• Nie Znaleziono Wyników

ss SS On the Neumann problem in an ^-dimensional hall-space

N/A
N/A
Protected

Academic year: 2021

Share "ss SS On the Neumann problem in an ^-dimensional hall-space"

Copied!
4
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Seria I: PRACE MATEMATYCZNE X I (1967)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X I (1967)

E.

Śl iw iń sk i

(Kraków)

On the Neumann problem in an ^-dimensional hall-space

In the present paper we give a solution of the problem of Neumann in the ^-dimensional half-space. The assumptions concerning the density of f(s) are more general than in the paper [1] (see [1], p. 185-192).

Let

q

denote the distance of the points X = {xx, ..., xn) and

ń

— ((? ^, • • •, i) and let d$ — ds-^ ... ds^ ^.

Let f(8 ) be a continuous function defined in the whole (n—^ -di­

mensional Eucliden space E n_u T = (<x, ..., <n_1} 1), \T\n = p2 + . .. + + < »_i+ l)n/2 and dT = . .. dtn_x. We shall prove that, under some assumptions on this function, the solution of Neumann problem in half- space is given by the formula

(1) * ( * ) = -

(2 f l ) CLn

SS

[(й/j ^l)2 • • • H-

f{S )d S

{ ^ n — 1 Sn — l)2 T"#'»]

2_L/»2-|ł»-l Ln- 1

1

ss

(2— n ) a

f{S)dS П-2

_ i

where an = S S dT

E „ _ 1

\T\ That means that if xn > 0 then the function

u(X) satisfies the conditions 1° u(X) e<72, 2° Au(X) = 0, 3° if X ^ (x\, ...

...,ж°_!,<)) then we have limn* (-^) — /(ж?, ..., a?$Li)-

We begin with two definitions and two lemmas. We shall consider two classes of functions, К and L.

De f in it io n

1. К is the class of functions f ( X ) defined in E n_x and satisfying the following conditions: 1°/ ( X) is continuous in E n_1, 2° there exist a positive constant rx and a function co(r), where v = (s2- f ... +sL_1)1/2

>7*!, such that if r is outside C(Kr ) = {S: sj| + . ..

+ ^ _ i = ?T},

then

\f{S)\ < co(r), 3° co(r) is a nonnegative nondecreasing function such that oo

the integral f r ~ 2(o(r)dr is finite.

(2)

1 8 0 E. Ś l i w i ń s k i

Definition

2. L is the class of functions defined for S e E n_i and satisfying the following conditions: 1° f(8 ) is continuous in E n_x, 2° there exists a nonnegatiye nondecreasing, continuous function Q(r) defined for r ^ 0 such tllQjtl f

01

? 6V6ry р

8

)

1

Г of J)OHlfS (

00 у j • • • j 00

_j)y (^/ij •••? Уть_l) ^ -^ть_

1

and r = \ X Y I the inequality

!/(®1} •••, ®n_x)—/(y i, •••, y»_i)l < Q(r)

00

is satisfied, 3° the integral f r~2 Q(r)dr is finite, 4° there exists a continu-

1

ous nonnegatiye function rp(oc) defined for

00

> 0 such that

99

(

0

) = 0 and Q{a-b)

< 9

o(a) Q(b) for a > 0, b > 0.

Lemma 1.

I f f ( 8 ) e K , then the integrals

A = < S S ^ T W d S ’ Jo = ss

Ет.— Л

(X i-S iffiS )

M + 2j

dS

converge uniformly in any cylinder 4-.

..+ # » -1

< В 2, у < xn < A, where rj, A and В are arbitrary positive numbers, and i = 1, .. . , n —1, j — 0,1.

Proof. Let r — («Х + . . . + sn-i)1/2- We choose two numbers r0 and В such that r

0

^ 2B and the inequality

(2)

f(JS) < eo(r) if r ^ r 0,

is satisfied. If r > r0, then we have

Q =

l{x1—s1)2

+

. .. + {xn_ 1~ s n^ l)2+ x 2nf 12

^ r —B ^ r - \ r = |r , and, in view of (

2

), we obtain

SS

C(Kr)

f(S) г dS < w SS

C(Kr)

rn+2j dS, ™(r) ЛС?

C being a positive number. Let us introduce spherical coordinates (T) 6q = rcos^x ... cos

9

?n_ 1sin

9

?„_1, .. . , sn_l = rsiiupx in the right-hand integral which is transformed into the following

SS C4E

r

)

oj(r) r w( r ) r n 2

= - p * * -

r

0

)(r)

*■ = °>J тг+и *>

R

00

Cx being a positive constant. We have assumed that J r 2oj(r)dr <

00

. в

Then for every e > 0 there exists

гх(ё)

such that if R >

r x(e),

then

% h SS

0(^ri)

и 4-2 j dS < e.

(3)

Neumann problem in an n-dimensional half-space 181

In order to prove the uniform convergence of the integral J 2 we consider the inequality \Xi —s*| < r-\- (ж2 + -.. - f x \ _ i)1/2 < r-\-B < |3r. Hence if r > r0 we obtain

\J'2\ = SS

W+2 j

dS «SS C(KR) ~Zn+2T dS w(r)rJ

and, by introducing the transformation (T) we obtain finally

\-K\ sj С^П-> f

R

co(r)

dr < e.

Lemma 2. I f

/($ ) is continuous in

B n__x

and

f ( S ) e K r\ L,

then the function

(3) « д а = — o o — sr-

ап лп-1

p W

Q dx

converges to f { x \ , a?$Li) when {xx, ... , xn) -> {x\ , ..., a£_i, 0).

Proof. Lemma 1 imphes the continuity of u(X ) in the half-space xn > 0. Moreover, we have

We transform the integral (3) and obtain substituting Sj — х г = ^ х п,

Sn—i X n _ j = tn_j X n,

?

* ( v = ~ - S S

E n.— 1

f (^1+

^\Xn , ..., xn_ x tn_ xхъ

- - jrj" dT.

Then

g(X) = v ( X ) - f ( x 0 1,...,x ° n^ )

[/ (*«1 ~b > • • • ) ^n-l + tn—l<^n) / (*«1 ) • • • > *«7l—l) ]

Ern—1

- S S

and

«~ss

dT

1 f* i2([(a?x—Жх+^1Жи)2 + >• • + {xn- i — +hi-i^n)2]^2)

Eyi,—i

|Tf dT

< 1 O O ^ ([([а?

1

— a??| + 1<х|Д?п)2 + --. + (|а?п-

1

—Д?п-х1 + l<n-i|a?n)2]1/2) Rr£

^ „ O O |T|W

E™

(4)

1 8 2 E . Ś l i w i ń s k i

Let e be an arbitrary positive number. If the coordinates of a point X satisfy the inequalities \хг — ж$| < e, \xn_i~Xn_i\ < s, 0 < xn < e, then we have

*£?([(\x1 —x\\ + |Ь1 Ж »)2~К • • 4” (\®n-i—®n~il 4~ Ihi-il^n)2]1^2)

< Q(ne\T\) < (p(ne) Q(\T\).

In view of the convergence of the integral

^ S S

i

Q(\T\)

I T\n dT we obtain the estimation

\g(X)\ <

cp(ne) an

^(\T\)

\T\n dT = Сг <p(ns)

<*n

where Сг is a positive constant. In fact, if we apply the transformation (T), then we have

J = C2f

0

о ( ( г Ч 1 ) ' у - 2

(r2 +1)"'2 C2 = const,

f Q((r3 + l ) ll2)rn- 2 ^ r a((r2+ l ) ,/2) ( r 4 l ) < n- 2>'2

J ( i ^ + i r d r < J Р + т р dr r O ^ + v n dr

J r2+ l

D 1

r Q(r)

^ < p ( 2 ) j - y - d r ( B > 1).

R

So we conclude that g{X) -> 0 if X -> (x\, 0).

Th e o r e m.

I f f ( X ) is continuous and belongs to К r\ L for S ^ E n_1 then the function u( X) defined by formula (1) is a solutio7i of the problem of Neumann in the half space xn > 0.

This follows from Lemma 1 (since the function Q2~n is harmonic).

R eferences

[1] О. Л. С о б о л е в , Уравнения математической физики, Москва 1954.

Cytaty

Powiązane dokumenty

This determinant appears in the denominator of each component of vectors Hs and appears as the numerator of the one such

However, the generalization is not complete since it gives but a sufficient condition for the existence of the osculating k-sphere... The osculating

We shall prove the existence of an osculating circle in each of the cases denoted by these definitions, without referring to second-order continuous derivatives of

Consequently, there exist n — Jc linearly independent vectors lim Hs and these vectors determine uniquely a fe-plane. This ft-plane

istence of the osculating plane of a curve is usually given in the terms of the continuous second derivatives of the functions describing a curve.. However, it

W pracy niniejszej podamy rozwiązanie zagadnienia biharmonicz- nego dla półpłaszczyzny względnie półprzestrzeni.. Zagadnienie to jest znane pod nazwą

In monograph [2] th e theorem concerning th e convergence of the Poisson integral for boundary continnons fonction is given.. In th e present paper we shall

[r]