• Nie Znaleziono Wyników

Proton beam irradiation inhibits the migration of melanoma cells

N/A
N/A
Protected

Academic year: 2022

Share "Proton beam irradiation inhibits the migration of melanoma cells"

Copied!
20
0
0

Pełen tekst

(1)

PLOSONE|https://doi.o r g/10.13 7 1/journal.p o ne.0186 0 0 2 Octobe r10,2017 1/16

OPENACCESS Citation:Jasińska-

KoniorK,PochylczukK,CzajkaE,MichalikM,Romano wska-DixonB,SwakońJ,etal.

(2017)Protonbeamirradiationinhibitsthemigration ofmelanomacells.PLoSONE12(10):e0186002.htt ps://

d oi.org/10.1371/ j ournal. pone.0186002 Editor:RobertoAmendola,ENEACentroRicercheC asaccia,ITALY

Received:April28,2017 Accepted:September22,2017 Published:October10,2017 Copyright:©2017Jasińska-

Konioretal.Thisisanopenaccessarticledistributed underthetermsoftheCreativeCommons Attributi o n License,whichpermitsunrestricteduse,distribution ,andreproductioninanymedium,providedtheorigin alauthorandsourcearecredited.

DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformationfiles.

Funding:Thisprojectwassupportedbygrant2012/

07/B/NZ4/01657fromNationalScienceCentre,Cra cow,Poland(https://ww w .ncn.gov.p l /?

language=en).FacultyofBiochemistry,Biophysics andBiotechnologyofJagiellonianUniversityisapart neroftheLeadingNationalResearchCenter(KNOW )supportedbytheMinistryofScienceand

RESEARCHARTICLE

Protonbeamirradiationinhibitsthemigrationof melanomacells

KatarzynaJasińska-

Konior1,KatarzynaPochylczuk1,ElżbietaCzajka1,MartaMichalik2,BożenaRomanowska- Dixon3,JanSwakoń4,KrystynaUrbańska1,MartynaElas1*

1 DepartmentofBiophysics,FacultyofBiochemistry,BiophysicsandBiotechnology,Cracow,Poland, 2 DepartmentofCellBiology,FacultyofBiochemistry,BiophysicsandBiotechnology,Cracow,Poland,

3 DepartmentofOphthalmologyandOphthalmicOncology,JagiellonianUniversityMedicalCollege,Cracow,Pol and,4InstituteofNuclearPhysics,PAS,Cracow,Poland

*martyna.el a s@uj.e d u.pl

Abstract

Purpose

Inrecentyearsexperimentaldatahaveindicatedthatlow-

energyprotonbeamradiationmightinduceadifferenceincellularmigrationincomparisontoph otons.WethereforesetouttocomparetheeffectofprotonbeamirradiationandX-

raysonthesurvivalandlong-

termmigratorypropertiesoftwocelllines:uvealmelanomaMel270andskinmelanomaBLM.

Materialsandmethods

CellstreatedwitheitherprotonbeamorX-rayswereanalyzedfortheirsurvivalusingclono- genicassayandMTTtest.Long-termmigratorypropertieswereassessedwithtime-

lapsemonitoringofindividualcellmovements,woundtestandtransporemigration,whiletheexp ressionoftherelatedproteinswasmeasuredwithwesternblot.

Results

ExposuretoprotonbeamandX-

raysledtosimilarsurvivalbutthequalityofthecellcolonieswasmarkedlydifferent.Moreparaclone swithalowproliferativeactivityandfewerhighly-

proliferativeholocloneswerefoundafterprotonbeamirradiationincomparisontoX- rays.At20or40dayspost-

irradiation,migratorycapacitywasdecreasedmorebyprotonbeamthanbyX-rays.Thebeta-1- integrinlevelwasdecreasedinMel270cellsafterbothtypesofradia-

tion,whilevimentin,amarkerofEMT,wasincreasedinBLMcellsonly.

Conclusions

Weconcludethatprotonbeamirradiationinducedlong-

terminhibitionofcellularmotility,aswellaschangesinthelevelofbeta-

1integrinandvimentin.Ifconfirmed,thechangeinthequality,butnotinthenumberofcoloniesafte rprotonbeamirradiationmightfavortumorgrowthinhibitionafterfractionatedprotontherapy.

(2)

PLOSONE|https://doi.o r g/10.13 7 1/journal.p o ne.0186 0 0 2 Octobe r10,2017 2/16

HigherEducation.Thefundershadnoroleinstudy

(3)

Protonbeamirradiationandmelanomacellmigration

design,datacollectionandanalysis,decisiontop ublish,orpreparationofthemanuscript.

Competinginterests:Theauthorshavedeclaredth atnocompetinginterestsexist.

Introduction

Protonbeamradiationisusedtotreatmalignanciesbecauseofitssuperiorbiophysicalproper- tiesconcerningdosedepositionintissuescomparedtophotonradiation[1].Incontrasttothewidel yacceptedview,thatthetwotypesofradiationexertsimilarbiologicaleffectsintissues,withtherela tivebiologicaleffectivenessof1.1,severalintriguingdifferencesbetweenlow-

energyprotonbeamandphotonirradiatedtumorcellshavebeenreported.Forexample,homolog ousrecombinationwasmoresignificantforprotonbeaminducedDNAdamage[2].High-

LETprotonbeamirradiationcausedclusterDNAdamagewithhighercomplexitywithincreasingL ET[3],butlow-LETprotonbeamcausedsimilarDNAdamagetophotonirradia-

tion[4].Otherdifferenceswerefoundintheleveloftheproductionoffreeradicals,cellcycleinhibitio nandapoptoticsignaling[5].Invitrotreatmentoftumorcellswithaprotonbeamresultedinahigherp ercentageofapoptoticcellswhencomparedtophotonradiation[6].Additionally,differenceswere observedincellcycleregulation:ahigh-

LETprotonradiationinducedaG2phasearrestwhichwasnoticeablylongerandhardertoresolvei ncomparisontosimilardosesofphotonradiation[7].Thiswasnotseenforlow-

LETprotonradiation[8].

Radiationmayalsoaffecttheformationofmetastasis,includingcelldetachmentfromtheprimarytu mor,migrationalongtheextra-

cellularmatrix(ECM),degradationofthebasementmembrane,andintravasationintothebloodorlymp haticvessels[9].Tumorcell-

migrationitselfisamultistageprocesswhichdependsonvariousfactorssuchasproteinaseactivity[10, 11],thecytoskeletonorganizationofthemigratingcells[12]andadhesiontotheECMmediatedbyrecep torssuchasintegrins.Radiationmayaffectmanyofthesesteps,andadiffer-

entialinfluenceofprotonandphotonradiationhasbeensuggested[5].

Asprotonbeamtherapyaswellasradio-activeplaquetherapyaremainstaysinthetreat-

mentofuvealmelanoma,wewonderedhowthesedifferentapproachesaffectedmelanomacells.Weth ereforestudiedthelong-

termeffectsofsublethaldosesofprotonbeamirradiationandofphotontreatmentonthemigratoryprope rtiesofuvealmelanomaandmetastatichumanmelanomaskincells.Wetestedcellularsurvival,motility andthelevelofβ1-

integrinandvimentinafterprotonbeamandphotonirradiationandshowedthatprotonbeam,butnotpho tonirradiation,inhibitedcellularrectilinearmotilityandchangedheterogeneityofcol-

onies.Theseeffectswereobservedatlong-termaftertreatment.

Materials&methods Cellculture

WeusedMel270,aprimaryhumanuvealmelanomacellline[13],andBLM,acelllinederivedfromt helungmetastasesofskinmelanoma[14].Bothcelllineswereculturedat37˚C,5%CO2inRPMIme dia(Sigma-

Aldrich,St.Louis,MO),supplementedwith10%fetalbovineserum(BiologicalIndustries,Cromw ell,CT)andpenicillin/streptomycin(Polpharma,Poland).TheMel270cellswereagiftfromprof.M.

JagerfromLeidenUniversity(TheNether-

lands)andBLMcellsfromDrG.N.P.vanMuijen,DepartmentofPathology,RadboudUniver- sityNijmegenMedicalCentre,Nijmegen(TheNetherlands).Thecellswerepassagedat70–

80%ofconfluenceevery5–6days,sothatthe4thpassagewasatday20post- radiationandthe7thpassagewasatday40.

Irradiation

(4)

Protonbeamirradiationandmelanomacellmigration

CellsirradiationswithX-

raysandhighenergyprotonswerep erformedattheInstituteofNuclear Physics,PolishAcademyofScienc es(IFJPAN),Cracow,Poland.For X-rayirradia-tionPhillipsMCN- 323tubeatthevoltageof250kVpan dthedoserateof1.8Gy/minwas

(5)

applied.Thebeamfilteredwith4mmberylliumandadditional1mmofbrass.Dosimetrywasperformed usingthePTWTM31013ionizationchamberwithPTWUNIDOSelectrometer,calibratedinthesecond arystandardlaboratoryattheCentralOfficeofMeasuresinWarsaw,Poland.Cellcultureswereirradiat edinEppendorftubesplacedonthesurfaceofthePMMAphantom,Eppendorf’swallthicknesswassuffi cienttocompensateforthebuild-upeffect.Pro-

tonbeamirradiationtookplaceattheCyclotronCentreBronowiceatIFJPAN.The230MeVprotonbea mproducedattheIBAProteusC-

235cyclotron[15]anddegradedattheenergyselectortothe70MeVwasdeliveredtotheeyetreatmentr oomandmechanicallyformedusingasetofscaterersandenergymodulatorattheeyeirradiationunit.F ullymodulatedpro-

tonbeamwithenergy61MeV(31.5mmrangeinwater)collimatedtothe40mmlateraldiam-

eterhasbeenusedforirradiation.Duringtheirradiationthedoses1,3,or5Gyhavebeendeliveredwithd oserateof1Gy/min,2Gy/minand6.6Gy/min,respectively.Atthecenterofcellcontainerpositioni.e.att hedepths15.8mmoftheSOBPthecalculatedContinuesSlow-

ingDownApproximation(CSDA)doseaveragedLETdwas2.8keV/μm.Beamdosimetrywasperforme daccordingtotheTRS-

398protocolrecommendedbyInternationalAtomicEnergyAgency[16]usingareferencedosimeterc onsistingofaPTWTM31010semiflexionizationchamberandaPTWUNIDOSWeblineelectrometer(

PTW,Freiburg,Germany).Thedosim-

etersetwascalibratedattheIFJPANatTheratron78060Cotreatmentunit.Cellswereirradi-

atedintheEppendorftubespositionedorthogonallytothedirectionoftheprotonbeamusingthededicat edphantommadeoutofPMMA.Cellsweretransportedonicebetweenthefacili-

ties,includingtheuntreatedcontrol.

Clonogeniccellsurvivalassay

Thenumberofcellsseededinto6cmdiameterdisheswasadjustedforeachdosetoachievetheopti malnumberofcoloniesafterradiation.Theexperimentwasperformedthreetimesandthreereplic ateplateswereseededforeachgroupineveryrepetition.ForBLMandMel270cellsalike,100(cont rol),300(1Gy),500(3Gy)and700(5Gy)cellswereusedinthecaseofprotonbeamradiationandth enumbersofseededcellsforX-

rayswere100(control),200(1Gy),500(3Gy)and700cells(5Gy).Theplateswereincubatedfor2w eeksandthenthecellswerefixedandstainedwithGiemsastain(Sigma-

Aldrich,St.Louis,MO).Thecoloniesformedwerecounted,withminimum50cells/colony,andPE(

platingefficiency)andSF(survivingfraction)wereevaluated.Thecoloniesweredividedintothree groupsaccordingtotheirsizedeterminedasholo-,mero-,andparaclones,asdescribedearlier[17 ].Thenumberofcellsincolonieswere:(i)2500–6000forholoclones,(ii)500–

2500formeroclonesand(iii)<500forparaclones.

PE¼ Numberofcoloniescounted

Numberofcellsplated x100 ð1Þ

SF¼ PEoftreatedsample

PEofcontrol x100 ð2Þ

RBE(RelativeBiologicalEffectiveness)wascalculatedastheratiooftheabsorbeddoseofreferencer adiation(X-

rays)totheabsorbeddoseofradiationbeingresearched(protonbeam)whichcausesthesamebiological effect(37%ofcellsthatsurvivedtreatment).

MTTassay

(6)

ThemetabolicactivityofMel270andBLMcellswasmeasuredwithtetrazoliumdyeMTT(3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide)assay.Thecellswereseededinto

(7)

24-

wellplates(104cellsperwell),andcellnumbersweredeterminedeachdayduringthefirstfivedaysdirectl yafterirradiationandat20and40dayspost-treatment.Cellsweresupple-

mentedwith10%ofMTT(Sigma-

Aldrich,St.Louis,MO)stocksolution(0.5mg/ml)andincubatedfor2.5hrs.TheMTTformazancrystalst hatformedweredissolvedinDMSO(Avantor,Poland)andmethanol(Avantor,Poland)solution(1:1).A bsorbancewasmeasuredatawavelengthof560nmwiththeTecanGENiosPlusplatereader(Tecan,S witzerland).

Cellmigration

Time-

lapsemonitoringofindividualcellmovementswasusedasanindicatorofcellularmigrationproperties.

Theindividualtrajectoriesofcellswereassessed20days(4thpassage)and40days(7thpassage)afterirradiati oninbothcelllines.Cellswereplatedatadensityof72cells/mm2.After48hoursthemigrationofcellswa srecordedat37˚Cfor10h,at10mininter-

vals.Thetrajectoriesofindividualcellswereevaluatedfromthechangesincellcentroidloca- tion,asdescribedpreviously[18].Foreachcell,thefollowingvariablesweredetermined[19]:

(i)averagespeedofcellmovement,i.e.thetotallengthofcelltrajectory/timeofrecording;

(ii)thetotallengthofcelldisplacement(μm),i.e.thedistancefromthestartingpointdirecttothecell’

sfinalposition.ThevalueofCME(CoefficientofMovementEfficiency)wascalculatedastheratio ofthetotalcelldisplacementtothetotallengthofcelltrajectory.Foreachvalue,50cellswereanalyz edfrom3differentwells.

Woundhealingassay

Thecellswereplatedonto6-

wellplates(2.5x104cellsperwell)at20(4thpassage)and40(7thpassage)daysandtheassaywasperformedont hethirddayafterseeding.Awound(scratch)wasmadewithasteriletip.Picturesofthewoundweretaken attimepoint0hand9h.ThewoundareawasanalyzedusingImageJv.1.43U(WayneRasband,National InstituteofHealth,USA)andthepercentageofwoundhealingwascalculated.

Invasionassay

CellinvasionwasassessedwithBoydenChambers(8.0μmporesize,Falcon,NY,USA)in

24- wellplates.Cells(104)wereputontotheuppersurfaceofchambers.Chamberswereincu- batedat37˚Cfor48h,atwhichtimethenumberofcellsatthebottomofthewellswerecountedandthepe rcentageofcellsthatinvadedthroughthemembranewasestablished.

Westernblot

Cellmonolayerswerelysedinlysingbuffercontaining1MTris-

HCl(pH7.5),3MNaCl,NP4O,distilledwater,aproteaseinhibitorcocktail(Roche,Switzerland),P MSFandsodiumorthovanadate.Cellswerecentrifugedat13000RPM,4˚C.Theamountofprotei nwasmea-suredusingtheBradfordassay[20]andstoredat-

80˚Cuntilused.Equalamountsofprotein(20μg)wererunonBolt1Bis- TrisPlusgels(Invitrogen,ThermoFisherScientific)andtrans-

ferredtoanitrocellulosemembraneusingiBlot1DryBlottingSystem(Invitrogen,ThermoFisherS cientific).Themembraneswereblockedwith5%skimmilkinaTBSbufferwith1%ofTween20for1 handincubatedwithprimaryantibodiesagainstvimentin(D21H3)(CellSig-

nalingTechnology,MA,USA)andβ1integrin(CellSignalingTechnology,MA,USA)at4˚Covernig ht.Membraneswerewashed3timesinTBSandincubatedwithsuitablesecondaryantibodiesandt

(8)

henwashed3timesinTBS.SignalsweredetectedusingLumiGLO1chemilu- minescentsubstrate(CellSignallingTechnology,Danveers,MA).

(9)

Statisticalanalysis

StatisticalanalysiswascarriedoutusingStatisticav12(StatSoft.Inc.).Sincewecomparedmorethanth reeexperimentalgroups,significancewasdeterminedbyone-wayanalysisofvar-

iance(ANOVA)afterevaluationofhomogeneityofvarianceswithLevene’sTest.Thediffer-

enceswereconsideredtobestatisticallysignificantatprobabilitylevelsofp<0.05,p<0.01andp<0.001.

Results

Cellsurvivalafterprotonandphotonirradiation

Tocomparetheeffectsofradiationbetweenuvealandskinmelanomacells,theirradiosensi-

tivitywasdeterminedusingaclonogenictestafterthetworadiationqualities.Asimilarpatternofdosede pendenceofsurvivalfraction(SF)intheclonogenictestwasseenforbothcelllinestested(Fig1Aand 1B ) .TheRelativeBiologicalEffectiveness(RBE)calculatedfor37%ofSFwasveryclose,1.1forMel270an d1.13forBLM.Thisisexactlythesamevalueasthatacceptedforclinicalprotonradiotherapy[21].

Fig 1. ClonogenicassayofcellsurvivalofMel270(A)andBLM(B)cells,treatedwithprotonbeam(■)orXray s(●).RepresentativeimagesofcoloniesarepresentedatS1Fig.Cellwereseededimmediatelyafter

radiation.MeanvalueswithSEM,*p<0.05;**p<0.001.RBEvaluesweredeterminedfromalinear- quadraticmodelandwere1.10forMel270,and1.13forBLMcells.(C–

E)ThreetypesofcoloniesformedbyMel270(C)andBLM(D)cellsintwoweeksafterirradiationwith1–

5GyofprotonbeamorX-

rays,determinedasthepercentageofthetotalnumberofcolonies.Mel270andBLMcellsformthreetypesofcolonie sdescribedasholo-,mero-

andparaclones(E).Holoclonesarelarge,packedcoloniesdisplayingheterogeneity,whicharebelievedtobederiv edfromcancerinitiatingcells;meroclonesareputativelyderivedfromtransit-

amplifyingcellsandparaclonesarelooselypackedcells,derivedfromdifferentiatedcells[17].

https:// d oi.org/10.1371/ j ournal.po n e.0186002.g 0 01

(10)

ToassesscellviabilityMTTassaywasperformedtoevaluatethemetabolicactivityofcellsdirectlyaft erprotonbeamandX-rayradiation,aswellas20and40dayspost-irradiation.Thelong-termtime- pointswerethesameasinthemigrationactivitytests.Mel270showedhighersensitivitytoprotonbeamr adiationthantoX-raysinthefirstfivedaysdirectlyaftertreatment(S2 Fig ).Atthelatertime-

pointsof20and40daysthemetabolicactivityofcellswasnotaffected(S3 Fig ).

Irradiationchangedheterogeneityofcellularcolonies

Accordingtotheliterature[17]wedividedthemintothreegroups:holo-,mero-,andpara- clones(Fig1C–1E).Thelargestholoclones,containingbetween2500–

6000cells,aredescribedasdisplayingheterogeneityandasderivedfromcancer-

initiatingcells,middlesizedmero-clones(500–2500cells)areprobablyderivedfromtransit- amplifyingcellsandthesmallestparaclones(<500cells)arelooselypackedcells,derivedfromdiff erentiatedcells[17].Asthegrowthtimeofthesecolonieswas14days,weestimatedtheaveragedo ublingtimeforeachtypeofcolonies.Forholoclonesthedoublingtimewas26–

29h,meroclones29–

33h,andforparaclones38h,whichreflectedsubstantialdifferencesintheirproliferativecapacity.

Non-

treatedprimaryMel270cellsformedsimilarnumbersofholo-,andmerocloneswithasmallnumberofpa raclones(7.6%)(Fig1C).Incontrast,BLMcellsdevelopedasimilarnum-

berofallclonetypes(Fig1D).BothprotonbeamandX-raysreducedthenumberofholo-

clonesinbothcelllinessubstantially.However,protonbeamcausedadecreaseinthenumberofholoclo nesfromapprox.45%to4%inMel270(alldoses)andfrom35%toalmostnoneinBLMcells(0.38%for1G y),formingparaclonesinstead.Incontrast,X-

rayirradiationresultedinconsiderableformationofholoclonesafter1and3GyinMel270(from45%to34

%and24.6%,respectively)aswellasinBLMcells(from35%to15.6%and5.6%,respectively).Thenum berofparaclonesincreasedinadose-

dependentmannerupto67.5%forMel270and78%forBLMcells.Theseresultsshowtheheterogeneity ofbothcelllinepopulationsandsuggestthatbothtypesofirradiationshifttheformationofcoloniesfromh oloclones(highlyprolifer-

ative)toparaclones(lessproliferativeactivity),eventhoughtheoverallresultingsurvivingfraction,calc ulatedfromthetotalnumberofcolonies,issimilarforbothtypesofradiation.

Protonbeamradiationinhibitedthemotilityofcellsandchangedtheirdirection ofmovement

Long-

termirradiationeffectswerecomparedforbothradiationqualitiesinMel270andBLMcells.Ananalysis ofMel270time-

lapserecordings(S4 Fig )revealedinhibitionofmotilityat20daysafterprotonbeamradiation(Fig2),atr educedvaluesofSpeed(71–79%)andDisplace-ment(47–

68%).TheCME(coefficientofmovementefficiency)valueswerealsoreducedforalldoses.Reduced CMEsuggestsachangeinthedirectionofmovement.ThelowertheCME,themorecellsmoveincircles ratherthaninastraightline.ThemotilityofMel270cells,at40daysaftertreatmentwithprotonbeamradi ation,wasinhibitedto71.2%ofcontrol,withastrongereffectafter5Gy(Speed35.3%;Displacement52

%),whichtranslatesintoanincreaseinCMEfor5Gy.Therefore,theoverallmotilityofuvealmelanomac ellswasinhibitedat40daysaswell,butwithouttheimpactonthedirectionofcellmovement.

IrradiationofcutaneousmelanomaBLMcellsledtoslightlydifferentresults(Fig3).Fol- lowingprotonbeamirradiationadecreaseinSpeedvalueswasseen,withlowercellDisplace- ment.ThiswasreflectedinCME,whichdecreasedto79–87%at20daysand64–79%at40dayspost-

(11)

treatmentandindicatedlessrectilinearmovement.Thedirectionofcellmovementwasnotchangedaft erX-rays.

(12)

Fig2.CellularmigrationpropertiesofMel270cellstreatedwithprotonbeamradiationorXrays.Individual cellmovementswereevaluatedat20daysafterirradiation(A,B,C)andat40daysafterirradiation(D,E,F)andthre eparameterswerecalculated:‘Speed’,i.e.averagespeedofcellmovement;‘Displacement’,i.e.thetotallinearle ngthofthecelldisplacementfromthestartingpoint(μm)andCME

(coefficientofmovementefficiency),i.e.theratioofcelldisplacementtothecelltrajectorylength.Meanvalues presentedaspercentofcontrol;*p<0.05,**p<0.01,***p<0.001.

https:// d oi.org/10.1371/ j ournal.po n e.0186002.g 0 02

Insummary,protonbeamirradiationinhibitedmotileactivityinbothcelllines.Intheuvealmelanoma cellmovementwasreduced,whereasinametastaticcutaneousBLMcelllinecellmovementwasmore random.

Bothtypesofradiationsloweddownwoundclosure

Bothtypesofradiationdecreasedthewoundregrowthrate,althoughatdifferenttimescaleinthetwomela nomacelltypes.Theinhibitionofwoundclosureat40–80%ofcontrolwas

Fig3.CellularmigrationpropertiesofBLMcellstreatedwithprotonbeamradiationorXrays.Individualcell movementswereevaluatedat20daysafterirradiation(A,B,C)andat40daysafterirradiation(D,E,F)andwereeval uatedintermsof‘Speed’,i.e.averagespeedofcellmovement;‘Displacement’,i.e.thetotallinearlengthofthecelldis placementfromthestartingpoint(μm)andCME(coefficientofmovementefficiency),i.e.theratioofcelldisplaceme nttothecelltrajectorylength.Meanvaluespresentedaspercentofcontrol;*p<0.05,**p<0.01,***p<0.001.

https:// d oi.org/10.1371/ j ournal.po n e.0186002.g 0 03

(13)

Fig 4. WoundhealingassayconductedforMel270(A)andBLM(B)cells,andcellinvasionassayforMel270(

C)andBLM(D).Bothassayswereperformed20and40daysposttreatmentwithprotonbeamorXrays.Forwoundh ealingtestcellconfluentmonolayerswerewoundedwithapipettetipandimagesofthewoundclosureweretakenafte r9hoursofincubation.Foreachoftwotime-points15–

20imageswerecaptured.Barspresentthewoundhealingpercentagenormalizedtocontrol.*p<0.05;**p<0.01,***p

<0.001.CellinvasionwasassessedbymeasuringthetransporemigrationwithBoydenchamberassay(notcoated, poresize8μm).Meanvaluesineachgroupshowthepercentageofcellsthatmigratedthroughthemembraneinrelati ontocontrolseededinthewellwithoutamembrane.Valuespresentedasthe%ofcontrol.Mean±SEM;*p<0.05.

https:// d oi.org/10.1371/ j ournal.po n e.0186002.g 0 04

observedinMel270cellsat40daysandinBLMcellsat20dayspost-

irradiation(Fig4Aand4B).SomeinhibitionwasalsoseenforBLMcellstreatedwith3and5GyofX- rays.Whatismore,thedoublingtimeforthecellpopulationofeachexperimentalgroupwasatleast30hr s,thereforetheassayresultswerenotaffectedbyproliferation.

Cellinvasion

ThetransmigrationofcellsthroughBoydenchambers(pore8μm)wasrelatedtothecontrolseede dwithoutmembraneandpresentedasthepercentageofthenon-

treatedcontrolcellsinFig4 C fo rMel270andinFig 4 D fo rBLM.Inbothprotonbeamtreatedcelllines, adecreaseintransmigrationwasseen,especiallyat40dayspost-

irradiation.Incontrast,alowernumberofX-

rayirradiatedcellswasonlyobservedat20daysforMel270cells,butthenumberswerenotstatistic allysignificant.

Irradiationdecreasedthelevelofβ1-integrin

WeperformedWBanalysisforintegrinβ1,whichisinvolvedinmetastasizingandknowntodeclineaft erirradiation.Bothtypesofirradiationstronglysuppressedintegrinβ1inMel270cells(Fig5A)at20da yspost-treatment,thevaluesrangedbetween18%–40%and10%–12%forprotonbeamandX- raysrespectively.At40daysthecellsshowedanincreaseintheir

β1-integrinlevel,althoughitstillremainedbelowthecontrollevel(50%- 69%).Incontrast,inBLMcells(Fig5B)theloweringofβ1-

integrinwasseenonlyafter5Gyat20days.

(14)

BLMcellsshowahigherexpressionofvimentinafterirradiation

Nosignificantdifferencesinvimentin,oneofthemarkersforepithelial-mesenchymaltransi-

tion(EMT),werefoundinMel270cells(Fig5C)afterirradiation.However,BLMcells(Fig5D)treatedwit haprotonbeamdisplayedanincreaseintheproteinlevelofbetween143and162%at20daysandbetw een163and214%at40daysafterirradiation.TheincreasewasalsoobservedafterX-

raysat20daysfollowingtreatment,especiallyinthecaseof3Gy(263%).Nevertheless,at40daysthevi mentinexpressiondecreasedapproximatelytothecontrollevel.

Discussion

Thecomparisonoftheeffectsoftworadiationqualitiesonmelanomacellsshoweddistinctdif- ferencesinthecoloniesgeneratedaswellaslong-

termmigratoryproperties.Despitethefactthatthetwomelanomalinestestedwereofadifferentori gin(uvealandcutaneous),inbothofthemtheprotonbeam,butnotphotonradiation,causedtheinhi bitionofactivelyproliferatingcellsandlong-termmotilityinhibition.Aswecomparedlong-

termeffects,weusedsublethaldosesoftwotypesofradiation.Thesesublethaldosesmaybesignifi cantinfractionatedther-

apyorincombinationtherapiesinvolvingradiationtreatment.Whatismore,wehaveto

Fig 5. Integrinβ1(A,B)andvimentin(C,D)proteinexpressionassessedwithWesternBlotinMel270(A,C)a ndBLM(B,D)cellstreatedwithdifferentdoses(1,3,5Gy)ofprotonbeamorXrays.Cellswerelysed20and40d aysafterirradiation.

(E)20μgofproteinwasappliedperwell.Controlofuntreatedcellswassettoa100%.Chemiluminescentevaluationo f3independentWesternblotsofcelllysateswasshownasameanofthepercentageofthecontrolandSEM.*p<0.05;

**p<0.01;***p<0.001.

https:// d oi.org/10.1371/ j ournal.po n e.0186002.g 0 05

(15)

considermarginofradiationduringtreatment.Inspiteofrestrainedareaofthemargininthecaseof protonbeamirradiation,thetumorcellslocatedwithinmaycontributetoformationofmetastaticlesi ons.

Low-LETprotonbeamirradiationinhibitedactivelyproliferatingcells

Ourstudyshowedthatat2weekspost-treatment,overallclonogenicsurvivalofbothmela- nomacellsinvitro(Fig1Aand 1B )treatedwitheitherX-

raysorprotonbeamirradiationisverysimilarwithfairlycloseRBEvalues.However,whenwetakeintoc onsiderationthesubpopulationsofclonesfeatured(Fig1)weobservedashiftinthecoloniesformedaft erirra-diation.Thiswasmanifestedbyadramaticincreaseinthenumberoflessactiveclones(para- clones).Thesecellswerephysicallypresentintheirradiatedpopulationandyetmayhavelosttheircapa cityforsustainedproliferation.Suchastatemaybecalledareproductivedeath,i.e.acellmaybephysica llyintactbuthaslostitsabilitytodivide.Bothkindsofirradiation,butespe-

ciallyprotonbeamirradiationdrasticallydiminishedthenumberofholoclones(containingcancerstem -likecells[17])inbothcelllines.Suchadrasticdecreaseinthenumberofholo-

clones,containingactivelyproliferatingcells,withaconcomitantincreaseinlessactivepara-

clonesmighthaveaprofoundeffectinvivo.Consequently,fractionatedprotonbeamradiationmayres ultinastrongerinhibitionofthetumorgrowthbydecreasingactivelytheproliferatingcellpopulation.Thi shypothesisrequiresfurtherinvestigation.

Ithastobepointedoutthatthecellsstudiedwerenotsynchronizedinthecellcycle,sotheresultsobserv edareaveragedoverallcellsinthepopulation.Whatismore,weobservedhighlyheterogeneouscellpopu lationsinbothcelllines.

MelanomametastaticcelllineHTB140responsetoprotonbeamirradiationwasintensivelystudi ed[22,23].Itwasshownthatincomparisontogamma-

rays,protonbeamradiationinducedmoreapoptoticcells,fordosesrangingfrom8to24Gy[23].Ino urstudy,wehavefocusedonsublethaldosesofradiation1–

5Gyandobservedslightlylowermetabolicactivityanddecreasednumberofhighlyproliferativeclo nes(S2Fi g an dFig1).

Relativebiologicaleffectivenessofprotonbeamwaswidelystudieddependingonsuchfac- torsascellsensitivity,dose,LET,initialenergyofthebeamorthedepthinSOBP[21,24,25].RBEincreas eslinearlywithLET[26,27]andwithαcoefficientanddecreaseswithincreasing(α/β)photons[28].RBEval uesvaryfrom1.1to1.7for2Gyperfraction[29,30]andcanreacheven2.84atthedistalendofSOBPforv eryradioresistantcells[31].NeverthelessusuallyinvivostudiesshowRBEatmid-

SOBPapproximately1.1rangingfrom0.7to1.6[27].SuchincreaseinRBEissignificant,forexample,a pplicationofvariableRBEresultedinanincreaseofRBEweighteddoseintheSOBPplateaubyapproxi mately18%forbothnormalandtumorhumancells[32].SeveralmodelsforpredictingtheRBEforproto nbeamweredeveloped[24,33,34]andmanyauthorspostulateusingRBE-

weightedprotonbeammodulation,orLET-paintingintheclinic[26,30,32,35].

Low-LETprotonbeamirradiationinhibitedcellularmotility

Atbothlong-termtime-

pointsaneffectoncellularmotilitywasseen.InMel270cellsweobservedamajorinfluenceonthedirecti onofmovement,whichwasalsoparalleledinthedecreasedabilityofMel270cellstoinvade.InBLMcell sthedirectionofcellularmovementwasinhibitedbytheprotonbeamat40days,whichalsowasaccomp aniedbynumerousfilo-podiageneratedbythecells.IncontrasttoZhengetal.

[36]presentingthestimulatingeffectonthemigratoryandinvasivepotentialoftonguesquamouscellc arcinomaatonly24hourspostradiation,wehavenotdetectedanincreaseinthemotilityofmelanomac ellstreatedwithX-raysatlongtermafterirradiation.

(16)

Despitetheinhibitedmotility,cellinvasionabilitywasonlyslightly,ornotatallaffectedbyradiation,th ereforeitcouldbesupposedthatcellelasticityincellmigrationandinvasionplaysarole.However,inour experimentalsetup,wedidnotuseanychemoattractantinthetrans-

migrationtestandonlycellsthatwentthroughthetransporeandmigratedtothewellwerecounted.Ther emayhavebeencellsthatwereattachedtotheothersideofthemembrane,sowemayhaveunderestim atedthenumberofcells.

Anotherevidencesupportingthenotionofprotonbeamradiationinhibitingcellularmigrationwa sshowninthestudies,whereprotonbeamirradiationoftumorcellsandnormalprimaryhumanlens cellsresultedindown-regulationofMMP-2andMMP-9[37,38],there-

foresuggestingsuppressionofthecellmigration.Incontrast,photonsledtotheup- regulationofMMP-2aswellasofMMP-

9[37].Hencetheprotonbeamwasthoughttorestraincellmigrationwhilephotonsmayhavestimula tedit.

Suspectedswitchofthephenotype

Anotherinterestingobservationisadramaticlossofβ1integrininMel270cellsatonly20dayspost- radiation.Consideringtheabsenceofsubstantialchangesincellmorphologyonemightspeculate thatthelossofβ1integrinmaybecompensatedforwithanincreaseinadif-

ferentintegrin.Ontheotherhand,wedidnotseeanychangesinvimentinlevelinMel270,whichma yindicatethatthecellsdidnotundergoanEMTafterirradiation.Radiation-

inducedEMTwasreportedforexampleforcolorectalcells[39].Therefore,wepostulatethatMel27 0didnotlosetheirepithelialphenotypeastheydisplayastrongconnectionwithneighboringcellsa ndEMTaltertheintegrityofcell-

celljunctions,whichresultsinthelossofcontactbetweencells.InBLMcells,however,weobserved onlyaslightlossofβ1integrinat20daysafterprotonbeamwithanincreaseofvimentinlevel,which maysuggestsomeshifttowardsEMTphenotype.Nevertheless,weneedtoconsiderthefactthatth esecelllinesareofadiffer-

entorigin.BLMcellsarederivedfromlungmetastasisofcutaneousmelanoma,thereforetheyhave alreadygonethroughanEMTprocess,whichisassociatedwithanincreaseinvimentinlevel.

Switchingphenotypesbetweenepithelialandmesenchymalwasrecentlyreportedinskinmelano ma[40].Itwasobservedthatmelanomacellsofbothproliferativeandinvasivepopula-

tionswereabletostartatumorinvivo,althoughthelatteronestookamuchlongertime.How-

ever,intheendthetumorswerecomparableanditwassuggestedthatthecellscouldswitchphenotypes inbothdirections[41].Despitethefact,thattheproliferatingpopulationofcellsmaybethemajorcontribu tortothegrowthofatumor,thephenotypeswitchingmechanismmaybeusedtoevadegrowtharrest,the reforetoacquireresistance,asinthecaseofNSCLC,wheretheauthorsobservedahighlevelofvimenti nandalsoZEB1andAXL1[42].Inthiscon-

text,ourresultsmightbeinterpretedinsuchawaythatsublethaldosesofradiationleadtoswitching,orsh iftingofthephenotypetowardsmoremesenchymal,asweobserved(i)pheno-typicheterogeneity, (ii)changesincellmigrationanddirectionofmovement,

(iii)differencesinβ1integrinandvimentinlevels.ForfurtherinvestigationEMT- associatedsignalingpath-

waysshouldbeexplored,especiallythetranscriptionfactorsregulatingtheactivityoftheE- cadherinpromoterandE-cadherinrepressorsandthereforetheactivityofthebeta- catenin/TCF4complex,MAP/ERKandJAK/STAT3pathways[40].

Furtherstudiesdirections

Neverthelessweneedtobeawareofthecomplexityofthepossiblemechanismsunderlyingthediff erencesinresponseofmelanomacellstoprotonbeamandphotonirradiation.ApartfromEMTcon nectedfactors,manypathwaysandprocessesmaybeengagedinpost-radiation

(17)

changesinmelanomacells.Ascellmigrationrequiresacoordinatedadhesioncontactsbetweenc ellsaswellascell-

ECM(extracellularmatrix)interactions,thereisavarietyofintracellularandextracellularproteins suchasintegrins,cadherinsandcatenins,mayhavebeenaffected[43].Anotheraspectsarethesi gnalingpathwayssuchasMAPKandWNT.MAPKpathwaycoversmanykinasemodulesthatcon veyextracellularsignalstoproteinscontrollingessentialcellularprocessessuchascellgrowth,pr oliferation,differentiation,migrationandapoptosis[44,45]andWNTsignalingpathwayisrespon sibleforcellprolifera-

tion,migrationandpolarization[46].WorthpursuingarethemechanismsofDNAdamagerepair,a sitwasalreadyshownthathomologousrecombinationismoreimportantinrepairingprotonbeam inducedDNAdamage[2]andthatatthedistalendofSOBPanincreasedcom-

plexityofDNAlesionsandslowerrepairkineticswasobserved[4].Eventhoughthedirectconsequ encesofprotonbeamradiationarebeingbetterunderstoodeachyear,verylittleisknownaboutitsl ongtermeffects.Epigeneticchangesmayberesponsibleformaintaining

post-radiationphenotype[47],andthepresenceofcancerstemcellsmayimpactthepost-radi- ationlong-

termresponse[48].Thereforeinordertofullyexplainthemechanismsbehindofthedifferencebet weenprotonbeamandphotonradiationonmelanomacellsfurtherstudiesarerequired.

Clinicalrelevance

Asmetastasisisthemainreasonofmortalityofpatientswithbothskinanduvealmelanoma,anytreatme ntinhibitingmigratorypropertiesofcellswouldbeofbenefitintheclinic.Protonbeamtherapyisusedfortr eatmentofuvealmelanomasince1975anditsresultsarecompara-

bletobrachytherapy,withthemeanlocalcontrolover95%,andrateofcomplications7.7%[49,50].Itmay bespeculatedthatifprotonbeamtherapyindeedinhibitsmetastaticpropertiesofcells,highersurvivalof uvealmelanomapatientstreatedwithprotonbeammightbeseen,atleastinthelongterm.However,itisn otpossiblefromthedatapresentedintheliterature,toconcludeunequivocallywhethersuchdifferencee xists.Laneetal.pointoutintheirrecentanalysisofalargecohortofUMpatientstreatedwithprotonbeamt hat25-yearcumulativeUM-

relatedmortalitywasapproximately30%forprotonbeamtherapyand50%afterenucle- ation.For125Ibrachytherapy,theCOMSstudyreport12-

yearmortalityforolderpatientswithlargetumorsalsoat30%[51].

Ontheotherhand,onemayarguethattheeffectofradiationonthecellularmigratorypropertiesisexe rtedatthetimeoftreatment,whenmicrometastasesarealreadypresent[52],andthereforetheoveralls urvivalmightnotbeaffected.Perhapssomemorelightontotherolethemigratorypropertiesofuvealmel anomacellswillinthefuturecomefromstudiesshowingthemortalitydependenceonthegeneticstatus ofthetumor[53]andfromabetterunder-standingofthedevelopmentofUMmetastases[54].

Conclusions

Ourresultsindicatethatthereareseveraldistinctdifferencesbetweentheeffectofprotonbeamirradiati onandX-raysonthesurvivalmechanismsandmigratorypropertiesofmela-

nomacells.Protonbeamradiationinhibitedcellularrectilinearmotilityanddecreasedinvasivepotentia lincomparisontoX-

rays.β1integrinlevelwasdecreasedafterbothtypesofradiationinuvealmelanomacells,andthelevelo fvimentinincreasedinBLM,cutaneousmelanomacells.Animportantobservationisthechangetoward salessproliferativetypeofcoloniesgen-

eratedafterirradiationwithaprotonbeam.Ifconfirmedinaninvivosetting,thismighthaveprofoundimpl icationsfortheincreasedefficacyoffractionatedprotonbeamradiotherapy.

(18)

Supportinginformation

S1Fig.RepresentativeimagesofcoloniesformedbyMel270andBLMcells.Thenumberofseede dcellsisshownintheupperrightcornerofeachplatephoto.

(TIF)

S2Fig.MTTtestshowingmetabolicactivityofMel270cells(A,B)andBLMcellline(C,D).Met abolicactivitywasestimatedduringthefirstfivedaysdirectlyaftertreatment(A,D)withprotonbea morXraysexpressedaspercentofcontrolforeachday.Meanvalues,withSEM,#p<0.05;*p<0.01

;**p<0.001.

(TIF)

S3Fig.MTTtestshowingmetabolicactivityofMel270(A)andBLM(B)celllineafter20daysand 40dayspostirradiation.Itwasexpressedforeachdayaspercentofcontrol.Meanvalues,withSEM,

#p<0.05;*p<0.01;**p<0.001.

(TIF)

S4Fig.Individualtrajectoriesof50non-dividingMel270cellsexpressedascirculardia- grams.Singlelinerepresentasinglecelltrajectorywithinitialpointofeachtrajectorysetatthe0pointoft hediagram.Cellswereseeded20daysafterirradiationwithprotonbeamorX-

rays.Cellmovementwasrecordedfor10hrs,with10minintervals.Arepresentativetransmit- tedlightimageofthecellsistotheright(magnification200x).

(TIF)

AuthorContributions

Conceptualization:KatarzynaJasińska-Konior,MartaMichalik,BożenaRomanowska-Dixon.

Datacuration:KatarzynaJasińska-Konior,KatarzynaPochylczuk,ElżbietaCzajka,MartynaElas.

Formalanalysis:KatarzynaJasińska-Konior,MartynaElas.

Fundingacquisition:KrystynaUrbańska,MartynaElas.

Investigation:KatarzynaJasińska-Konior,KatarzynaPochylczuk,ElżbietaCzajka.

Methodology:KatarzynaJasińska-

Konior,MartaMichalik,JanSwakoń.Projectadministration:KrystynaUrba ńska,MartynaElas.Supervision:MartynaElas.

Writing–originaldraft:KatarzynaJasińska-Konior,MartynaElas.

Writing–review&editing:KatarzynaJasińska-Konior,MartynaElas.

References

1. FokasE,KraftG,AnH,Engenhart-CabillicR.Ionbeamradiobiologyandcancer:timetoupdateour- selves.BiochimBiophysActa2009;1796:216–

29.https://doi.o r g/10.10 1 6/j.bbcan. 2 009.07.00 5 PMID: 19682551

2. GrosseN,FontanaAO,HugEB,LomaxA,CorayA,AugsburgerM,etal.Deficiencyinhomologousrecombin ationrendersMammaliancellsmoresensitivetoprotonversusphotonirradiation.IntJRadiatOncolBiolPhys 2014;88:175–81.https://doi.o r g/10.1016/j . ijrobp.201 3 .09.04 1 PMID :24239 3 85

3. SageE,ShikazonoN.Radiation-

inducedclusteredDNAlesions:repairandmutagenesis.FreeRadicBiolMed2016.https://doi.o r g/10.101 6

/ j.freeradbi o med.201 6 .12.00 8 PMID :27939 9 34

(19)

4. ChaudharyP,MarshallTI,CurrellFJ,KacperekA,SchettinoG,PriseKM.VariationsintheProcessingofDN ADouble-StrandBreaksAlong60-

MeVTherapeuticProtonBeams.IntJRadiatOncolBiolPhys2016;95.https://doi.o r g/10.1016/j . ijrobp.201 6 .0 1.017

5. Ghirdani,Swati;Sachs,Rainer;HlatkyL,GirdhaniS.,SachsLHR.Biologicaleffectsofprotonradiation:What weknowanddon’tknow.RadiatRes2013;179:257–

72.https:// d oi.org/10.16 6 7/RR2 8 39.1 PMID:23373 9 00

6. GerelchuluunA,HongZ,SunL,SuzukiK,TerunumaT,YasuokaK,etal.InductionofinsituDNAdou-ble- strandbreaksandapoptosisby200MeVprotonsand10MVX-

raysinhumantumourcelllines.IntJRadiatBiol2011;87:57–

70.https://doi.o r g/10.31 0 9/09553002.2 0 10.518 2 0 1 PMID :20954835

7. AntocciaA,SguraA,BerardinelliF,CavinatoM,CherubiniR,GerardiS,etal.CellCyclePerturbationsandGe notoxicEffectsinHumanPrimaryFibroblastsInducedbyLow-energyProtonsandX/γ-

rays.JRadiatRes2009;50:457–68.https://doi.o r g/10.1269 / jrr.0900 8 PMID :19755805

8. GreenL.M.,MurrayD.K.,TranD.T.,BantA.M.,KazariansG.,MoyersM.F.andNelsonGA.Responseofthyro idfollicularcellstogammairradiationcomparedtoprotonirradiation.I.Initialcharac-

terizationofDNAdamage,micronucleusformation,apoptosis,cellsurvival,andcellcyclephaseredis- tribution.RadiatRes2001;155:32–42.PMID:11121213

9. JiangWG,SandersAJ,KatohM,UngefrorenH,GieselerF,PrinceM,etal.Tissueinvasionandmetas- tasis:Molecular,biologicalandclinicalperspectives.SeminCancerBiol2015;35:244–

75.https:/ / doi. org/10.1016 / j.semcancer.2 0 15.03.00 8 PMID :25865 7 74

10. ShayG,LynchCC,FingletonB.Movingtargets:EmergingrolesforMMPsincancerprogressionandmetas tasis.MatrixBiol2015;44–46:200–6.https://doi.o r g/10.1016 / j.matbio.2 0 15.01.01 9 PMID: 25652204 11. AgemyL,HarmelinA,WaksT,LeibovitchI,RabinT,PfefferMR,etal.Irradiationenhancesthemeta-

staticpotentialofprostaticsmallcellcarcinomaxenografts.Prostate2008;68:530–

9.https://doi.o r g/10. 1002/pro s .2070 2 PMID :18247403

12. LindbergU,KarlssonR,LassingI,SchuttCE.Themicrofilamentsystemandmalignancy2008;18:2–

11.https://doi . org/10.1016/ j .semca n cer.2007.10 . 00 2 PMID :18024149

13. ChenPW,MurrayTG,UnoT,SalgallerML,ReddyR,KsanderBR.ExpressionofMAGEgenesinocu- larmelanomaduringprogressionfromprimarytometastaticdisease.ClinExpMetastasis1997;15:509–

18.https://doi.o r g/10.1023 / A:10184790 1 134 0 PMID :92472 5 3

14. vanMuijenGN,CornelissenIM,JansenCFRD.Progressionmarkersinmetastasizinghumanmela- nomacellsxenograftedtonudemice.AnticancerRes1989;9:879–84.PMID:2683999

15. BoberekM,SwakońJ,StolarczykL,OlkoP,WaligorskiM.AMONITORINGSYSTEMFORTHE60MeVR ADIOTHERAPYPROTONBEAMATIFJPANUSINGASCINTILLATINGSCREENANDACCDCAME RA*2014;66:5–15.

16. IAEA.AbsorbedDoseDeterminationinExternalBeamRadiotherapy:AnInternationalCodeofPracticeforD osimetryBasedonStandardsofAbsorbedDosetoWater.TechReportsSer2000;398:1–229.

17. BeaverCM,AhmedA,MastersJR.Clonogenicity:HoloclonesandMeroclonesContainStemCells2014

;9.https:/ / doi.org/10.1 3 71/journal. p one.00 8 983 4 PMID :24587 0 67 18. MadejaZ,SzymkiewiczI,ZaczekA,SrokaJ,MiekusKKW.Contact-

activatedmigrationofmelanomaB16andsarcomaXCcells.BiochemCellBiol2001;79:425–

40.PMID:11527212

19. GalantyA,MichalikM,SedekL,PodolakI.TheinfluenceofLTS-4,asaponosidefromLysimachiathyr- sifloraL.,onhumanskinfibroblastsandhumanmelanomacells.CellMolBiolLett2008;13:585–

98.https://doi.o r g/10.24 7 8/s1165 8 -008-0013- x PMID :18553182

20. KrugerNJ.TheBradfordMethodforProteinQuantitation.MethodsMolBiol1994;32:9–

15.https://doi.org/10.1385 / 0-89603- 2 68-X: 9 PMID :7951753

21. PaganettiH,NiemierkoA,AncukiewiczM,GerweckLE,GoiteinM,LoefflerJS,etal.Relativebiologicaleffecti veness(RBE)valuesforprotonbeamtherapy.IntJRadiatOncolBiolPhys2002;53:407–

21.PMID:12023 1 46 22. PetrovicI,Ristic-

FiraA,TodorovicD,ValastroL,CirroneP,CuttoneG,etal.Radiobiologicalanalysisofhumanmelanomacells onthe62MeVCATANAprotonbeam.IntJRadiatBiol2006;82:251–

265.https://doi.o r g/10.10 8 0/095530006 0 06698 5 9 PMID :16690593 23. TodorovićD,PetrovićI,TodorovićM,CuttoneG,Ristić-

Firaa.Earlyeffectsofgammaraysandprotonsonhumanmelanomacellviabilityandmorphology.JMicrosc2 008;232:517–21.https:/ / doi.org/10. 1111/j.13 6 5-2818.200 8 .02151. x PMID :19094032

24. FriedrichT,ScholzU,Elsa¨sserT,DuranteM,ScholzM.Calculationofthebiologicaleffectsofionbeamsbas edonthemicroscopicspatialdamagedistributionpattern.IntJRadiatBiol2012;88:103–

7.https://doi.o r g/10.31 0 9/09553002. 2 011.61121 3 PMID :21823 8 20

(20)

25. BrittenRA,NazaryanV,DavisLK,KleinSB,NichiporovD,MendoncaMS,etal.VariationsintheRBEforcellk illingalongthedepth-doseprofileofamodulatedprotontherapybeam.RadiatRes2013;179:21–

8.https://doi.o r g/10.1667 / RR2737. 1 PMID :23148 5 08

26. TommasinoF,DuranteM.Protonradiobiology.Cancers(Basel)2015;7:353–81.https://doi.o r g/10.

3390/ca n cers701 0 35 3 PMID :25686476

27. PaganettiH,vanLuijkP.Biologicalconsiderationswhencomparingprotontherapywithphotontherapy.

SeminRadiatOncol2013;23:77–87.https://doi . org/10.1016/ j .semrado n c.2012.1 1 .00 2 PMID:

23473684

28. McNamaraAL,SchuemannJ,PaganettiH.Aphenomenologicalrelativebiologicaleffectiveness(RBE)mod elforprotontherapybasedonallpublishedinvitrocellsurvivaldata.PhysMedBiol2015;60:8399–

416.https://doi.o r g/10.108 8 /0031-9155/ 6 0/21/83 9 9 PMID :26459756

29. UnderwoodT,PaganettiH.VariableProtonRelativeBiologicalEffectiveness:HowDoWeMoveFor-ward?

RadiatOncolBiol2016;95:56–8.https://doi . org/10.1016/ j .ijrobp.201 5 .10.00 6 PMID :27084627 30. DuranteM,PaganettiH.Nuclearphysicsinparticletherapy:areview.RepProgPhys2016;79:96702.

https://doi.o r g/10.10 8 8/0034-488 5 /79/9/09 6 70 2 PMID :275408 2 7

31. PetrovićI,Ristić-FiraA,TodorovićD,KorićanacL,ValastroL,CirroneP,etal.Responseofaradiore- sistanthumanmelanomacelllinealongtheprotonspread-outBraggpeak.IntJRadiatBiol2010;86:742–

51.https://doi.o r g/10.3109 / 09553002.20 1 0.4813 2 2 PMID :20597839

32. ChaudharyP,MarshallTI,PerozzielloFM,MantiL,CurrellFJ,HantonF,etal.Relativebiologicaleffec- tivenessvariationalongmonoenergeticandmodulatedBraggpeaksofa62-

MeVtherapeuticprotonbeam:Apreclinicalassessment.IntJRadiatOncolBiolPhys2014;90:27–

35.https:/ / doi.org/10.1 0 16/j. ijrobp.201 4 .05.01 0 PMID :24986743

33. WedenbergM,LindBK,HårdemarkB,WedenbergM,LindBK,ABH.Amodelfortherelativebiologicaleffectiv enessofprotons:Thetissuespecificparameterα/βofphotonsisapredictorforthesensitivitytoLETchanges2 013.https://doi.o r g/10.3109 / 0284186X.2 0 12.70589 2 PMID :22909391

34. FreseMC,WilkensJJ,HuberPE,JensenAD,OelfkeU,Taheri-

KadkhodaZ.Applicationofconstantvs.variablerelativebiologicaleffectivenessintreatmentplanningofinte nsity-

modulatedprotontherapy.IntJRadiatOncolBiolPhys2011.https://doi.o r g/10.10 1 6/j.ijrobp.20 0 9.10.02 2 P MID:20382482

35. DasuA,Toma-

DasuI.ImpactofvariableRBEonprotonfractionation.MedPhys2013.https:/ / doi.org/ 10.1118 / 1.476941 7 P MID:23298 0 75

36. ZhengQ,LiuY,ZhouH,DuY,ZhangB,ZhangJ,etal.X-rayradiationpromotesthemetastaticpoten- tialoftonguesquamouscellcarcinomacellsviamodulationofbiomechanicalandcytoskeletalproper- ties.HumExpToxicol2015:4–6.https: / /doi.org/10.1 1 77/096 0 3271145616 6 4 PMID :25586 0 02 37. OgataT,TeshimaT,KagawaK,HishikawaY,TakahashiY,KawaguchiA,etal.Particleirradiationsup-

pressesmetastaticpotentialofcancercells.CancerRes2005;65:113.PMID:15665 2 86

38. ChangPY,BjornstadKa,RosenCJ,LinS,BlakelyEa.Particleradiationaltersexpressionofmatrixmetallo proteasesresultinginECMremodelinginhumanlenscells.RadiatEnvironBiophys2007;46:187–

94.https://doi.o r g/10.1007 / s00411-006 - 0087- 7 PMID :172561 7 9

39. KawamotoA,YokoeT,TanakaK,SaigusaS,ToiyamaY,YasudaH,etal.Radiationinducesepithelial- mesenchymaltransitionincolorectalcancercells.OncolRep2012;27:51–

7.https:/ / doi.org/10.3 8 92/or. 2011.148 5 PMID :21971767

40. LiFZ,DhillonAS,AndersonRL,McArthurG,FerraoPT.PhenotypeSwitchinginMelanoma:Implica- tionsforProgressionandTherapy.FrontOncol2015;5:31.https://doi.o r g/10.33 8 9/fonc.201 5 .00031 PMI D:25763 3 55

41. HoekKS,SchlegelNC,BraffordP,SuckerA,UgurelS,KumarR,etal.Metastaticpotentialofmelano- masdefinedbyspecificgeneexpressionprofileswithnoBRAFsignature.PigmentCellRes2006;19:290–

302.https://doi.o r g/10.1111 / j.1600-074 9 .2006.003 2 2. x PMID :16827 7 48

42. KemperK,DeGoejePL,PeeperDS,VanAmerongenR.Phenotypeswitching:Tumorcellplasticityasaresist ancemechanismandtargetfortherapy.CancerRes2014;74:5937–41.https://doi.o r g/10.1158/ 0008- 5472. C AN-14-117 4 PMID :25320006

43. StockC,SchwabA.Protonsmaketumorcellsmovelikeclockwork.PflugersArchEurJPhysiol2009;458:98 1–92.https://doi.o r g/10.1007 / s00424-009 - 0677- 8 PMID :19437 0 33

44. DhillonAS,HaganS,RathO,KolchW.MAPkinasesignallingpathwaysincancer2007:3279–90.

10.1038/sj.onc.1210421.

45. BurottoM,ChiouVL,LeeJ.TheMAPKPathwayAcrossDifferentMalignancies:ANewPerspective2014.

10.1002/cncr.28864.

46. KomiyaY,HabasR.Wntsignaltransductionpathways2008;4:68–75.

(21)

47. AyparU,MorganWF,BaulchJE.MutationResearch/FundamentalandMolecularMechanismsofMutagen esisRadiation-inducedepigeneticalterationsafterlowandhighLETirradiations.MutatRes—

FundamMolMechMutagen2011;707:24–

33.https://doi.o r g/10.10 1 6/j.mrfmm m .2010.12 . 00 3 PMID: 21159317

48. MoncharmontC,LevyA,GilorminiM,BertrandG,ChargariC,AlphonseG,etal.Targetingacorner- stoneofradiationresistance:Cancerstemcell.CancerLett2012;322:139–

47.https: / /doi.org/10.1 0 16/ j.canlet.2 0 12.03.02 4 PMID :22459349

49. EggerE,Schalenbourga,ZografosL,BercherL,BoehringerT,ChamotL,etal.Maximizinglocaltumorcontrol andsurvivalafterprotonbeamradiotherapyofuvealmelanoma.IntJRadiatOncolBiolPhys2001;51:138–

47.PMID:11516863

50. DendaleR,Lumbroso-LeRouicL,NoelG,FeuvretL,LevyC,DelacroixS,etal.Protonbeamradiother- apyforuvealmelanoma:resultsofCurieInstitut-

Orsayprotontherapycenter(ICPO).IntJRadiatOncolBiolPhys2006;65:780–

7.https:/ / doi.org/10.1 0 16/j.ijrobp.2 0 06.01.0 2 0 PMID :16647 2 21 51. LaneAM,KimIK,GragoudasES.Long-termRiskofMelanoma-

RelatedMortalityforPatientsWithUvealMelanomaTreatedWithProtonBeamTherapy.JAMAOphthalmol 2015;133:792–6.https://doi. org/10.1001 / jamaophthal m ol.2015.088 7 PMID :25905597

52. RietschelP,PanageasKS,HanlonC,PatelA,AbramsonDH,ChapmanPB.Variatesofsurvivalinmet- astaticuvealmelanoma.JClinOncol2005;23:8076–

80.https://doi.o r g/10.1200 / JCO.2005. 0 2.6534 PMID :16258 1 06

53. Dogruso¨zM,BaggerM,vanDuinenSG,KroesWG,RuivenkampCAL,Bo¨hringerS,etal.ThePrognos- ticValueofAJCCStaginginUvealMelanomaIsEnhancedbyAddingChromosome3and8qStatus.InvestigO pthalmologyVisSci2017;58:833.https://doi. o rg/10.1167/i o vs.16-20 2 1 2 PMID :28159 9 71

54. DamatoB.Doesoculartreatmentofuvealmelanomainfluencesurvival?BrJCancer2010;103:285–

90.https://doi . org/10.1038/ s j.bjc.660576 5 PMID :20661247

Cytaty

Powiązane dokumenty

Moreover, in the present work based on the analysis of melanoma cells ex vivo, we showed that the magnitude of the mechanical effect of endogenous pigment on the overall elasticity

A low-LET proton beam and photon radiation led to considerable rearrangements in the cytoskeleton of cells, affecting strongly their mechanical properties. Cellular

Here, we present preliminary results of the extraction of the position of the interaction region with respect to the WASA detector and preliminary results on the degree of

As proton beam therapy as well as radio-active plaque therapy are mainstays in the treat- ment of uveal melanoma, we wondered how these different approaches affected melanoma cells.

Our study demonstrated that overexpression of miR-597-3p could target-regulate the expression of RAB23, and might, through that mechanism, decrease the expression of

A particular role is played here by proton radiotherapy, which has been used to treat choroidal melanoma since the 1970s as an alternative procedure to enucleation (in the case

Co więcej, chociaż raki pod- stawnokomórkowe rozwijają się w skórze eksponowanej na promieniowanie UV, to zarówno rak kolczystokomórkowy, jak i czerniak skóry przyjmujący

Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34 + hematopoietic progenitor cells.. Banchereau J, Palucka AK,