• Nie Znaleziono Wyników

Turbulence intensity retrieval in precipitation via optimal estimation using polarimetric radar (poster)

N/A
N/A
Protected

Academic year: 2021

Share "Turbulence intensity retrieval in precipitation via optimal estimation using polarimetric radar (poster)"

Copied!
1
0
0

Pełen tekst

(1)

Turbulence intensity retrieval in precipitation via optimal estimation using polarimetric radar

A.C.P. Oude Nijhuis, O. A. Krasnov, C. M. H. Unal, F. J. Yanovsky, A. Yarovoy and H. W. J. Russchenberg

Delft University of Technology

Objectives

• Develop a radar forward model, where as a function of turbulence intensity, a parametric or stochastic solution can be chosen.

• Develop a generalized methodology to retrieve the turbulence intensity from polarimetric radar data.

Introduction

• The polarimetric profiling radar at a slant elevation angle is a promising sensor for remote sensing of particle characteristics (Bringi and

Chandrasekar, 2004).

• For an accurate turbulence intensity retrieval in rain, often the drop size distribution is crucial.

Radar Doppler spectral width / Radar Doppler mean velocity variance

σv2 = σ2d + σ02 + σ2α + ζIT2 Assumption of homogeneous isotropic turbulence moderate turbulence ζIT2 ∝ σd2, σ02, σα2 light turbulence ζIT2  σd2, σ20, σ2α strong turbulence ζIT2  σd2, σ02, σ2α large footprint ζI = 1 small footprint ζI = ? DSD DSD

turbulence intensity turbulence intensity turbulence intensity

turbulence too small to measure

Relevance of the DSD on turbulence intensity retrievals. In

this schematic σv, the Doppler spectral width or the velocity standard de-viation, is the measurement. The contributors to this measurement are antenna motion σα, hydrometeor fall speeds σd, hydrometeor orientations and vibrations σ0 and turbulence σT, where ζI is the hydrometeor inertia correction. Note that the turbulence contribution scales with the spatial scale σ ∝ L1/3.

Scatter density plots of eddy dissipation rate (EDR) from profiling radar (TARA) versus a sonic anemometer. left) EDR

from 10 min. of mean Doppler velocities and right) EDR from spectral width, with a correction for fall speed width (Yanovsky et al., 2015). In these retrievals no polarimetric information is used.

Simulation of the inertia effect

• We estimate the effect of droplet inertia on the radar measurements by solving the equations of motion for an ensemble of droplets for a

backward trajectory.

• We use 3D stochastic turbulence from Mann (1998).

The inertial velocity term ~vp0 is assumed to be small in comparison to the total particle velocity.

• The particle velocity is written as:

~vp = ~vt + ~va + ~vp0 (1) where ~vt is the terminal fall velocity and ~va the air velocity. The solution is found by solving the equations of motion for a small trajectory, e.g. for the z-direction:

dvp,z dt = Fg − Fb − Fd,z = ηI,zv 2 t − ηI,z(vp,z − va,z) 2 . (2) stochastic turbulence  = 10−3 D = 1 mm

simulation of inertia Doppler spectral width with (striped) and

without (line) the inertia effect.

Relevance of inertia

• The inertia effect can double the spectral width.

• The inertia effect is more relevant for horizontally pointed radar.

Forward model

• An ensemble of particles is used to cover a spatial distribution, matching the radar resolution volume and a size distribution.

• Cross sections from Mishchenko (2000) and terminal fall velocities from Khvorostyanov and Curry (2005) are used.

• The particle symmetry axis is oriented parallel to the particle motion.

• Turbulence is modelled as an ensemble of isotropic vectors, with the standard deviation of radials speed from White et al. (1999).

0.1 mm 1.0 mm 5.0 mm light turbulence,

σ = 0.1 ms−1.

heavy turbulence, σ = 2.0 ms−1.

An ensemble of isotropic vectors. Shown are the orientations of the

ensemble, which depend on the relative sizes of the terminal fall speed, air velocity and turbulence velocity.

Optimal estimation

• In optimal estimation the model parameters are fitted to the measurements via minimization of the cost function.

• The cost function consists of differences in measurements space and parameter space. We use the NLopt package for minimization.

difference measurement error Radar measurements • dBZ, Ldr, Zdr • v, σv • Doppler spectra Forward model • dBZ, Ldr, Zdr • v, σv • Doppler spectra Instrument features • Frequency • Pulse repetition frequency Cost function difference prior error Prior state vector

• particle size distribution • turbulence

inten-sity

• wind vector

Post state vector • particle size

distribution • turbulence

inten-sity

• wind vector

Optimal estimation retrieval technique

Measurements vs. forward model

hh Doppler spectrum, dBZsm−1

specific differential reflectivity, dBZdr

specific linear depolarization ratio, dBLdr

Retrieved profiles

Drop size distribution Turbulence intensity

Discussion

• A novel forward model is proposed for retrievals of turbulence intensity profiles, which takes the orientations of particles into account.

• The inertia effect increases the Doppler spectral width.

• Error estimation of the posterior size distribution will improve the interpretation of radar measurements.

Additional Information

Download The model Zephyros, a package for radar simulations and

retrievals of wind and turbulence, under development, is written in C with interfaces to Python and Matlab and can be downloaded from:

https://github.com/albertoudenijhuis/zephyros0.4

References

V.N. Bringi and V. Chandrasekar. Polarimetric Doppler weather radar. 2004.

V.I. Khvorostyanov and J.A. Curry. Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. Journal of the atmospheric sciences, 2005.

J. Mann. Wind field simulation. Prob. Eng. Mech., 1998.

M.I. Mishchenko. Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt., 2000.

A. B. White, R. J. Lataitis, and R. S. Lawrence. Space and time filtering of remotely sensed velocity turbulence. Journal of atmospheric and oceanic technology, 1999.

F.J. Yanovsky, D.M. Turenko, A.C.P. Oude Nijhuis, O.A. Krasnov, and A. Yarovoy. A new model for retrieving information about turbulence intensity from radar signal. Signal Processing Symposium, 2015.

Acknowledgements This work has been done in the framework of the EU FP7

program, the UFO project.

Contact Information

• Email: albertoudenijhuis@gmail.com

Cytaty

Powiązane dokumenty

be delayed. The packet first experiences a delay when arriving at an idle terminal, on average half a time slot. The second type of delay occurs during the transmission of

Autor więc zastanawia się czy zło w ogóle istnieje, czym jest, i znowu zbie- ra wnioski refleksji teologicznej na ten temat w kilku punktach: zło jest czymś, z czym należy walczyć

„Spełniając prośby bardzo wielu Braci w biskupstwie oraz licznych wiernych całego świata, za radą Kongregacji do Spraw Kanonizacji, wziąwszy pod uwagę

Natomiast ostatni – trzeci panel, który odbył się tego dnia (panel IV) zatytułowany 

Aspecten die aan de orde komen, zijn de ruimtebehoefte van jeugdigen voor spelactiviteiten en andere vrijetijdsbezigheden, eisen en ruimte- lijke voorwaarden die

It has been demonstrated that the mass transfer approach satisfies the equilibrium flow assumption during a cavity collapse if the pressure time derivative ∂p/∂t is included in

In this study, the maximum peak stresses obtained in load cases i to 4 were about the same for the same peak value of the unit impact load and impact location, although the shape of

The rapid reduction of N1a is explained by a rapid electronic equilibrium with the low-potential FMN/FMNH* redox couple (Table 1), whilst the chain of FeS centers between FMN and