. Press, Szczecin 2005 (in Po- lish).

12. Sljusarczuk W.E.: Some criterias for convergent of real series. In: Nowadays Mathematics – 1990, Wisza Szkola Press, Kiev 1990, 94–105.

13. Sljusarczuk W.E.: New criteria for convergence of real series. Manuscript no.

2049 – uk. 88 (1988).

Omówienie

Pewne własności szeregów iterowanych logarytmów podsunęły nam na myśl dyskusję podobnych relacji w ogólniejszym kontekście dowolnych ciągów liczb do- datnich. Otrzymano kilka interesujących twierdzeń. W artykule wspomniano też o wynikach ukraińskiego matematyka W.E. Sljusarczuka dotyczących nowych kry- teriów zbieżności, zwłaszcza szeregów iterowanych logarytmów. Na tej podstawie zauważono, ze wyniki te pozwalają stosować otrzymane przez nas twierdzenia dla znacznie obszerniejszej klasy szeregów iterowanych logarytmów.

Cytaty

Powiązane dokumenty

(Instytut Nauki o Materiałach Politechniki 51ąskiej - Gliwice) Prof.. Stan wiedzy z zakresu zarządzania technologią ... Pojęcie technologii ... Technologia obróbki cieplnej

Reductones : Detmng. ascorbic acid in presence of interfering substances, notably ---. of oil in soya beans. Krober and Collins, 218... Renard Test : Evaluation of modified and

One should emphasize the fact that the full matrices (or the ”almost” full ma- trices, it means, matrices with the small number of zero elements in comparison with the

Wprawdzie współczesne metody symulacji komputerowej umożliwiają szybkie i bardzo dokładne obliczenia błędu bez potrzeby uciekania się do jakichkolwiek przybliżeń,

enterprise development to its positive organization potential, especially relating to leadership, 38. structure and relations

Przy czym, tożsamość osobista polega na „samookreśleniu się, jako osoby różniącej się w jakiś istotny sposób od innych osób” gdzie „w grę wchodzi nie

Badania stanowiskowe przeprowadzone dla odrzwi obudowy OŁE6/V36/5,5 m x 4,1 m, pracującej jako podatna i w stanie usztywnionym, pozwoliły określić charakterystykę

Zwałowanie zgodne z kierunkiem frontu, prowadzone równolegle na spągu ostatniej warstwy w miarę postępu frontu i bez zwałowania pośredniego, zapewnia równomierne