• Nie Znaleziono Wyników

The impact of reduction of doublet well spacing on the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets

N/A
N/A
Protected

Academic year: 2021

Share "The impact of reduction of doublet well spacing on the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets"

Copied!
14
0
0

Pełen tekst

(1)

Delft University of Technology

The impact of reduction of doublet well spacing on the Net Present Value and the life time

of fluvial Hot Sedimentary Aquifer doublets

Willems, Cees; Nick, H.M.; Goense, Twan; Bruhn, David

DOI

10.1016/j.geothermics.2017.02.008

Publication date

2017

Document Version

Final published version

Published in

Geothermics

Citation (APA)

Willems, C., Nick, H. M., Goense, T., & Bruhn, D. (2017). The impact of reduction of doublet well spacing on

the Net Present Value and the life time of fluvial Hot Sedimentary Aquifer doublets. Geothermics, 68, 54-66.

https://doi.org/10.1016/j.geothermics.2017.02.008

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Geothermics

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / g e o t h e r m i c s

The

impact

of

reduction

of

doublet

well

spacing

on

the

Net

Present

Value

and

the

life

time

of

fluvial

Hot

Sedimentary

Aquifer

doublets

C.J.L.

Willems

a,∗

,

H.M.

Nick

a,b

,

T.

Goense

a

,

D.F.

Bruhn

a,c

aDepartmentofGeoscienceandEngineering,DelftUniversityofTechnology,Delft,Netherlands

bTheDanishHydrocarbonResearchandTechnologyCentre,TechnicalUniversityofDenmark,Copenhagen,Denmark cHelmholtzCentrePotsdamGFZGermanResearchCentreforGeosciences,Germany

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received8November2016

Receivedinrevisedform24January2017 Accepted28February2017 Keywords: Directuse Districtheating Lowenthalpy Fluvialsandstone Geothermaldoublet NieuwerkerkFormation

a

b

s

t

r

a

c

t

Thispaperevaluatestheimpactofreductionofdoubletwellspacing,belowthecurrentWestNetherlands Basinstandardof1000–1500m,ontheNetPresentValue(NPV)andthelifetimeoffluvialHot Sedimen-taryAquifer(HSA)doublets.First,asensitivityanalysisisusedtoshowthepossibleadvantageofsuch reductionontheNPV.TheparametervaluerangesarederivedfromWestNetherlandsBasinHSAdoublet examples.Theresultsindicatethatareductionofwellspacingfrom1400to1000mcouldalreadyimprove NPVbyupto15%.ThiseffectwouldbelargerinmoremarginallyeconomicHSAdoubletscomparedtothe WestNetherlandsBasinbasecasescenario.Thepossibilitytoreducewellspacingissupportedbyfinite elementproductionsimulations,utilizingdetailedfaciesarchitecturemodels.Furthermore,ourresults underlinethenecessityofdetailedfaciesarchitecturemodelstoassessthepotentialandrisksofHSA doublets.Thisfactorsignificantlyaffectsdoubletlifetimeandnetenergyproductionofthedoublet.

©2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Large potentialresources of heat are stored in sedimentary rocks.IntheNetherlandsalone,theDutchgeologicalsurvey esti-matedthetotalrecoverableheatfromthistypeofresourcetobe approximately55timeslargerthantheannualheatconsumption

(Kramersetal.,2012; CBS).HotSedimentaryAquifers(HSA)are

especiallysuitablefor‘directuse’orheatproduction,becausethey areoftenfoundin areaswithaveragethermal gradient(Boxem

etal.,2011;Pluymaekersetal.,2012).Intheseareastemperatures

forcommercialelectricityproduction(e.g.,Shengjunetal.,2011) arefound atdepths where pore space is generallydiminished. However,heatingaccountsforhalfofthetotalenergy consump-tionin,forexample,theEuropeanUnion(EuropeanCommission, 2016).Therefore,HSAshouldbeconsideredasimportantenergy resources.Unfortunately,alargegapcurrentlyexistsbetweenHSA potentialandexploitation.Thisgapisaresultofacombinationof highinitialinvestmentcostsandlargeuncertaintiesinboth dou-bletlifetime and capacity.The heightoftheinitialinvestment ismainlyinfluencedbyacombinationofhighdrillingcostsand

∗ Correspondingauthor.

E-mailaddresses:c.j.l.willems@tudelft.nl(C.J.L.Willems),h.m.nick@tudelft.nl

(H.M.Nick),t.goense@student.tudelft.nl(T.Goense),d.f.bruhn@tudelft.nl

(D.F.Bruhn).

thereplacement of existing fossilfuel basedheating networks. ThesetwofactorsdecreasethecompetitivenessofHSA exploita-tionwithotherenergysourcesand therebylimit itsgrowth.In theNetherlands,forexample,twonewgeothermalprojectsare realisedinHSAeachyear,whilemorethan100explorationlicences havebeengrantedsince2007.Areductionoftheinitialinvestment costswouldreducetherisksfordevelopersandhencestimulatethe growthofHSAexploitation.Inthispaper,weevaluatetheeffectof wellspacingreductionontheNetPresentValue(NPV)ofaHSA doublet.Also,wediscusstheeffectsuchareductionwouldhave onthelifetimeofadoublet.Thecurrentwellspacing standard intheWestNetherlandsBasin(WNB)andParisBasin(Mijnlieff

andVan Wees,2009; Lopezet al.,2010;Mottaghy etal.,2011;

Daniilidisetal.,2016),is1000–1500m.Partially,thelargedistance

isusedtopreventearlycoldwaterbreakthrough.Overdesign, how-ever,couldleadtounnecessarilylongthermalbreakthroughtime. Forexample,nothermalbreakthroughhasyetbeenreportedin thepast40yearsofexploitationintheParisBasin.Awellspacing reductioncouldstillresultin sufficientlifetime,while improv-ingthefinancialsituationofadoubletintwoways.First,itmay reducethedrillingcostsbymakingtheoverallwelllengthshorter, atleastforthecurrentstandarddoubletlayoutwithtwodeviated wellsfromthesamesurfacelocation.Second,itcouldreducethe requiredpumpenergyduetoshorterflowpathsbetweenthewells. Anotheradvantageis thedecreaseof chanceongeologicalflow bafflesbetweenthewells,suchassealedsub-seismicfaults(e.g., http://dx.doi.org/10.1016/j.geothermics.2017.02.008

(3)

Baileyetal.,2002)orpoorsandstonebodyconnectivity(Larueand

Hovadik,2006;PranterandSommer,2011).Finally,moredoublets

couldberealisedinthesameaquiferwhichincreasestheamount ofproducedgeothermalheat(MijnlieffandVanWees,2009).The numberofstudiesonoptimisationofgeothermalsystemsis lim-itedandoftenfocusonmaximizingenergyproduction(e.g.,Sauty

etal.,1980;EkneligodaandMin,2014;Adams,2015).Boththe

pos-siblefinancialadvantageofwellspacingreductionanditsimpact ondoubletlifetimeisevaluatedinthispaper.Inthefirstpart,the effectofavariationinwellspacingontheNetPresentValue(NPV) foratypicalWNBdoubletisdetermined.Thisisderivedfroma sen-sitivityanalysisinwhichbothproductionandfinancialparameters arevaried.ParameterrangesarederivedfromaWestNetherlands Basincasestudy.Theanalysisisbasedonfinite-element produc-tionsimulationsinhopermeableandimpermeablefaciesbodies intheaquifercouldsignificantlyaffectdoubletlifetimeand capac-ity(e.g.,Pranteretal.,2007;HammandLopez,2012;Poulsenetal.,

2015;Crooijmansetal.,2016).Homogeneousaquifermodelsdonot

capturethisuncertainty.Inourstudy,detailedfluvialfacies archi-tecturerealisationsaregeneratedutilizingaprocess-basedfacies modellingapproach(Cojanetal.,2004;Grappeetal.,2012;Hamm

andLopez,2012)basedonaWNBgeologicaldataset.Minimum

wellspacingisanalysedintermsoflifetimeandNPV.Theresults ofthisstudycouldbeusedasanincentiveforre-evaluationofHSA wellspacingstandards.Utilizingdetailedfaciesarchitecture mod-els,moreprofoundestimatesofdoubletlifetimeandcapacitycan bemade.Thisshouldpreventoverdesignandtherebyimprovethe competitivenessofHSAexploitation.

2. Dataandaquifermodelling

Theaquifermodelsinthis paperwerebased onageological datasetofthefluvialLowerCretaceousNieuwerkerkFormationin theWestNetherlandsBasin(DeVaultandJeremiah,2002;Jeremiah

et al., 2010; Donselaar et al., 2015). This dataset was chosen,

becausemostoftheapproximately40explorationlicencestarget thisHSAintervalintheWNB.Parametervalues,whichwereusedin aquifermodellingandproductionsimulations,werederivedfrom thisdataset.Furthermore,productionratesandreinjection tem-peratureswerederivedfromWNBdoubletexamples.Byusingthis dataseta realisticrange ofheterogeneities wasderived to con-straintthesetoffaciesrealisations.Twotypesofaquifermodels werecreated:(1)detailedfaciesarchitecturerealisationsand(2) homogeneousmodels.Thefirsttypeofrealisationsweregenerated withaprocess-basedapproach.Thefollowingsectionsdescribethe geologicaldataandthemodellingapproach.

2.1. Geologicaldataset

AsubsurfacedatasetofthefluvialNieuwerkerkFormationin theWNB formedthebasis for the geologicalmodelling in this study.Thesamedatasetandmodellingapproachasdescribedin

Crooijmansetal.(2016)andWillemsetal.(2017)wasused.The

datasetcomprisedofcoresandGamma-ray(GR)logsof geother-malwellsIntheWNB.Thecorestudyprovidedthicknessranges offaciesbodieswhichwereusedasinputparametersto gener-ateprocess-basedfaciesrealisations.Inapproximately75mofcore inMKP-11and25minQ13-09,fivedifferenttypesoffacies bod-ieswererecognized:floodplainfines,crevassesplays,single-storey channelbodiesandamalgamatedsandstonecomplexes.The maxi-mumfiningupwardsequencethatwasrecognizedinthecoreswas 4m(Fig.1).Thereforeitwasassumedthatthepaleobank-fullflow depthofthefluvialsystemthatformedtheNieuwerkerk Forma-tionwas4m.Basedonflowdepth,thepaleobank-fullflowwidth wasestimatedat40m(Williams,1986)(Fig.1).Furthermore,cores

providedporosity-permeabilityrelationsfortheaquiferproperty modelling.ThegammaraylogswereusedtoderiveN/G ranges oftheNieuwerkerkFormation.GRlogsintheWNBshowedthat theNieuwerkerkFormationsignificantlyvariesinthicknessand N/G.Thethicknessvariesfrom50toalmost200mandtheN/Gthe approximately15–70%indifferentsectionsoftheaquifer(Fig.1). 2.2. Process-baseddetailedfaciesarchitecturerealisations

Togeneratethedetailedfaciesarchitecturerealisations,a simi-larapproachasinCrooijmansetal.(2016)andWillemsetal.(2017)

wasused.Inputparametersfortheprocess-basedfaciesmodelling (Fig.2)were(1) channelwidthand depth, (2)maximum over-bankflooddepositthickness(Hth),(3)avulsionfrequency,(4)flood

frequency,and(5)floodplaintopographyparameter(henceforth: FT-parameter)(Fig.2).Influvialsystems,thethicknessoffloodplain depositdecreasesawayfromthechannel.Thedistanceatwhich thethicknessdecreasedexponentiallyistheFT-parameter(Fig.2). AhighFT-parametermeansthattheflooddepositiswideandthick, whichincreasesthesedimentaggradationrateanddecreasesthe N/Goftherealisation.Thepaleobank-fullflowdepthwasderived fromthecoreanalysisandanalogues,respectively.Asitwasnot straightforwardderivevaluesoftheotherparameterfromcores suchasthefloodplaindepositthickness(e.g.,Bridge,2006),values rangeswereassumedtocapturetheuncertaintyoftheparameter valuesandtoobtainrealisationsthatrangeinN/G.Floodfrequency, maximumflooddepositthickness(Hth)andtheFTfactorwerethe

primarycontrolsonN/G.Toobtainrealisationswithawiderange ofN/Gvaluesbetween15and70%,overbankfloodfrequencywas variedbetween20and120years,Hthbetween0.2and0.6mand

theFT-factorbetween300and600m.Avulsionfrequencyisvaried from600to1600years(TörnqvistandBridge,2002).Duringevery simulatedfluvialflood,sedimentsweredeposited onthe flood-plainwithamaximumthicknessHthnearthechannel(Fig.2).In

thesimulations,sedimentaryprocessesdistributeandshape differ-entfaciesbodiessuchaschannellags,point-bars,crevassesplays, mudplugsandfloodplainfines.Realisationshavedimensionsof 1km×2km×50mandthepaleoflowdirectionisparalleltothe longedgeoftherealisations.Theprocess-basedFlumysoftware methodwasexplainedinmoredetailinCojanetal.(2004),Grappe

etal.(2012)andLopezetal.(2009).

2.3. Heterogeneousaquifermodels

Faciesgrid blocks in the realisations weredivided into two classes,aquiferand non-aquifer.Thenon-aquiferclass included finegrainedfaciessuchascrevassesplays,overbankalluviumand mudplugs.Thesebodieswereallassumedtoberelatively imper-meable.Theirassumedpermeabilitywas5mDandporosity10%. Sandyfaciesbodiessuchaspoint-barsandchannellagswereall assumedtobeaquifergridblocks.Porosityvalueswereassignedto theseblocksbasedonthecoreplugporositydata.Fromthisdata, abetadistributioncorrelationfunctionwasderived.The distribu-tioncharacteristicsincluding:mean,standarddeviation,skewand kurtosiswereequalto0.28,0.075,0.35and2.3,respectively. Sec-ondly,thepermeabilityofeachgridblockwasdeterminedbya porosity-permeabilityrelationobtainedfrompetrophysicaldataof wellMKP-11(TNO,1977):k=0.0633e29.5.Inthisequation,kisthe

permeability[mD]andistheporosity[–]. 2.4. Homogeneousaquifermodels

FortheNPVsensitivityanalysis,homogeneousaquifermodels werecreatedbasedonthesamegeologicaldataset.Thesemodels hadanaverageporosityof28%andpermeabilitybetween250and 2000mD.ThispermeabilityrangewasderivedfromWNBHSAwell

(4)

Fig.1.Gamma-raylogof1offshorehydrocarbonwellwithcore(well1)andtheassociatedsedimentarylog.Well2–5aregeothermalwells.

tests(Lingen,2014)andcoreplugmeasurements(TNO,1977).The thicknessofthehomogeneousmodelsinthesensitivityanalysis variedbetween50and120m.

3. Numericalproductionsimulations

Intheproductionsimulations,theaquiferwasconfinedbetween two50mthickimpermeableover-andunderburdenlayersthat providethermalrecharge.Theenergybalancewassolvedforarigid mediumfullysaturatedwithwater,inwhichthermalequilibrium wasassumedbetweenthefluidandsolidphases:

C

tT+wCw

·(qT)

·(I

T)=0 (1)

Inthisbalance,t(s)istime,T(K)isthetemperature,isthemass density(kg/m3),C

w(J/kgK)isthespecificheatcapacity,(W/mK)

isthethermalconductivity,Itheidentitymatrix,andq(m/s)isthe Darcyvelocityvector.Thesuffixwreferstotheporefluidandsto thesolidmatrix.Theheatcapacity,densityandconductivity val-uesforaquifergridblocksare730J/kgK,2650kg/m3and2.7W/mK

respectively.Forthenon-aquiferblocksthesevaluesare950J/kgK, 2600kg/m3and2.0W/mK.Thethermalconductivityandthe

vol-umetricheat capacityare described interms of a localvolume average.Heatconductivity,densityandheatcapacityareassumed tobeindependentoftemperatureforsimplicityanddescribedby =(1−␾)s+wandC=(1−)sCs+wCwinwhichisthe

porosity.ThisDarcyflowvelocityvectorcanbedeterminedby: q=(kP)/,whereisk(m2)theintrinsicpermeability,the

tem-peratureandsalinitydependentviscosityexplainedinCrooijmans

etal.(2016),andP(Pa)thepressure.Thepressurefieldisobtained

throughsolvingthecontinuityequation:(

w)/

t+(wq)=wS,

whereS(s–1)isexternalsinksandsources.Thedetailedmodelling

procedurefollowstheapproach explainedin Saeidet al.(2014,

2015).Theproductionsimulationsyieldaproductiontemperature

developmentovertimeandtherequiredinjectionandproduction pressureforthedefinedproductionrate.Thedifferencebetween thesepressuresforeach timestepi(Pi)wasusedtoestimate

pumpenergylosses(Epump,i)asindicatedinEq.(2)(e.g.,Willems

etal.,2016),whereQ istheconstantproductionrateandεthe pumpefficiency.Theproducedenergy(Eprod,i)wasestimatedby

Eq.(3)oneachtimestepi(e.g.,Willemsetal.,2016)inwhichw

isthewaterdensityof1050kg/m3andT

ithedifferencebetween

injectionandproductiontemperature.Thenetenergyproduction, orthedoubletcapacitywasdeterminedbythesumoftheproduced energyandthepumpenergylosses.

Epump,i=

QPi

ε (2)

(5)

Fig.2. (1)Process-basedfaciesmodellinginputparametersinacross-sectionofapointbar.Lateralaccretionsurfacesandcoarsechannellagdepositsareindicatedinthe pointbar.(2)Mapviewoffaciesinthedepositionalenvironment.

Table1

EconomicparametersfortheNPVrealisationbasedonVanWeesetal.(2010).

Basecaseeconomicparameters

Heatprice D6.00 D/GJ

Electricitypriceforoperations D22.22 D/GJ

Discountrate 7 % CAPEX Wellcosts D1.5 MD/km Pump D0.50 MD Heatexchanger D0.10 MD Separator D0.10 MD Contingencycosts(10%) D0.89 MD SEI(insurance) D0.69 MD OPEX 5 %ofCAPEX/year

Tax 25.5 %oftaxableincome

Depreciationperiod 10 years Feed-intariff(SDE+)

Baseenergyprice(2015) D0.052 D/kWh Correctionprice(2015) D0.019 D/kWh ContributionSDE+ D9.17 D/GJ

4. NetPresentValuemodel

ANPVmodeldevelopedbyVanWeesetal.(2010)wasutilized torelateproductionsimulations toNPV. InputfortheNPV cal-culationswerenetenergyproductioninWattandtheeconomic parameters listedin Table1. In ourstudy,additional separator costswereincluded,becauseinmanyWNBdoubletsnaturalgas co-productionoccurs.TheNPVisthedepreciated,discounted, net-cumulativeincomeafter15years.Thisperiodwaschosen,because it is themaximumduration of theDutchfeed-in tariff scheme (SDE+)forgeothermalenergy(VanHeekerenandBakema,2013, 2015).0.25MD pumpwork-overcostsweretakenintoaccount everyfiveyears,whichisequaltohalfoftheestimatedpumpcosts. 40%down-timewasassumedformaintenancethroughouttheyear. Becausedoubletwellsaredrilledfromonesurfacelocation, dou-bletwellspacinginfluencesthewelllength(Fig.3).Inthisstudy,

thelengthofa singlewell(WL)wasapproximatedbythesum ofavertical(Dvert)andadeviatedsection(Ddev),WL=Dvert+Ddev.

Theverticalsectionwasassumedtobe1500m.Thelengthofthe deviatedsection,wasapproximatedby:

Ddev=



(TVD−Dvert)2+



1 2L



2 (4) InEq.(4),TrueVerticalDepth(TVD)isthetotalwelldepthwhich is2.2kmandListhedoubletwellspacing.Reductionofthewell spacingfrom1000mto800mcouldthereforeresultinareduction ofthetotalwelllengthby2%.Becauseoftheassumedwellcostper kilometerinTable1,drillingcostsreduceaccordingly.For exam-ple,typicallydrillingcostsofa2.2kmdeepgeothermaldoubletis

∼7.2MD(VanWeesetal.,2010;NielsonandGarg,2016).Utilizing

equation4,thereductioninspacingfrom1000to800mcouldlead toareductionofinvestmentofupto0.16MD.Areductionfromthe 1500mstandardto800mwoulddecreasethetotalwelllengthby approximately9%andtheassociatedwellcostsbyapproximately 0.66MD.

5. Analyses

5.1. NPVsensitivityanalysis

Inthesensitivityanalysis,theeffectofa100mand400mwell spacingvariation froma1000mbasecase scenarioontheNPV wasevaluated.Thiswascomparedtotherelativeimpactofother parameters.In thisanalysis,homogeneousaquifermodelswere utilized.Twocategoriesofparameterswerecompared,financial andproductionrelatedparameters.Thefinancialparameterswere variedby±10%ofthebasecasevalue.Productionrelated param-eterrangeswerederivedfromthegeologicaldataandcurrently activeWNBdoublets.TheparameterrangesarelistedinFig.6.In theanalysis,eachparameterwasvariedindividually,whilekeeping theothersatthebasecasevalue.

(6)

Fig.3.Welllay-outexampleofaconceptualdoubletintheWNB.Theblackdottedlinesindicatehowawellspacingreductioninfluencesthetotaldoubletwelllength.The wellstargetafluvialsandstonefaultaquiferboundedbyfaultsdrilleddeviatedfromonesurfacelocation.Yellowcoloursindicatesandstoneandgreenishandgreycolours indicateimpermeablefloodplainfines.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Fig.4. (A)Exampleofafaciesrealisationusedinaproductionsimulationwithfourwellspacingdistances,paralleltothepaleoflowdirection.Homogeneousmodelswith adjustedheighttocompensatefortheuncertaintyinnetaquifervolumefor(B)15%and(C)70%N/G.

5.2. Impactoffluvialfaciesarchitectureonlifetime

Inthesecondpartofthispaper,theeffectofaquifer architec-tureontheadvantageofreductioninwellspacingwasevaluated.In thispart,productionsimulationswerecarriedoututilizingdetailed fluvialfacies architecturerealisations.In thesetof realisations, N/Gvariedbetween15and70%N/G.Doubletwellswereplaced at400,600,800and1000m(Fig.4A)undertheconditionthatboth wellsintersectthesameamountofsandstonegridblocks,likein

Crooijmansetal.(2016).Doubletwellpairswereplacedparallelto

thepaleoflowdirectionasthisreducestherequiredpumpenergy losses(Willemsetal.,2017).Forcomparison,twohomogeneous modelsweregeneratedinwhichthethicknesswasadjustedby15 and70%respectively(Fig.4BandC).Inthisway,bothmodeltypes hadthesamenet-aquifervolumerange.Twolifetimescenarios wereconsidered.InthefirstscenarioA,thelifetimewasreached aftertheproduction temperaturedecreased by10%ofitsinitial

(7)

Fig.5. (A)Basecasescenariocumulativediscountedcashflowandnetannualincome.(B)Productiontemperaturedevelopmentfor1000mwellsspacing,100m3/hproduction

rateinthebasecasescenarioandina50mthickaquifer.

Fig.6. TornadoplotsillustratingtheimpactofseveralparametersonNPVinpercentages.Theparameterrangesandtheirbasecase(BC)valuesarepresentedontheright sideofthetornadoplots.

value.InthesecondscenarioB,thelifetimewasreachedwhenthe temperaturedecreasedby1◦C.

6. Results

6.1. Basecasescenario

Thethermalcapacityofourbasecasedoubletis4.1MW(Eqs. (2)and(3)).Theassociateddiscountedcumulativecashflowand thenetannualincomearepresentedinFig.5A.Forthebasecase scenario the NPV is approximately 3.7MD and representsthe

cumulative discounted cash flowafter 15 years. Theassociated InternalRateofReturnonInvestments(IRR)would be approxi-mately8years.Thethermalbreakthroughmomenthappensafter morethan60years,evenifaquiferthicknessisreducedto50m (Fig.5B).Afterthisthermalbreakthroughtheproduction temper-atureonlydecreasesbyapproximately1–2◦Cperdecade.

6.2. NPVsensitivityanalysis

TheresultofthesensitivityanalysisispresentedinFig.6.A tor-nadoplotshowsthechangeinNPVinpercentages(NPV)which

(8)

Fig.7.DiscountedcumulativecashflowforscenarioA(basecaseparameters),B (L=600,Q=100/h)andC(L=1000,Q=110m3/h)inthesensitivityanalysis.

isdefinedas:(NPVBC−NPVx)/NPVBC×100%,asaresultofthe

vari-ationofasingleparameter.NPVBCisthebasecaseNPV,andNPVx

istheNPVasaresultofadjustmentofaparameterinthe sensi-tivityanalysis.Theparameterrangesarepresentedontheright sideofthetornadoplot.Thisanalysisindicatesthatvariationofthe temperaturedifferencebetweeninjectionandproduction water (T)hasthemostsignificantimpactonaHSAdoubletNPV.Afive degreeCelsiusvariationcouldchangetheNPVbyapproximately 50%.A10m3/hvariationoftheproductionratecouldvarytheNPV

byupto40%.Reducingthewellspacingfrom1400to1000mcould improvetheNPVupto15%.Becausewelllengthisestimatedby equation4,thewelllengthdecreasesby5.5%ifthewellisreduced from1400to1000m.Anadditionalreductionfrom1000to600 changeswelllengthby4.2%.Thereforethetornadoplotshowsa slightasymmetricalresult.Anadditionalwellspacing reduction from1000to600mincreasestheNPVbyapproximately13%.The 100mwellspacingvariation hassmallerimpactontheNPV of approximately4%.Permeability,aquiferthicknessandpump effi-ciencyhave alimitedeffectontheNPV.Becauseoftheinverse relationbetweeninjectionpressureandpermeability,thenegative effectofa750mDpermeabilityreductiononNPV islargerthan thepositiveeffectofa1000mDpermeabilityincrease.Variation ofthepumpenergyefficiencyby±10%didnothaveasignificant impactonNPV(lessthan1%).Otherparametersthathavea sig-nificantimpactonNPV areCAPEXandtheheightofthefeed-in tariffsubsidy.10%variationofdiscountrate,heatpriceandOPEX affecttheNPVbyapproximately10%.Inouranalysis,wellspacing istheonlyindependentparameter,whichisdeterminedpriorto drilling.ProductionrateandTdependongeological uncertain-ties,surfacefacilityefficiencyandonrequiredheatconsumption. Also,allfinancialparametersdependoneconomyorgovernment policy.Therefore,theseresultsalsoindicatetheuncertaintyinNPV asaresultofuncertaintyingeologicalandfinancialcircumstances. Notethattheseresultsarebasedonhomogeneousaquifermodels, theeffectoffaciesandpropertyheterogeneitiesarenotincluded.

TheparametersinthesensitivityanalysisaffecttheNPVofa doubletbecausetheyinfluencethediscounted cumulativecash flow.Thisisbecausetheinitialinvestmentcostsarechangedorthe netincomeis affected.Examplesofdiscountedcumulativecash flowinthreescenarios(A,BandC)fromthesensitivityanalysis arepresentedinFig.7.ScenarioAisthebasecasescenario.In sce-narioBthewellspacingisreducedby400mfrom1000to600m whileallotherparametersarekeptattheirbasecasevalue(Fig.6). Asaresult,theinitialinvestmentscostsarereducedwhilethenet

incomeisconstant.Therefore,thediscountedcumulativecashflow curveisshiftedupward,increasingtheNPVafter15years(Fig.7). InscenarioCtheproductionrateisincreasedfrom100to110m3/h

whileallotherparametersarekeptattheirbasecasevalues.The higherproductionrateincreasedtheslopeofthediscounted cumu-lativecashflow,whichalsoincreasesNPV(Fig.7).

ThetheoreticaladvantageofawellspacingreductiononNPV inFig.6,appliestoatypicalWNBHSAdoublet.Toevaluatethe effectofwellspacingvariationonNPVindoubletsinotherbasins orcountries,thesensitivityanalysisisrepeatedfordoubletswith differentdrillingcosts,productionorreinjectiontemperaturesand productionrates.Thesethreeparametersarechosenbecausethey havethemostsignificantimpactonNPVaccordingtoour analy-sisresultsinFig.6.Inscenario1and2,drillingcostsarevariedby

0.3MD/kmfromtheWNBbasecase(Table1).Inscenario3theT

is5degreeshigherthaninourbasecasescenario.Thiscouldbea resultofahigherproductiontemperatureorhigherheatextraction efficiencyandaffectsthenetenergyproduction(Eq.(3)).Incontrast inscenario4theTis5degreelower.Finallytheproductionrateis changedby20m3/hinscenario5and6.Inthesesixscenariosonly

thebasecasevalueoftheindicatedparameterinscenario1–6is variedwhileallothervaluesarekeptatthesamevalueasinFig.6. Foreach scenario,a newNPV valueiscalculated.Subsequently, theeffectofa100mwellspacingvariationfrom1000monthis NPViscalculated.TheresultsarepresentedinFig.8.Theresults indicatethatwellspacingvariationhasgreaterimpactonNPVin areaswithhigherdrillingcosts.Ifthedrillingcostsare0.3MD/km higherthanintheWNB,the10%wellspacingreductionchanges NPVbyapproximately10%whichisapproximately5%more com-paredtotheresultinFig.6.Ifthedoubletcapacityislowerbecause ofthe5degreereductionofT,a10%wellspacingreductioncould increasetheNPVbyupto15%.Wellspacingreductionhasaneven higherimpactonNPVindoubletwithlowerproductionrates.Ina doubletwithan80m3/hproductionrate,a10%wellspacing

reduc-tionincreasedtheNPVbyapproximately25%.In doubletswith lowerdrillingcosts,higherT,orhigherproductionrates com-paredtheWNBbasecase,theimpactofwellspacingreductionon NPVremainsafewpercentages.Theseresultsimplythatreducing thewellspacingtoimproveNPVismorerelevantformarginally economicdoublets.

6.3. Impactoffluvialfaciesarchitectureondoubletlifetime The resultsof theproduction simulationswith detailed flu-vialfacies architecturerealisationsarecompared tosimulations inhomogeneousaquifermodelsinFig.9.Twolifetimescenarios andtwoproductionratesarecompared.Threeobservationscan bemade.First,800mspacingissufficienttoobtaina15yearslife timeinbothlifetimescenariosandaproductionrateof100m3/h.If

theproductionrateis150m3/h,800misonlysufficientwhenT

is7.5◦C.With600mspacingthelifetimeexceeds15yearsonly witha100m3/hproductionrateandwithTof7.5C.Secondly,

theseresultsalsoindicateanunderestimationoftheuncertainty inlifetimebythehomogeneousaquifermodels.Therangeoflife timeresultsperwellspacingdistanceislarger,whendetailedfacies architecturerealisationsareused.Thisuncertaintyincreasesfor largerwellspacing distances.In contrast,it is lowerfor higher production rates.The uncertainty in lifetime increases slightly forhigherallowedproductiontemperaturedrop(T).Thirdly,the resultsimplythatlifetimeestimationsarelowerinthe homoge-neousmodels.Thepeaksofthedistributionsof lifetimeofthe detailedfaciesrealisationsareclosertothelifetimeofthe70% homogeneousaquifermodel,especiallyforlargerwellspacings.

(9)

Fig.8.Effectof10%wellspacingreductiononNPVfrom1000to900m,fordifferentbasecasescenarios.Inscenario1–6allotherparametersareequaltothebasecase valuesofFig.6.Tisthedifferencebetweeninjectionandproductiontemperatures.Forcomparison,theeffectof100mwellspacingvariationinthebasecasescenariois presentedontop.

Fig.9.Lifetimefordifferentwellspacinginhomogeneousmodels(blueandblackline)andfaciesrealisations(reddots)utilizinglifetimescenarioofa7.5◦Cproduction temperaturedrop(leftcolumn)ofa1◦Cdrop(rightcolumn).N/Gvariesbetween15and70%inthefaciesrealisations.Thefirstrowrelatesto100m3/hproductionrate,the

secondrowto150m3/hproductionrate.Thehorizontalblackdottedlineindicatestheminimalrequired15yearlifetimeforthefeed-intariffscheme.Theredlineindicates

thelifetimedistributionoflifetimeperwellspacingforthefaciesrealisations.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredto thewebversionofthearticle.)

6.4. ImpactoffluvialfaciesarchitectureonNPV

TheNPVishigherwhenhomogeneousaquifermodelsareused (Fig.10A).ThiscouldbeexplainedbyFig.10B.Thisfigurepresents theratioofproducedheat(Eprod)andpumpenergylosses(Epump)

ineachdoubletscenario.Itshowsthatinthedetailedfacies realisa-tions,pumpenergylossesaresignificantlyhigherwhichdecreases thenetincome.Fig.10Bshowsthatthefluvialfaciesarchitecture

couldsignificantlyinfluencethenetenergyproductionandthereby alsotheNPV.Thisisaresultof therisk offlowpathformation betweenthewells.Thereforenocleartrendisobservedbetween theenergyratioandwellspacinginthefaciesmodels.Incontrast, aslightreductionoftheenergyratioisrecognizedwithincreasing wellspacingforthe70%N/Ghomogeneousmodel.Theenergyratio isapproximately5%lowerfor400mspacingcomparedto1000m spacing.Forthe15%homogeneousmodelthisreductionisnot

(10)

rec-Fig.10. (A)NPVrelatedtowellspacing.NPVofdoubletsinfaciesrealisationsareaveragedperwellspacingdistance(reddottedline).(B)Ratiosofproducedenergyover pumpenergylossesafterthefirstyear,associatedto(A).Reddotsindicatetheenergyratioofadoubletinasinglefaciesrealisations.(C)Pumpenergyandheatproduction developmentovertimefor25%N/Ganda(D)45%N/Grealisationwith1000mwellspacingand100m3/hproductionrate.NotethatthesamescaleontheverticalaxesinC

andDwhiletheabsolutepumpenergyvaluesvary.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

ognizableinthisfigure.Asimilartrendwouldhavebeenobserved forthedetailedfaciesmodelsifsufficientrealisationswereused. Nevertheless,theeffectofwellspacingonpumpenergylosseswill nothaveasignificantimpactonNPVinthiswellspacerange.Note thattheratiosinFig.10Bapplytoa singlemomentintime as pumpenergyvaluesaretimedependent(Fig.10CandD).Thisis becauseofthetransientpressurestabilisationintheaquiferand becauseofthetemperaturedependentviscosityofthebrineinour simulations.Pumpenergyvariesmoresignificantlyovertimein lowerN/Grealisations(Fig.10C)comparedtohighN/Grealisations (Fig.10D).Heatproductionremainedconstantuntilthermal break-through(Fig.10C).Thevariationinpumpenergylossesandheat productionwere,however,smallandvariedbylessthan0.02MW in20years.

Aconsequenceofreducingthewellspacingisareductionof themaximalpossibleamountofrecoverableheat.Fig.11shows NPVandthemaximumrecoverableenergyinhomogeneousaquifer modelswithaN/Gof15,45and70%assuminglifetimescenario A(Tis7.5◦C),fortwoproductionrates.Thiscomparisonshows thatanincreasingproductionrateincreasesNPVbutdecreasesthe recoverableenergy.Incontrastlargerwellspacingincreasesthe recoverableenergyasitincreaseslifetime.Largerwellspacingis thereforefavourableinlowerN/Gaquifersorindoubletwithhigh productionrates.Theseresultssuggestthatacompromisebetween financialefficiencyandrecoveryefficiencyofadoubletcouldbe obtaineddependingontheexpectedsandstonevolume,required productionrateandrequiredlifetime.Finally,Fig.11confirmsthat reducingwellspacingreductiontoimproveNPVismorerelevant formarginallyeconomicdoubletswithlowproductionrates.Inthe

45%and70%N/Gmodelswith100m3/hproductionrate,an

opti-muminNPVismostclearlyrecognized.NopeakintheNPVcurves isobservedwhenthelifetimeistoolowbecauseofhighproduction rateorlowsandstonevolume.

7. Discussion

7.1. WellspacingreductionandtheadvantageonNPV

OurresultsshowapossibleimprovementoftheNPVof approx-imately15%,whenwellspacingwasreducedfrom1400to1000m. Evenasmallreductionof 100mcouldalready improveNPVby upto4%.Thesensitivityanalysisindicatesthatvariation ofT (Tprod−Tinj)andproductionratehaveamoresignificantimpacton

NPV.However,theseparametersaretoalargeextentdependent on(1)geologicaluncertaintiesand(2)technologicalconstraints. Geologicaluncertainties include aquifer temperatureof several degrees(Bontéetal.,2012)andaquiferproductivity.Alsoall finan-cialparametersareinfluencedbyexternalfactorssuchaseconomy, governmentpolicyandregionalratesofequipmentandtechnology. Wellspacingisoneoftheparametersinouranalysisthatcouldbe designedpriortodrilling.Sofar,wellspacingisprimarilydesigned tocreatesufficientlifetime(e.g.,Motthagyetal.,2011;Daniilidis etal.,2016).Thereforeourstudytakesamorecomprehensivelook attheeffectofwellspacing.Thisbecomesincreasinglyimportant withmorewidespreaddeploymentofgeothermaldoublets.The currentspacingstandardsignificantlylimitsthepossiblenumber ofdoubletsintheWNB(e.g.,MijnlieffandVanWees,2009).Well spacingreductionwouldthereforenotonlyimprovethefinancial

(11)

Fig.11.ComparisonofNPV(blueline)andmaximalrecoverableenergy(redline)in(A)the70%N/Gand(B)15%N/Ghomogeneousmodels.OptimisingNPVbydecreasing wellspacingalsolimitspossiblerecoverableheat.NotthechangeinscaleoftheNPVaxisinthetwocolumns.(Forinterpretationofthereferencestocolourinthisfigure legend,thereaderisreferredtothewebversionofthearticle.)

competitivenessofindividualdoubletsbutalsoenhance exploita-tiononaregionalscale.

Furthermore,ourresultsindicatethatwellspacingreduction hasa strongerimpactin doubletswitha lowerproductivityor netenergyproductionrate.ThisisbecausetheNPVresultsfrom a combination of initial investment and the height of the net income.Theseparametersdeterminethestartingpointandslope ofthediscountedcumulativecashflow(Fig.5).Optimisationof NPVbyreducingwellspacingisthereforeofparticularinterestfor marginallyeconomicHSAdoublets.

Our results are based on the assumption that the minimal requiredlifetimeis15years.ThisappliestoHSAdoubletsinthe Netherlands,becausethisisthemaximumdurationoftheDutch feed-intariffscheme.Asaresultthewellspacingforanoptimal NPVisthesmallestwelldistancewithaminimalproduction tem-peraturereductioninthisperiodoftime.Thisisofcourserelatedto aspecificproductionrate.Mostgeothermalsystemshowever,are designedtoproduceforamuchlongertimesuchas30–50years, whichrequiresalargerwellspacing.

TheNPVmodelbyVanWeesetal.(2010)assumesanidealHSA exploitationscenario.ItdoesnotaccuratelyreflectcurrentWNB investmentcostsandNPV.Firstly,thisisaresultofneglectingthe costswhichareassociatedtoyearsofpreparationpriortodrilling andconsultants.Inaddition,oftenunexpectedmaintenanceand workovercostsaddtotheinitialinvestmentsinthefirstyears.HSA exploitationstartedapproximately10yearsagointheWNBand currentlypassesthroughalearningcurve.Therefore,ourestimated investmentcostsapplymoretofutureDutchdoubletsthatareable totakeadvantageoftheexploitationexperienceofthefirstdecade ofHSAexploitation.Furthermore,theNPVisincreasedinthebase casescenarioofthesensitivityanalysis(Fig.5A)becauseofthe rel-ativelyhighporosityandpermeabilityvaluesof28%and1000mD, respectively.In WNBdoubletstheNPV mightbelowerbecause oftheimpactofgeologicalheterogeneityonnetenergy produc-tion(e.g.,Fig.10A).Nevertheless,wellspacingreductionwouldbe especiallyrelevantformoremarginallyeconomicdoubletsaswas showninFig.8.

Inoursimulations,verticalwellsareused.Deviatedwellscould improvetheinjectivityandproductivityincreasingthenetenergy

(12)

productionandimproveNPV.Hence,foroptimisationofdoublet design,thepreferredangleofthedeviatedwellshouldbe deter-minedforaspecificaquiferasitdependsonthegeologicalmodel, netsandstonevolumeandaquiferthickness.

7.2. Lifetime

Themainreason forthelargecurrentwellspacingstandard of1000–1500mistoavoidearlycoldwaterbreakthrough. How-ever,ourproductionsimulationsindicatethatthisspacingmight beovercautious.Thelifetimeinourproductionsimulationsvaries between60and100yearsinlifetimescenarioA,and15–35years inlifetimescenarioBbothwith150m3/hproductionrateanda

1000mwellspacing(Fig.9).Thisshowsthatdespiteour conserva-tiveaquiferthicknessof50m,stillaconsiderablelifetimecould beexpected.Mostcurrent WNBdoubletsactuallyhave alarger wellspacing.However,wellspacingoptimisationrequiresabetter understandingoftheuncertaintiesinlifetime.Doubletlifetime issignificantlyaffectedbyfaciesarchitecture(HammandLopez,

2012;Crooijmansetal.,2016).Ourproductionsimulationswith

detailedfaciesarchitecturerealisationsindicatethathomogeneous modelsunderestimatedoubletlifetime.Thisisbecause imperme-ableclaystonebodiesprovidethermalrechargetothecoldwater plumeandflowbafflesincreaseflowpathlengthbetweenthewells. Secondly,homogeneousmodelsoverestimatethenetenergy pro-ductionofthedoublet(Fig.10B)becauseflowbafflesorbarriers coulddecreaseinjectivityorproductivity.Especiallyinlow N/G aquifers,wellsmightintersectdifferentsandstonebodiesthatdo notformflowpathsbetweenthewellswhichincreasestherequired pumpenergylosses.Doubletwellpairswereorientedparallelto thepaleoflow directionandtheorientationofthefluvial sand-stone bodies. Perpendiculardoublet orientation would increase therequiredpumpenergylosses(e.g.,Willemsetal.,2016)and thereforereduceNPV.Inaddition,perpendiculardoublet orienta-tionwouldhaveincreasedlifetimeuncertainty.Thisisaresultof ahigherprobabilitythatimpermeableclaystonebodiesformflow bafflesorbarriers.Flow-barrierscanreducelifetimewhenthey cut-offpermeablepartsoftheaquiferreducingthenetreservoir volumewhiletheflowbafflesincreaselifetimewhentheyincrease flowpathlength(e.g.,Crooijmansetal.,2016).

Ourresultsshowthatastatisticalapproachwithmultiple reali-sationsisrequiredtocaptureuncertaintiesinlifetimeanddoublet capacity.Thelargespreadinlifetime(Fig.9)indicatesthatmore realisationswould berequiredtoaccuratelycapturethis uncer-taintyinlifetimeandcapacityaswereusedinourstudy.Thegoal ofourstudywas,however,toexaminehowfaciesheterogeneities influencethetheoreticaladvantageofwellspacingreductionon NPV.Ourresultssupportthepossibilitytoreducethewell spac-ing,especiallybecausethenetsandstonevolumeinourmodelsis veryconservative.Forexample,noWNBdoubletonlyencounters a15–20%N/Gaquiferof50mthickness.Ingeneral,WNBaquifers havealargerthicknessandhigherN/Gpercentage.Our conserva-tivesandstonevolumesresultsinlowdoubletcapacities(Fig.10B) andthereforelowerNPVcomparedtothebasecasescenario.In reality,doubletswithverylowinjectivityornetsandstone vol-umewouldnotbetakeninproductionwithoutanymeasures(e.g.,

Blöcheretal.,2015).Examplesofsuchameasuresaretocontinue

drillingintoahigherN/Gintervalortoincreaseheatexchange sur-facebyhydraulicstimulation.Ifwewouldcompensateforthis,life timeandNPV inourresultswouldincrease.Thedetailed facies architecturerealisations in this current studyare simplified by neglectingsmallscalepermeabilityheterogeneitiesandassuming isotropicaquiferpropertiesingridblocks.Examplesofsuchsmall scaleheterogeneitiesareshaledrapes,accretionsurfacesand bed-dingplanes(e.g.,Pranteretal.,2007).Thesefeaturesdecreaseon averagethepermeabilityperpendiculartothepaleoflowdirection.

Fig.12.Productiontemperaturedevelopmentovertimefora600mwellspacing andaproductionrateof100m3/h,forallfaciesrealisations(thincolouredlines)and

thetwohomogeneousmodelsasindicatedinthelegend.(Forinterpretationofthe referencestocolourinthisfigurelegend,thereaderisreferredtothewebversion ofthearticle.)

Thiscouldbeaccountedforadjustingthepermeabilityindifferent directionsineachgridblocklikeinBierkensandWeerts(1994). Furthermoreporositywasrandomlydistributedamongstthe sand-stonegridblocks.Inrealitytheporosityofchannellags,point-bars andsandplugsvariesmoresystematicallyacrosssandstonebodies asaresultofsedimentaryprocess(WillisandTang,2010),which couldinfluenceflowpathformationthroughthesandstonebodies

(LarueandHovadik,2008).Theseheterogeneitiescouldfurther

dif-fusethecoldwaterplume.Notethatinoursimulationsflowonly occursthroughtherockmatrixandnofracturesarepresent(e.g.

Hardeboletal.,2015;Bisdometal.,2016).Fractures,especially

par-alleltotheflowbetweenthedoubletscoulddecreasethethermal breakthroughtimeofthecoldwaterplume.

Finally,itcouldbearguedthatnotonlythesandstonevolumes inoursimulationswereconservative,alsotheassumptionsonthe minimalproductiontemperaturecouldbeconsideredassuch.The minimumrequiredproductiontemperatureforeconomic Dutch HSAexploitationforgreenhouseheatingisassumedtobe45◦C and65◦Cfordistrictheatingpurposes(Pluymaekersetal.,2012). Theseminimaltemperaturesarelowerthanthe67.5◦Cinourlife timescenarioAandmuchlowerthanthe74◦CofscenarioB. Fur-thermore,duetolikelytechnologicalimprovementsoninsulation andtechnologicalefficiencyin thenextdecades,lower produc-tiontemperatureswillmostlikelybesufficientinthefuture.Our simulationsshowthatproductiontemperaturereducesby0.5–1◦C peryear,dependingonthenetsandstonevolumeandproduction rate.Thespeedofproductiontemperaturereductioninour simula-tionsisrelativelylowcomparedtopreviousstudies(e.g.,Mijnlieff

and Van Wees, 2009) becausethermal rechargefrom over and

underburdenistakenintoaccount(Poulsenetal.,2015).InFig.12

theproductiontemperaturedevelopmentover timein homoge-neousaquifermodelsanddetailedaquiferarchitecturemodelsare compared asanexample. Doubletsin thesesimulationshave a 600mwellspacingand100m3/hproductionrate.In thelowest

N/Gaquiferrealisation,theproductiontemperaturedropsbelow 60◦Cafter60years.InthehighestN/Grealisationthisproduction temperatureisreachedafterapproximately140years.Therefore,

Fig.12underlinesconservativenatureofourminimaltemperature assumptions.

(13)

8. Conclusion

Thispaperpresentsamodellingbasedstudyontheadvantages andimpactsofawellspacingreductioninHSAdoublets.Firstly,our resultsindicatethatareductionof400mwellspacingcouldlead toaNPVimprovementofupto15%.Theimpactofwellspacing reductiononNPVismoresignificantinmarginallyeconomic dou-blets.Secondly,productionsimulationswithdetailedfaciesaquifer architecturederivedfromWNBgeologicaldataareusedto eval-uatetheimpactofsmallerwellspacingonlifetime.Ourresults suggestthatsufficientlifetimecouldbeobtained,ifthewell spac-ingis reduced belowthecurrent 1000–1500mstandard. These current standards aim toavoid early cold water breakthrough. However,ourresultsshowpotentialoverdesignofthesestandards. Thisresultsinthenegativeeffectofdecreasingthefinancial com-petitivenessofgeothermalexploitationandreducingthepossible numberofdoubletsinaregion.Finally,thecomparisonof produc-tionsimulationswithdetailedfaciesarchitecturerealisationsand homogeneousmodelsshowsthathomogeneousmodels underesti-matetheuncertaintyinlifetimeanddoubletcapacity.Theaquifer heterogeneitieshaveasignificanteffectontheflowpathformation betweenthewells.Therefore,astatisticalapproachwithmultiple realisationisrequiredtoaccuratelyassessHSApotentialandto optimiseexploitationefficiency.

Acknowledgements

WethankIsabelleCojanandherteam(MinesParisTech,Paris, France)forthepermissiontousetheFlumyprocess-basedfacies modelling software. Harmen Mijnlieff (TNO Geological Survey oftheNetherlands)is thankedfor thediscussionsand support. GeothermaloperatorsintheNetherlandsarethankedforsharing theirgeologicalandproductiondata.Wekindlythankthe consor-tiumofshare-andstakeholdersoftheDelftGeothermalProject (DAP)fortheirsupport.WethanktheEditorandtheanonymous reviewerfortheirconstructivereviewsandfeedbackthat signifi-cantlyimprovedtheinitialmanuscript.

References

Adams,B.M.,PhDthesis2015.OnthePowerPerformanceandIntegrationof Carbon-dioxidePlumeGeothermal(CPG)ElectricalEnergyProduction. UniversityofMinnesota.

Bailey,W.R.,Manzocchi,T.,Walsh,J.J.,Keogh,K.,Hodgetts,D.,Rippon,J.,Nell, P.A.R.,Flint,S.,Strand,J.A.,2002.Theeffectoffaultsonthe3Dconnectivityof aquiferbodies:acasestudyfromtheEastPennineCoalfield,UK.Petrol.Geosci. 8,263–277.

Bierkens,M.F.P.,Weerts,H.J.T.,1994.Blockhydraulicconductivityofcross-bedded fluvialsediments.WaterResour.Res.30(10),2665–2678.

Bisdom,K.,Bertotti,G.,Nick,H.M.,2016.Theimpactofin-situstressand outcrop-basedfracturegeometryonhydraulicapertureandupscaled permeabilityinfracturedreservoirs.Tectonophysics690,63–75.

Blöcher,G.,Reinsch,T.,Henninges,J.,Milsch,H.,Regenspurg,S.,Kummerow,J., Francke,H.,Kranz,S.,Saadat,A.,Zimmerman,G.,Huenges,E.,2015.Hydrolic historyandcurrentstateofthedeepgeothermalaquiferGroßSchönebeck. Geothermics63,27–43.

Bonté,D.,VanWees,J.D.,Verweij,J.M.,2012.Subsurfacetemperatureofthe onshoreNetherlands:newtemperaturedatasetandmodelling.Neth.J.Geosci. 91(4),491–515.

Boxem,T.A.P.,VanWees,J.D.,Pluymaekers,M.P.D.,Beekman,F.,Batini,F.,Bruhn, D.,Calcagno,P.,Manzella,A.,Schellschmidt,R.,2011.ThermoGISWorld AquiferViewer–aninteractivegeothermalaquiferresourceassessment web-tool.In:1stEAGESustainableEarthSciences(SES)Conferenceand Exhibition2011,Valencia,Spain.

Bridge,J.,2006.Fluvialfaciesmodels:recentdevelopments.In:Posamentier,H., Walker,R.(Eds.),FaciesModelsRevised,vol.84.SEPMSpecialPublication,pp. 85–170.

Cojan,I.,Fouche,O.,Lopez,S.,2004.Process-basedaquifermodellinginthe examplemeanderingchannel.In:Leuangthong,O.,Deutsch,C.(Eds.), GeostatisticsBanff2004.Springer,Dordrecht,pp.611–619.

Crooijmans,R.A.,Willems,C.J.L.,Nick,H.M.,Bruhn,D.F.,2016.Theinfluenceof faciesheterogeneityonthedoubletperformanceinlow-enthalpygeothermal sedimentaryreservoirs.Geothermics64,209–219.

Daniilidis,A.,Doddema,L.,Herber,R.,2016.RiskassessmentoftheGroningen geothermalpotential:fromseismictoreservoiruncertaintyusingadiscrete parameteranalysis.Geothermics64,271–288.

DeVault,B.,Jeremiah,J.,2002.TectonostratigraphyoftheNieuwerkerkFormation (DelflandSubgroup),WestNetherlandsBasin.AAPGBull.8(10),1679–1707.

Donselaar,M.E.,Groenenberg,R.M.,Gilding,D.T.,2015.Reservoirgeologyand geothermalpotentialoftheDelftSandstoneMemberintheWestNetherlands Basin.In:ProceedingsWorldGeothermalCongress2015,Melbourne,Australia.

Ekneligoda,T.C.,Min,K.B.,2014.Determinationofoptimumparametersofdoublet systeminahorizontallyfracturedgeothermalaquifer.Renew.Energy65, 152–160.

EuropeanCommission,2016.Communicationfromthecommissiontothe EuropeanParliament,thecouncil,theEuropeaneconomicandsocial committeeandthecommitteeoftheregions.AnEUStrategyonHeatingand Cooling.

Grappe,B.,Cojan,I.,Flipo,N.,Rivoirard,J.,Vilmin,L.,2012.Developmentsin dynamicmodellingofMeanderingFluvialSystems.AAPG2012Congress.

Hamm,V.,Lopez,S.,2012.Impactoffluvialsedimentaryheterogeneitiesonheat transferataGeothermalDoubletScale.In:37thStanfordGeothermal Workshop,Stanford,UnitedStates.

Hardebol,N.J.,Maier,C.,Nick,H.M.,Geiger,S.,Bertotti,G.,Boro,H.,2015.The impactofin-situstressandoutcrop-basedfracturegeometryonhydraulic apertureandupscaledpermeabilityinfracturedreservoirs.J.Geophys.Res.: SolidEarth120,8197–8222.

Jeremiah,J.M.,Duxbury,S.,Rawson,P.,2010.LowerCretaceousofthesouthern NorthSeaBasins:reservoirdistributionwithinasequencestratigraphic framework.Neth.J.Geosci.89(2010),203–237.

Kramers,L.,VanWees,J.D.,Pluymaekers,M.P.D.,Kronimus,A.,Boxem,T.,2012.

Directheatresourceassessmentandsubsurfaceinformationsystemsfor geothermalaquifers;theDutchperspective.Neth.J.Geosci.91(4),637–649.

Larue,D.K.,Hovadik,J.M.,2006.Connectivityofchannelizedaquifers:amodelling approach.Petrol.Geol.12,291–308.

Larue,D.K.,Hovadik,J.M.,2008.Whyisaquiferarchitectureaninsignificant uncertaintyinmanyappraisalanddevelopmentstudiesofclasticchannelized aquifers?J.Petrol.Geol.31(4),337–366.

Lingen,P.,2014.LIR-GT-01–LIR-GT-02InterferenceAnalysis,Unpublished manuscriptbyPanterraGeoconsultantsBV.

Lopez,S.,Cojan,I.,Rivoirard,J.,Galli,A.,2009.Process-basedstochasticmodelling: meanderingchannelizedaquifers.AnalogueNumerModelSedimentSyst: FromUnderstandPredict(SpecialPubl.40oftheIAS),40.

Lopez,S.,Hamm,H.,LeBrun,M.,Schaper,L.,Boissier,Cotiche,C.,Gioglaris,E., 2010.40yearsofDoggeraquifermanagementinIle-de-France,ParisBasin, France.Geothermics39(4),339–356.

Nielson,D.L.,Garg,S.K.,2016.Slimholeaquifercharacterizationforriskreduction. In:Proceedings,41stWorkshoponGeothermalAquiferEngineering,Stanford, California.

Mijnlieff,H.,VanWees,J.D.,2009.RapportageRuimtelijkeOrdeningGeothermie. In:TNOReport.

Mottaghy,D.,Pechig,R.,Vogt,C.,2011.ThegeothermalprojectDenHaag:3D numericalmodelsfortemperaturepredictionandaquifersimulation. Geothermics40,199–210.

Pluymaekers,M.P.D.,Kramers,L.,vanWees,J.D.,Kronimus,A.,Nelskamp,S., Boxem,T.,Bonté,D.,2012.Aquifercharacterisationofaquifersfordirectheat production:methodologyandscreeningofthepotentialaquifersforthe Netherlands.Neth.J.Geosci.91(4),621–636.

Poulsen,S.,Balling,N.,Nielsen,S.,2015.Aparametricstudyofthethermal rechargeoflowenthalpygeothermalreservoirs.Geothermics53,464–478.

Pranter,M.J.,Ellison,A.I.,Cole,R.D.,Patterson,P.E.,2007.Analysisandmodellingof intermediate-scalereservoirheterogeneitybasedonafluvialpoint-bar outcropanalogue,WilliamsForkFormation,PiceanceBasin,Colorado.AAPG Bull.91(7),1025–1051.

Pranter,M.J.,Sommer,N.K.,2011.Staticconnectivityoffluvialsandstonesina lowercoastal-plainsetting:anexamplefromtheUpperCretaceouslower WilliamsForkFormation,PiceanceBasin,Colorado.AAPGBull.95(6),899–923.

Saeid,S.,Al-Khoury,R.,Nick,H.M.,Barends,F.,2014.Experimental–numerical studyofheatflowindeeplow-enthalpygeothermalconditions.Renew. Energy62,716–730.

Saeid,S.,Al-Khoury,R.,Nick,H.M.,Hicks,M.A.,2015.Aprototypedesignmodelfor deeplow-enthalpyhydrothermalsystems.Renew.Energy77,408–422.

Sauty,J.P.,Gringarten,A.C.,Landel,P.A.,Menjoz,A.,1980.Lifetimeoptimizationof lowenthalpygeothermaldoublets.In:AdvancesinEuropeanGeothermal Research.Springer,pp.706–719.

Shengjun,Z.,Huaixin,W.,Tao,G.,2011.Performancecomparisonandparametric optimizationofsubcriticalOrganicRankineCycle(ORC)andtranscritical powercyclesystemforlow-temperaturegeothermalpowergeneration.Appl. Energy88,2740–2754.

TNO,1977.Nlolie-engasportaal.www.nlog.nl.

Törnqvist,T.E.,Bridge,J.S.,2002.Spatialvariationofoverbankaggradationrateand itsinfluenceonavulsionfrequency.Sedimentology49,891–905.

VanHeekeren,E.V.,Bakema,G.,2013.GeothermalEnergyUse.2013Country UpdatefortheNetherlands.In:EuropeanGeothermalCongress2013,Pisa, Italy.

VanHeekeren,V.,Bakema,G.,2015.TheNetherlandsCountryupdateon geothermalenergy.In:WorldGeothermalCongress2015,Melbourne.

VanWees,J.D.A.M.,Kramers,I.,Kronimus,R.A.,Pluymaekers,M.P.D.,Mijnlieff,H.F., Vis,G.J.,2010.ThermoGisV1.0.PartII:Methodology.TNOReport.

(14)

Willems,C.J.L.,Goense,T.,Nick,H.M.,Bruhn,D.F.,2016.Therelationbetweenwell spacingandNetPresentValueinfluvialHotSedimentaryAquifergeothermal doublets;aWestNetherlandsBasincasestudy.In:41stWorkshopon GeothermalAquiferEngineeringStanfordUniversity2016,Stanford,California.

Willems,C.J.L.,Nick,H.M.,Donselaar,M.E.,Weltje,G.J.,Bruhn,D.F.,2017.Onthe connectivityanisotropyinfluvialHotSedimentaryAquifersanditsinfluence ongeothermaldoubletperformance.Geothermics65,222–233.

Williams,G.P.,1986.Rivermeandersandchannelsize.J.Hydrol.88,147–164.

Willis,B.J.,Tang,H.,2010.Three-dimensionalconnectivityofpoint-bardeposits.J. Sedimen.Res.80(5),440–454.

Cytaty

Powiązane dokumenty

There is no sufficient condition telling that a given flow is able to generate magnetic energy through dynamo action and theoretical predictions concerning the

Finally, a discussion is suggested on the issue if unsupervised topic modelling may reflect deeper semantic information, such as elements describing a given event or its causes

Pomimo że rozwój witryn internetowych wykazuje dynamiczną tendencję wzro- stową, nadal brakuje literatury, która precyzyjnie oceniałaby i analizowała two- rzone serwisy

Compared to HA inhibited groups, calcium, magnesium and iron salt addition increased the methane yields by 60% and increased the hydrolysis efficiencies by 30%,

Tak zwane teorie p rzekładu stanow ią tak napraw dę system y postulatów i k o n stata­ cji m anifestujących przekonania ich twórców, które dotyczą albo samej

[10], badając chorych na cukrzycę przy użyciu kwestionariusza jakości życia, wykazali, że na gorszą jakość życia miały wpływ takie czynniki, jak: niski poziom edukacji,

Do pomiaru oceny jakości życia oraz satysfakcji z leczenia chorych z cukrzycą typu 2 wykorzystano kwestionariusz ogólny SF-36 (Short Form 36) oraz specyficzny ADDQoL (Audit

We have performed extensive Monte Carlo simulations for our proposed solution to assess the accuracy of the estimation of the binary parameters by networks of 3 and 4 detectors..