• Nie Znaleziono Wyników

Isotopic Re-Os age of molybdenite from the Szklarska Poręba Huta Quarry (Karkonosze, SW Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Isotopic Re-Os age of molybdenite from the Szklarska Poręba Huta Quarry (Karkonosze, SW Poland)"

Copied!
8
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2012, 56 (3): 505–512 DOI: http://dx.doi.org/10.7306/gq.1036

Iso to pic Re-Os age of mo lyb de nite from the Szklarska Porêba Huta Quarry (Karkonosze, SW Po land)

Wojciech MAYER, Rob ert A. CREASER, Ksenia MOCHNACKA, Teresa OBERC-DZIEDZIC and Adam PIECZKA

Mayer W., Creaser R.A., Mochnacka K., Oberc-Dziedzic T. and Pieczka A. (2012) – Iso to pic Re-Os age of mo lyb de nite from the Szklarska Porêba Huta Quarry (Karkonosze, SW Po land). Geol. Quart., 56 (3): 505–512, doi: 10.7306/gq.1036

New Re/Os iso to pic data for mo lyb de nite from the Szklarska Porêba Huta Quarry pro vide ages of 307 ± 2 Ma and 309 ± 2 Ma, re spec - tively. The quarry is dom i nated by the por phy ritic (“cen tral”) and equigranular (“ridge”) va ri et ies of the Karkonosze gran ite. Ore min er - ali sa tion hosted in aplogranite in cludes an as sem blage of sulphides, sulphosalts, ox ides and var i ous rare phases. The mo lyb de nite ages ob tained are con sis tent with a pre vi ously pub lished iso to pic age of leucogranite (aplogranite?) from the same quarry and are only slightly older than a re cently pub lished, re fined 206Pb/238U age of un treated zir cons from the Szklarska Porêba Huta por phy ritic gran ite. The age of the mo lyb de nite cor re sponds mod er ately well to the youn ger stage of post-mag matic, pneumatolitic/hy dro ther mal ac tiv ity of the Karkonosze gran ite (about 312 Ma).

Wojciech Mayer, Ksenia Mochnacka and Adam Pieczka, Fac ulty of Ge ol ogy, Geo phys ics and En vi ron ment Pro tec tion, AGH Uni ver sity of Sci ence and Tech nol ogy, Mickiewicza 30, 30-059 Kraków, Po land, e-mail: wmayer@geol.agh.edu.pl; Rob ert A. Creaser, De part - ment of Earth and At mo spheric Sci ences, Uni ver sity of Al berta, 1-26 Earth Sci ences Build ing, Ed mon ton, Al berta, Can ada T6G 2E3;

Teresa Oberc-Dziedzic, In sti tute of Geo log i cal Sci ences, Uni ver sity of Wroc³aw, M. Borna 9, 50-204 Wroc³aw, Po land (re ceived: Sep - tem ber 8, 2011; ac cepted: June 5, 2012; first pub lished on line: Sep tem ber 10, 2012).

Key words: Karkonosze gran ite, hy dro ther mal min er ali sa tion, Re/Os iso to pic age.

INTRODUCTION

The Variscan Karkonosze gran ite in tru sion is lo cated in south west ern Po land and in north east ern Bo he mia. It be longs to a sys tem of Eu ro pean Variscan granitoid plutons known from Po land, the Czech Re pub lic, Ger many, France, Eng land, Spain and Por tu gal and else where (see e.g., Seltmann and Faragher, 1994). The Pol ish mem bers of this granitoid prov - ince are gen er ally re lated to var i ous stages of the Variscan orog eny al though their geotectonic af fin ity is still dis put ed (e.g., Wilamowski, 1998; Kennan et al., 1999; Oberc-Dziedzic et al., 1999, 2010; Mazur et al., 2007; Mierzejewski, 2007).

As in other Variscan granitoids (see e.g., Seltmann and Faragher, 1994), the Karkonosze in tru sion and its meta mor phic en ve lope are well-known hosts of di verse, pri mary ore min er al - isa tion re sulted from the com bined ef fect of the ther mal en ergy trans fer from the pluton and a re lated, hy dro ther mal so lu tion cir - cu la tion sys tem. Gen eral data on ore min er ali sa tion in the Karkonosze gran ite and its meta mor phic en ve lope can be found

in Berg (1913), Petrascheck (1933, 1937), Gajda (1960a), Koz³owski (1978), Mochnacka et al. (1995), Mochna cka (2000), Mochnacka and Banaœ (2000), Michniewicz (2003) and Mikulski (2007) (and ref er ences therein).

A well-known site of hy dro ther mal ore min er ali sa tion in - clud ing mo lyb de nite is the gran ite quarry in Szklarska Porêba Huta (Fig. 1). As mo lyb de nite is a per fect ma te rial for Re-Os iso to pic age de ter mi na tion due to rel a tively high con tents of Re and to the or i gin of prac ti cally all Os from the de cay of Re, the au thors used MoS2 spec i mens for age de ter mi na tion of part of the ore min er ali sa tion from that site. It sup ple ments ex - ist ing age de ter mi na tions of Karkonosze gran ite-re lated min - er ali sa tion.

GEOLOGICAL SETTING

The Karkonosze-Izera Mas sif (KIM) is the larg est struc ture in the West ern Sudetes. It com prises two main el e ments: the

(2)

Variscan Karkonosze gran ite in tru sion and its Neo - proterozic-Pa leo zoic meta mor phic cover. The lat ter shows re - mark able di ver sity in stra tig ra phy and meta mor phic his tory, which en able dis tinc tion of four con sec u tive struc tural units:

Izera-Kowary, Ješted, South Karkonosze and Leszczyniec, ar - ranged as a stack of nappes formed in the Late De vo nian and re-ar ranged in the early Car bon if er ous (for de tails see Mazur and Aleksandrowski, 2001). Dur ing the Variscan orog eny the nappe struc ture was in truded by the Karkonosze gran ite which re sulted in the for ma tion of an ex ten sive con tact au re ole (Mierzejewski and Oberc-Dziedzic, 1990).

The Karkonosze gran ite is a com plex in tru sion com pris ing three petrographic va ri et ies: cen tral (por phy ritic), ridge (equigranular) and granophyric (fine-grained), of roughly sim i - lar chem i cal com po si tions (cor re spond ing to monzonites and

granodiorites) but dif fer ent struc tures, ac ces sory min eral as - sem blages, and the fre quency of schlieren and en claves (for de - tails see Borkowska, 1966). Var i ous as pects of the Karkonosze gran ite were dis cussed by e.g., Cloos (1925), Borkowska (1966), Klomínský (1969), Mierzejewski and Oberc-Dziedzic (1990), Wilamowski (1998), Mierzejewski (2003, 2007), Žák and Klomínský (2007), S³aby and Mar tin (2008) and oth ers.

Iso to pic data (see Duthou et al., 1991; Mierzejewski et al., 1994) as well as geo chem i cal mod el ling (S³aby and Mar tin, 2008) pre clude a pure, crustal source of magma and sug gest rather its or i gin from the mix ing of crustal and man tle mag mas (Mierzejewski et al., 1994; Mierzejewski, 2007), which re - sulted in the for ma tion of por phy ritic gran ite and sub se quent frac tional crys tal li sa tion lead ing to the equigranular va ri ety (S³aby and Mar tin, 2008).

Fig. 1. Sim pli fied geo log i cal map of the east ern part of the Karkonosze-Izera Mas sif (mod i fied af ter Mochnacka et al., 2008)

(3)

ORE MINERALISATION IN THE SZKLARSKA PORÊBA HUTA QUARRY

In the Szklarska Porêba Huta Quarry both the por phy ritic (“cen tral”) and the equigranular (“ridge”) gran ite va ri et ies can be found. Both en close com mon, bright (aplit ic) and dark (biotitic) schlieren and dark, el lip soi dal, fine-crys tal line en - claves, and both are cut by thin aplite veins. The por phy ritic gran ite con tains coarsely crys tal line, pink K-feld spar ac com pa - nied by white plagioclase, grey quartz, and bi o tite with ac ces - sory zir con and ap a tite. A char ac ter is tic fea ture is the pres ence of large pheno crysts of pink K-feld spar rimmed by plagioclase (see Kryza et al., 2012). Aplogranite, which ac com pa nies the por phy ritic gran ite, ap pears as a whit ish, gen er ally finely crys - tal line mass of grey quartz, whit ish feld spars in clud ing plagio - clases, and bi o tite. It en closes small (about 5 cm across), ir reg u - lar, peg ma titic ag gre gates com posed of euhedral/subhedral, white feld spars and grey quartz ac com pa nied by bi o tite and py - rite. Field data and iso to pic age de ter mi na tions (Mikulski et al., 2004) in di cate that the aplogranite is youn ger than the por phy - ritic gran ite (see Ta ble 2).

The Szklarska Porêba Huta Quarry is a well-known site of ore min er ali sa tion de scribed by many au thors (see Berg, 1923;

Gajda, 1960a, b; Karwowski et al., 1973; Koz³owski et al., 1975; Olszyñski et al., 1976; Koz³owski et al., 2002; Pieczka and Go³êbiowska, 2002; Koz³owski and Sachanbiñski, 2007;

Mikulski and Stein, 2007). A di verse ore min eral as sem blage iden ti fied by these au thors in cludes: Fe-wolf ram ite, schee lite, cas sit er ite, na tive Bi, bis muthi nite, mo lyb de nite ac com pa nied by ar seno py rite, pyrrhotite, chal co py rite, py rite, tetrahedrite, sphalerite, ga lena, marcasite, melnikovite, chalcocite, na tive Ag, Ti-mag ne tite, mag ne tite, wulfenite, stolzite, emplectite, nuffieldite, rutile, monazite, zir con, fergusonite, niobite, gadolinite, hingganite, thorite, ti tan ite and a va ri ety of sec ond - ary min er als.

We found ore min er al isa tion in bright, fine-crys tal line aplogranite. Ore min er als form dis sem i nated struc tures or, less com monly, larger ag gre gates, up to 2 mm across, ac com pa ny - ing coarsely crys tal line, drusy quartz-feld spar inter growths.

Un der the mi cro scope we iden ti fied: py rite, pyrrhotite, sphalerite and chal co py rite ac com pa nied by mo lyb de nite, rutile, wolf ram ite, schee lite, mag ne tite, cas sit er ite, marcasite, uranothorite? and trace amounts of na tive Bi, bis muthi nite, chalcocite and il men ite. At the pres ent stage of ob ser va tions, a de tailed ore min eral suc ces sion can not be es tab lished due to the small num ber of sam ples al though at least two stages of this min er al isa tion are sug gested.

Mo lyb de nite was found in sev eral sam ples as in di vid ual, dis sem i nated crys tals ac com pa ny ing coarsely crys tal line, drusy quartz-feld spar ag gre gates (Fig. 2). Mo lyb de nite crys tals show typ i cal op ti cal prop er ties. Its chem i cal com po si tion in di cates trace ad mix tures of tung sten (0.01 and 0.07 wt.%).

Pyrrhotite usu ally forms anhedral crys tals and ag gre gates.

Some pyrrhotite grains re sem ble pseudo morphs af ter an un - iden ti fied flaky min eral. Pyrrhotite does not con tain sig nif i cant ad mix tures of trace el e ments.

Chal co py rite forms inter growths with pyrrhotite or in di - vid ual crys tals. The chem i cal com po si tion of the chal co py rite does not in clude re mark able trace el e ments.

Marcasite forms ag gre gates of elon gated crys tals. Their chem i cal com po si tion re veals Mn (0.03 wt.%) and Ti (0.04 wt.%).

Py rite was ob served as dis sem i nated crys tals, lo cally ac - com pa ny ing mag ne tite ag gre gates.

Wolf ram ite and schee lite form spotty ag gre gates com posed of anhedral crys tals. Their intercrystal spaces are filled with chal - co py rite, bis muthi nite and na tive Bi. The chem i cal com po si tion of the wolf ram ite shows in creased amounts of Mn (6.8 wt.%) whereas in schee lite Mn con tents are low (0.02 wt.%).

Mag ne tite forms ag gre gates of anhedral crys tals, which fill spaces be tween large crys tals of rock-form ing min er als.

Lamellar inter growths of il men ite are common. Lo cally, mag - ne tite ag gre gates are rimmed by il men ite overgrowths. Some il - men ite crys tals host min ute cas sit er ite in clu sions as well as uranothorite crys tals. Mag ne tite-il men ite inter growths are usu - ally sur rounded by dis sem i nated py rite ac cu mu la tions.

Il men ite con tains high amounts of MnO (up to 10 wt.%) and also TiO2 (51.2–51.4 wt.%), FeO (2.0–3.0 wt.%) and V2O3

(0.2–0.3 wt.%).

The X-ray pow der pat tern en abled us to iden tify xeno time and monazite ac com pa nied by il men ite, py rite and un iden ti fied ura nium min er als.

AGE DETERMINATIONS

AVAILABLE DATA

The age de ter mi na tions of the Karkonosze gran ite are listed in Ta ble 2. A wide range of re sults ob tained with var i ous meth - ods of iso to pic age stud ies give age lim its of Karkonosze in tru - sion for ma tion be tween 328 ± 12 Ma (Pin et al., 1987) and 292 Ma (Przew³ocki et al., 1962) (see Ta ble 2). The age of the por phy ritic gran ite va ri ety, which hosts our mo lyb de nite crys - tals, was de ter mined by sev eral au thors, giv ing ages be tween 328 ± 12 Ma (Pin et al., 1987) and 296 Ma (youn ger age pro - vided by Depciuch and Lis, 1971). How ever, Kryza et al.

(2012) showed that the young ages re ported for the por phy ritic gran ite (297 and 301 Ma) may be an ef fect of Pb loss.

There are few iso to pic ages of ore min er als from the Karkonosze gran ite. Kucha et al. (1986) pro vided a U/Th/Pb age of dis sem i nated, Th-bear ing uraninite (bröggerite) col lected from a core from the Jakuszyce IG 1 well at 299.8 Ma. Mikulski et al. (2004) de ter mined, us ing the CHIME method (U, Th, Pb), the ages of monazite and xeno time in aplogranite from the Szklarska Porêba Huta Quarry at 271 ± 20 Ma and in ter preted this age as the for ma tion time of the aplogranite and of pneumatolitic/hy dro ther mal min er ali sa tion. Mikulski and Stein (2007) pro vided Re/Os iso to pic ages of mo lyb de nite from the Karkonosze gran ite sam ples col lected in the £omnica Górna (326 ± 1 Ma) and the Micha³owice (315 ± 1 Ma) quar ries. Re - cently, Mikulski and Stein (2011) pro vided two Re/Os ages of

Isotopic Re-Os age of molybdenite from the Szklarska Porêba Huta Quarry (Karkonosze, SW Poland) 507

(4)

vein-type and dis sem i nated mo lyb de nite from the Szklarska Porêba Huta Quarry at 310 ± 1 Ma and 323 ± 1 Ma, re spec tively.

GENERAL REMARKS

Mo lyb de nite is nat u rally en riched in rhe nium (Re) and con - tains in sig nif i cant amounts of Os, mean ing that ef fec tively all Os is de rived from the de cay of Re. To mea sure the abun dance of Re and Os in mo lyb de nite sam ples by iso tope di lu tion, a mixed dou ble spike so lu tion was used con tain ing iso to pi cally en riched 185Re to gether with iso to pi cally en riched 188Os and

190Os (Selby and Creaser, 2004).

The 185Re abun dance in the tracer so lu tion is cal i brated di - rectly against a gravimetric Re stan dard so lu tion made from 99.999% Re metal and shows a reproducibility of better than

±0.20% 1s (n = 6). The Os abun dance in the tracer so lu tion is cal i brated di rectly against a gravimetric Os stan dard so lu tion of known iso to pic (Selby and Creaser, 2004) com po si tion. The abun dance of 187Os in mo lyb de nite is cal cu lated by mea sur ing the Os abun dance af ter equilibrating 187Os in mo lyb de nite and the dou ble 188Os and 190Os in the tracer so lu tion. In this way, the iso to pic anal y sis of Os can be cor rected for in stru men tal frac - tion ation dur ing anal y sis, and po ten tial “com mon” Os in the mo lyb de nite quan ti fied.

MATERIAL

For age de ter mi na tions three sam ples were se lected, la beled Mo-1, Mo-2 and Mo-3. All con tained ex posed grains of mo lyb - de nite in al tered gran ite from the Szklarska Porêba Huta Quarry.

METHODS

Microprobe anal y ses of the mo lyb de nite and of other ore min er als were car ried on at the Joint-In sti tute An a lyt i cal Com - plex for Min er als and Syn thetic Sub stances, Fac ulty of Ge ol - ogy, Uni ver sity of War saw un der stan dard an a lyt i cal con di - tions (see e.g., Mochnacka et al., 2008).

Re/Os iso to pic age de ter mi na tions were car ried out at the Geo chron ol ogy and Ra dio genic Iso to pic Anal y ses Lab o ra tory, Geospec Con sul tants LTD., Ed mon ton, Can ada.

The mo lyb de nite was sep a rated by full min eral sep a ra tion pro ce dures of crush ing and mill ing, fol lowed by mag netic and grav ity con cen tra tion tech niques (see Selby and Creaser, 2004).

The Carius-tube method was used for the dis so lu tion of mo lyb de nite and equil i bra tion of sam ple, tracer Re and Os.

Mo lyb de nite sam ples were dis solved and equil i brated with a known amount of tracer in re verse aqua regia (2:1 16N HNO3

Fig. 2. Mo lyb de nite crys tals (Mol) intergrown with micas(?) at the con tact of quartz (Qtz) and feld spar (Fsp)

At the bot tom left ra dial marcasite (Mrc) crys tals are vis i ble, Szklarska Porêba Huta Quarry, sam ple SZP-4b, BSE im age

(5)

and 12N HCl, 3 ml) at 240°C for 24 h then cooled and re frig er - ated prior to Os and Re sep a ra tion. Ex trac tion of OsO4 from the acid-sam ple mix was achieved us ing mod i fied sol vent ex trac - tion and microdistillation tech niques. Mo was re moved by sol - vent ex trac tion from the acid-sam ple mix ture af ter Os sep a ra - tion. Rhe nium was then pu ri fied by HNO3 + HCl-based an ion ex change chro ma tog ra phy us ing stan dard tech niques. To tal pro ce dural blanks for Re and Os were less than 2 picograms and 0.5 picograms, re spec tively. These pro ce dural blanks are in sig nif i cant in com par i son to the Re and Os con cen tra tions in the mo lyb de nite ana lysed here. The pu ri fied Re and Os sep a - rates were ana lysed by Neg a tive Ther mal Ion Mass Spec trom e - try (N-TIMS), and the abun dances of 187Re and 187Os were cal - cu lated. A trial anal y sis es tab lished the Re abun dance of the mo lyb de nite con cen trate at ~0.13 ppm, fol lowed by the full Re-Os anal y ses. A sec ond full Re-Os anal y sis was com pleted sev eral weeks later than the first. The re sults of these anal y ses are pre sented be low in Ta ble 1.

The Chi nese mo lyb de nite pow der HLP-5, used as an in-house “con trol” in the mo lyb de nite lab o ra tory, AIRIE, Col o rado State Uni ver sity, was used as an ex ter nal con trol of sam ple ab so lute age and reproducibility for this work. For this

“con trol sam ple” us ing the Carius-tube tech nique with mixed- dou ble spike de scribed here, we ob tained an av er age Re-Os age of 220.0 ± 1.0 Ma (2s). This age is nom i nally youn ger than the long-term av er age age of 220.52 ± 0.24 Ma (2s) re ported by Selby and Creaser (2004) us ing the “Nor mal Ad di tion” method for Os.

RESULTS AND DISCUSSION

The ore min eral as sem blage found in aplogranite sam ples from the Szklarska Porêba Huta Quarry does not dif fer from that pre vi ously de scribed from that site (see ref er ences above) nei ther in the in dex of min er als nor in their struc tures and tex - tures. How ever, our mo lyb de nite spec i mens rep re sent the dis - sem i nated va ri ety, not mo lyb de nite hosted in quartz veins (see e.g., Koz³owski et al., 1975; Mikulski and Stein, 2011).

Our Re/Os iso to pic age de ter mi na tions re vealed two con - sis tent val ues for mo lyb de nite dis sem i nated in the Szklarska Porêba Huta aplogranite: 307 ± 2 Ma and 309 ± 2 Ma (Ta ble 1).

These val ues cor re spond best to leucogranite (aplogranite?) from the same quarry (310 ± 5 Ma; Mierzejewski et al., 1994).

Si mul ta neously, our re sults are only slightly older than a re - cently pub lished, re fined 206Pb/238U age of un treated zir cons from the Szklarska Porêba Huta por phy ritic gran ite (306 ± 4 Ma; Kryza et al., 2012), and are con sis tent also with pre vi - ously de ter mined ages of equigranular gran ite (309 ± 3 Ma, Duthou et al., 1991 and 310 ± 14 Ma, Pin et al., 1987) and a por phy ritic gran ite en clave from Ma³y Staw (309 ± 17 Ma, Mierzejewski et al., 1994). In gen eral, our re sults are con sis tent with the youn ger mag matic event in the Sudetes dis tin guished by Mazur et al. (2007). It sug gests pene-con tem po ra ne ous crystallisation of dis sem i nated mo lyb de nite and gran ite rock-form ing min er als in, at least, a part of the in tru sion.

Con sid er ing the age de ter mi na tions of the in-gran ite ore min er ali sa tion, our mo lyb de nite ages are con sis tent with the youn ger age (310 ± 1 Ma) of two dif fer ent gen er a tions of mo - lyb de nite pub lished by Mikulski and Stein (2011) for sam ples from the Szklarska Porêba Huta Quarry. This min er al isa tion may be re lated, to the youn ger stage of post-mag matic, pneumatolitic/hy dro ther mal ac tiv ity dis tin guished by these au thors (ca. 312 Ma, Mikulski and Stein, 2007). How ever, our mo lyb de nite rep re sents the dis sem i nated type for which Mikulski and Stein (2011) de ter mined a much older age (323

± 1 Ma). Such time re la tion ships may sug gest di verse, long-last ing ac tiv ity of pneumatolitic and hy dro ther mal sys - tems of the Karkonosze gran ite, ex tend ing at least from 326 ± 1 Ma to 307 ± 2 Ma. This in ter pre ta tion is sup ported by the multi-pulse char ac ter of the in tru sion (Mierzejewski, 2007), which re newed the ther mal ca pac ity of the pluton and, thus, ex tended the driv ing force of the sur round ing hy dro ther mal sys tem. Robb (2005) pro posed the life time of hy dro ther mal fluid cir cu la tion to be about 105 to 106 years for small in tru - sions (1–2 km wide) and Misra (2000) es ti mated a much shorter cool ing time of “rea son ably sized” in tru sions (<10 km) to be some 104 years Ob vi ously, as the Karkonosze in tru sion is much larger, the hy po thet i cal life time of its hy dro - ther mal sys tem was much lon ger.

CONCLUSIONS

1. Mo lyb de nite from the Szklarska Porêba Huta Quarry dis - sem i nated in aplogranite was dated at 307 ± 2 Ma and 309 ± 2 Ma with the Re-Os iso to pic method.

Isotopic Re-Os age of molybdenite from the Szklarska Porêba Huta Quarry (Karkonosze, SW Poland) 509

T a b l e 1 Re-Os ages of molybdenites from the Szklarska Porêba Huta Quarry

Sam ple ID Re

[ppm]

187Re [ppm]

187Os [ppb]

Age [Ma]

2s un cer tainty

[Ma]

Mo lyb de nite, Szklarska Porêba Huta Quarry

(30 mg) 0.122 ± 0.001 0.0764 ± 0.0004 0.392 ± 0.002 307.4 ±2.4

Mo lyb de nite, Szklarska Porêba Huta Quarry (re peat)

(24 mg) 0.125 ± 0.001 0.0788 ± 0.0008 0.407 ± 0.002 308.9 ±2.1

De cay con stant used: l 187Re = 1.666 ´ 10–11 yr–1 with out un cer tainty (Smoliar et al., 1996); blanks: Re – <2 pg, Os – 0.5 pg; ini tial 187Os/188Os ra tio = 0.12

(6)

T a b l e 2 List of iso tope ages re vealed by var i ous meth ods ap plied to the Karkonosze granitoids

(Pol ish part of the Karkonosze in tru sion) and to re lated ore min er al isa tion

Rock/lo cal ity Method Gran ite age

[Ma] Ref er ences Min er al isa tion age

[Ma] Ref er ences

Aplogranite, Szklarska Porêba Huta

U, Th, Pb

CHIME monazite 271 ± 20 Mikulski et al. (2004) Karkonosze gran ite

Szklarska Porêba

Rb/Sr K/Ar

292 304

Przew³ocki et al.

(1962) Aplogranite

Szklarska Porêba Huta

U, Th, Pb CHIME xeno time

ca. 294 Mikulski et al. (2004)

Aplites K/Ar

bi o tite 294–304 Depciuch and Lis

(1971)

Equicrystalline gran ite K/Ar

bi o tite 294–306 Depciuch and Lis

(1971) Por phy ritic,

me dium-crys tal line gran ite K/Ar

bi o tite 296–307 Depciuch and Lis

(1971) Karkonosze gran ite,

Borów

K/Ar

whole rock 299 ± 27 Borucki (1966)

Karkonosze gran ite, Jakuszyce

U/Pb

microprobe 299.8

bröggerite Kucha et al. (1986) Equigranular gran ite

U/Pb SHRIMP

zir con 302 ± 6 Kusiak et al. (2008)

Granophyric gran ite K/Ar

biotites 302–305 Depciuch and Lis

(1971) Por phy ritic,

coarse crys tal line gran ite

K/Ar

biotites 303 Depciuch and Lis

(1971) Microgranular en clave

in equigranular gran ite

Pb/Pb, U/Pb SHRIMP

zir con 304 ± 3 Kusiak et al. (2009)

Por phy ritic monzogranite Pb/Pb evap o ra tion,

U/Pb, zir con 304 ± 14 Kröner et al. (1994) Por phy ritic gran ite,

Szklarska Porêba Huta

U/Pb SIMS,

un treated zir cons 306 ± 4 Kryza et al. (2012) Aplogranite,

Szklarska Porêba Huta Re/Os 307 ± 2 and 309 ± 2

mo lyb de nite this pa per

“Ridge”,

equigranular gran ite Rb/Sr

whole rock isoch rone 309 ± 3 Duthou et al. (1991) Por phy ritic gran ite en clave

Ma³y Staw

Rb/Sr

whole rock 309 ± 17 Mierzejewski et al.

(1994) Aplogranite,

Szklarska Porêba Huta Re/Os 310 ± 1

mo lyb de nite Mikulski and Stein (2011) Leucogranite

Szklarska Porêba Huta

Rb/Sr

whole rock 310 ± 5 Mierzejewski et al.

(1994)

Ridge, equigranular Rb/Sr

whole-rock isoch rone 310 ± 14 Pin et al. (1987) Izera vil lage

gran ite

K/Ar

whole rock 310 ± 28 Borucki (1966)

Microgranodiorite Karpacz–Janowice Wielkie dyke swarm

U/Pb SHRIMP

zir con 313 ± 3–318 ± 3 Awdankiewicz et al.

(2010) Por phy ritic gran ite from NE

part of in tru sion

U/Pb SHRIMP

zir con

314 ± 3–318 ± 4 Machowiak and Armstrong (2007)

Equigranular gran ite

U/Pb SHRIMP

zir con

314 ± 5 Kusiak et al. (2008)

Micha³owice

gran ite Re/Os 315 ± 1

mo lyb de nite

Mikulski and Stein (2007) Equigranular

gran ite

Ar/Ar

mus co vite 315 ± 2 Marheine et al. (2002) Por phy ritic gran ite

(Liberec type)

Ar/Ar

bi o tite 320 ± 2 Marheine et al. (2002)

(7)

2. Both ages are con sis tent with the new est ages pro vided by Mikulski and Stein (2012) for mo lyb de nite from veins from the same lo cal ity and cor re spond well to a re cently pub lished, re fined 206Pb/238U age of un treated zir cons from the Szklarska Porêba Huta por phy ritic gran ite (see Kryza et al., 2012) and with some ear lier dates. More over, our re sults are con sis tent with the youn ger mag matic event in the Sudetes dis tin guished by Mazur et al. (2007).

3. Our re sults sug gest penecontemporaneous crys tal li sa tion of a part of the mo lyb de nite and the host aplogranite.

4. Our re sults are much older than the sug gested age of pneumatolitic/hy dro ther mal Sn-W-Mo-Bi min er al isa tion well - known from the Szklarska Porêba Huta Quarry.

Ac knowl edge ments. Thanks are due to Dr. P. Dzier¿a - nowski and Ms. L. Je¿ak for their kind help and as sis tance with the EMP anal y ses. The au thors are in debted to the two re view - ers: RNDr. M. Kohút, CSc. and an anonymus re viewer for valu able re marks and cor rec tions. The re search was fi nanced by the Com mit tee for Sci en tific Re search grant No.

5T12B03625 com pleted in 2007.

REFERENCES

AWDANKIEWICZ M., AWDANKIEWICZ H., KRYZA R. and RODIONOV N. (2010) – SHRIMP zir con study of a micromonzodiorite dyke in the Karkonosze Gran ite, Sudetes (SW Po - land): age con straints for late Variscan magmatism in Cen tral Eu rope.

Geol. Mag., 147: 77–85.

BERG G. (1913) – Die Erzlagerstätten der nördlichen Sudeten. XII.

Bergmannstag Breslau, I 7: 1–47

BERG G. (1923) – Der Granit des Riesengebirges und seine Ganggesteine.

Abh. Preuss. Geol. L.-A. N.F., 94: 1–90.

BORKOWSKA M. (1966) – Pétrographie du gran ite des Karkonosze (in Pol ish with French sum mary). Geol. Sudet., 2: 1–119.

BORUCKI J. (1966) – Pre lim i nary re sults of ab so lute age de ter mi na tion (K-Ar) of the Lower Silesian granitoidic rocks (in Pol ish with Eng lish sum mary). Kwart. Geol., 10 (1): 1–19.

CLOOS H. (1925) – Einführung in die tektonische Behandlung magmatischer Erscheinungen (Granittektonik). I Spez. Teil. Das Riesengebirge in Schlesien, Berlin.

DEPCIUCH T. and LIS J. (1971) – K-Ar ab so lute age of the Karkonosze Mas sif Granitoids (in Pol ish with Eng lish sum mary). Kwart. Geol., 15 (4): 855–861.

DUTHOU J.L., COUTURIE J.P., MIERZEJEWSKI M.P. and PIN C.

(1991) – Next dat ing of gran ite sam ple from the Karkonosze Moun - tains us ing Rb-Sr to tal rock isoch rone method (in Pol ish with Eng lish sum mary). Prz. Geol., 36 (2): 75–79.

GAJDA E. (1960a) – Peg ma tite veins of the re gion of Szklarska Porêba (Karkonosze Mnts.) (in Pol ish with Eng lish sum mary). Kwart. Geol., 4 (3): 546–564.

GAJDA E. (1960b) – Min er als from peg ma tite veins of the re gion of the Szklarska Porêba Re gion (Karkonosze Mnts.) (in Pol ish with Eng lish sum mary). Kwart. Geol., 4 (3): 565–584.

KARWOWSKI £., OLSZYÑSKI W. and KOZ£OWSKI A. (1973) – Wolf - ram ite min er al iza tion from the vi cin ity of Szklarska Porêba Huta (in Pol ish with Eng lish sum mary). Prz. Geol., 21 (12): 633–637.

KENNAN P.S., DZIEDZIC H., LORENC M.W. and MIERZEJEWSKI M.P. (1999) – A re view of Rb-Sr iso tope pat terns in the Car bon if er ous granitoids of the Sudetes in SW Po land. Geol. Sudet., 32: 49–53.

KLOMINSKÝ J. (1969) – The Krkonoše–Jizera granitoid mas sif. Sborník geol. vìd 15, Praha.

KOZ£OWSKI A. (1978) – Pneumatolitic and hy dro ther mal ac tiv ity in the Karkonosze-Izera Block. Acta Geol. Pol., 28 (2): 171–222.

KOZ£OWSKI A., KARWOWSKI £. and OLSZYÑSKI W. (1975) – Tung - sten-tin-mo lyb de num min er al iza tion in the Karkonosze Mas sif. Acta Geol. Pol., 25 (2): 415–428.

KOZ£OWSKI A. and SACHANBIÑSKI M. (2007) – Karkonosze intragranitic pegmatites and their min er als. In: Granitoids in Po land (eds. A. Koz³owski and J. Wiszniewska). Archiv. Miner. Mono graph, No. 1: 155–178.

KOZ£OWSKI A., SANOCKA M. and DZIER¯ANOWSKI P. (2002) – Tin-tung sten and as so ci ate min er al iza tion at Szklarska Porêba Huta, Karkonosze Mas sif, SW Po land. Miner. Ass. Pol. Spec. Pap., 20:

248–250.

KRÖNER A., HEGNER E., HAMMER J., HAASE G., BIELICKI K-H., KRAUSS M. and EIDAM J. (1994) – Geo chron ol ogy and Nd–Sm sys - tem at ics of Lusatian granitoids: sig nif i cance for the evo lu tion of the Variscan orogen in east-cen tral Eu rope. Geol. Rnd., 83: 357–376.

Isotopic Re-Os age of molybdenite from the Szklarska Porêba Huta Quarry (Karkonosze, SW Poland) 511

Tab. 1 cont.

Rock/lo cal ity Method Gran ite age

[Ma] Ref er ences Min er al isa tion age

[Ma] Ref er ences

Por phy ritic gran ite, Szklarska Porêba Huta

U/Pb SIMS, chem i cally abraded

zir cons 322 ± 3 Kryza et al. (2012)

Ma³y Staw gran ite K/Ar

whole rock 323 ± 29 Borucki (1966)

Aplogranite,

Szklarska Porêba Huta Re/Os 323 ± 1

mo lyb de nite Mikulski and Stein (2011) Por phy ritic gran ite,

£omnica Górna Re/Os 326 ± 1

mo lyb de nite Mikulski and Stein (2007) Karkonosze gran ite fis sion tracks,

zir cons 326 ± 32 Jarmo³owicz-Szulc

(1986)

“Cen tral”, por phy ritic gran ite Micha³owice

Rb/Sr

whole-rock isoch rone 328 ± 12 Pin et al. (1987)

(8)

KRYZA R., CROWLEY Q.G., LARIONOV A., PIN C., OBERC-DZIEDZIC T. and MOCHNACKA K. (2012) – Chem i cal abra sion ap plied to SHRIMP zir con geo chron ol ogy: an ex am ple from the Variscan Karkonosze Gran ite (Sudetes, SW Po land). Gond wana Res., 21: 757–767.

KUCHA H., LIS J. and SYLWESTRZAK H. (1986) – The ap pli ca tion of elec tron microprobe to dat ing of U-Th-Pb uraninite from the Karkonosze Gran ites (Lower Silesia). Miner. Pol., 17 (2): 43–47.

KUSIAK M.A., DUNKLEY D.J., S£ABY E., BUDZYÑ B. and MARTIN H. (2008) – U-Pb chro nol ogy of zir con from gran ites of the Karkonosze Pluton, NE Bo he mian Mas sif. 4th SHRIMP Work shop.

Sankt Pe ters burg, Rus sia, Ab stract Vol.

KUSIAK M.A., DUNKLEY D.J., S£ABY E., MARTIN H. and BUDZYÑ B. (2009) – Sen si tive high-res o lu tion ion microprobe anal y sis of zir - con reequilibrated by late mag matic flu ids in a hy brid ized pluton. Ge - ol ogy, 37: 1063–1066.

MACHOWIAK K. and ARMSTRONG R. (2007) – SHRIMP U–Pb zir con age from the Karkonosze gran ite. Miner. Ass. Pol. Spec. Pap., 31:

193–196.

MARHEINE D., KACHLIK V., MALUSKI H., PATOCKA F. and

¯ELAZNIEWICZ A. (2002) – New 40Ar/39Ar ages in the West Sudetes (Bo he mian Mas sif): con straints on the Variscan polyphase tectonothermal de vel op ment. Geol. Soc. Spec. Publ., 201: 133–155.

MAZUR S. and ALEKSANDROWSKI P. (2001) – The Tepla(?)/Saxo - thuringian su ture in the Karkonosze-Izera Mas sif, West ern Sudetes, Cen tral Eu ro pean Variscides. Int. J. Earth Sc., 90: 341–360.

MAZUR S., ALEKSANDROWSKI P., TURNIAK K. and AWDANKIEWICZ M. (2007) – Ge ol ogy, tec tonic evo lu tion and Late Palaeozoic magmatism of Sudetes – an over view. In: Granitoids in Po - land (eds. A. Koz³owski and J. Wiszniewska). Archiv. Miner. Mono - graph, No. 1: 59–87.

MICHNIEWICZ M. (2003) – Met al lif er ous de pos its in the Karkonosze-Izera block (in Pol ish with Eng lish summary). In: Sudety Zachodnie: od wendu do czwartorzêdu (eds. W. Ciê¿kowski et al.):

155–168. WIND, Wroc³aw.

MIERZEJEWSKI M.P. (2003) – The struc tures of the late stages of the gran ite magma em place ment in the Karkonosze Mts pluton. In: Sudety Zachodnie: od wendu do czwartorzêdu (eds. W. Ciê¿kowski et al.):

81–94. WIND, Wroc³aw.

MIERZEJEWSKI M.P. (2007) – A gen eral view on the Karkonosze gran - ite. In: Granitoids in Po land (eds. A. Koz³owski and J. Wiszniewska).

Archiv. Miner. Mono graph, 1: 111–122.

MIERZEJEWSKI M. and OBERC-DZIEDZIC T. (1990) – The Izera-Karkonosze Block and its tec tonic de vel op ment (Sudetes, Po - land). N. Jb. Geol. Paläont. Abh., 179: 197–222.

MIERZEJEWSKI M.P., PIN C., DUTHOU J.L. and COUTURIE J.P.

(1994) – Sr-Nd iso to pic study of the Karkonosze gran ite (West ern Sudetes). In: Ig ne ous Ac tiv ity and Meta mor phic Evo lu tion of the Sudetes Area (ed. R. Kryza). Proc. 2nd Conf. Re sults of French-Pol ish Co op er a tion in Ge ol ogy. Wroc³aw, May 12–15, 1994.

MIKULSKI S.Z. (2007) – Metal ore po ten tial of the par ent magma of gran - ite – the Karkonosze Mas sif ex am ple. In: Granitoids in Po land (eds.

A. Koz³owski and J. Wiszniewska). Archiv. Miner. Mono graph, 1:

123–145.

MIKULSKI S.Z. and STEIN H.J. (2007) – Re-Os age for mo lyb de nite from the West Sudetes, SW Po land. In: Granitoids in Po land (eds. A.

Koz³owski and J. Wiszniewska). Archiv. Miner. Mono graph, 1:

203–216.

MIKULSKI S.Z. and STEIN H.J. (2011) – Re-Os ages for molybdenites from the Variscan Karkonosze mas sif and its east ern meta mor phic cover (SW Po land). In: Let’s Talk Ore De pos its (eds. F. Barra, M.

Reich, E. Cam pos and F. Tornos). Proccedings of the 11th Bi en nial SGA Meet ing, 26–29th Sep tem ber 2011, Antofagasta, Chile. Vol. 1:

130–133. Ediciones Universidad Catolica del Norte, Antofagasta.

MIKULSKI S.Z., BAGIÑSKI B. and DZIER¯ANOWSKI P. (2004) – The CHIME age cal cu la tions on monazite and xeno time in aplogranite from the Szklarska Porêba Huta. Miner. Ass. Pol. Spec. Pap., 24:

287–290.

MISRA K.C. (2000) – Un der stand ing Min eral De pos its. Kluwer Acad.

Publ., Dodrecht-Boston-Lon don.

MOCHNACKA K. (2000) – Reg u lar i ties in de vel op ment of ore min er al - iza tion in the meta mor phic cover of the Karkonosze gran ite – an at - tempt to rec og ni tion of geotectonic set tings (in Pol ish). Miner. Ass.

Pol. Spec. Pap., 16: 223–258.

MOCHNACKA K. and BANAΠM. (2000) РOc cur rence and ge netic re la - tion ships of ura nium and tho rium min er al iza tion in the Karkonosze-Izera Block (the Sudety Mts., SW Po land). Ann. Soc.

Geol. Pol., 70: 137–150.

MOCHNACKA K., BANAŒ M., KRAMER W. and POŠMOURNÝ (1995) – Metallogenesis. In: Pre-Perm ian Ge ol ogy of Cen tral and East ern Eu - rope, p. VI West ern Sudetes (Lugicum) (eds. R.D. Dallmeyer et al.):

360–374. Springer, Berlin-Hei del berg-New York.

MOCHNACKA K., OBERC-DZIEDZIC T., MAYER W. and PIECZKA A.

(2008) – Ti remobilization and sul phide/sulphoarsenide min er al iza - tion in am phi bo lites: ef fect of gran ite in tru sion (the Karkonosze-Izera Mas sif, SW Po land). Geol. Quart., 52 (4): 349–368.

OBERC-DZIEDZIC T., ¯ELAZNIEWICZ A. and CWOJDZIÑSKI S.

(1999) – Granitoids of the Odra Fault Zone: late- to post-orogenic Variscan in tru sions in the Saxothuringian Zone, SW Po land. Geol.

Sudet., 32: 55–71.

OBERC-DZIEDZIC T., KRYZA R. and BIA£EK J. (2010) – Variscan mul - ti stage granitoid magmatism in Brunovistulicum: pet ro log i cal and SHRIMP U-Pb geo chron ol ogi cal ev i dence from the south ern part of the Strzelin Mas sif, SW Po land. Geol. Quart., 54 (4): 301–324.

OLSZYÑSKI W., KOZ£OWSKI A. and KARWOWSKI £. (1976) – Bis - muth min er als from the Karkonosze Mas sif. Acta Geol. Pol., 26 (2):

443–449.

PETRASCHECK W.E. (1933) – Die Erzlagerstätten des Schlesischen Gebirges. Archiv für Lagerstättenforschung. H., 59: 4–53.

PETRASCHECK W.E. (1937) – Die geologische Stellung der schlesischen Arsen-, Kupfer- und Eisenspatlagestätten und deren Bedeutung für die neuen Aufschulssarbeiten. Metall u. Erz, H., 20: 527–532.

PIECZKA A. and GO£ÊBIOWSKA B. (2002) – Pegmatites of the Szklarska Poreba Huta gran ite quarry: pre lim i nary data on REE min er - al iza tion. Miner. Ass. Pol. Spec. Pap., 20: 175–177.

PIN Ch., MIERZEJEWSKI M.P and DUTHOU J.L. (1987) – Isochronous age Rb/Sr of Karkonosze gran ite from the quarry Szklarska Porêba Huta and sig nif i cance of ini tial ratio 87Sr/86Sr in this gran ite (in Pol ish with Eng lish sum mary). Prz. Geol., 35 (10): 512–517.

PRZEW£OCKI K., MAGDA W., THOMAS H.H. and FAUL H. (1962) – Age of some gra nitic rocks in Po land. Geochim. Cosmochim. Acta, 26:

1069–1075.

ROBB L. (2005) – In tro duc tion to ore-form ing pro cesses. Blackwell Pub - lish ing.

SELBY D. and CREASER R.A. (2004) – Macroscale NTIMS and microscale LA-MC-ICP-MS Re-Os iso to pic anal y sis of mo lyb de nite:

test ing spa tial re stric tions for re li able Re-Os age de ter mi na tions, and im pli ca tions for the de coup ling of Re and Os within mo lyb de nite.

Geochim. Cosmochim. Acta, 68: 3897–3908.

SELTMANN R. and FARAGHER A.E. (1994) – Collisional orogens and their re lated metallogeny – a pref ace. In: Metallogeny of Collisional Orogens (eds. R. Seltmann et al.): 7–19. Czech Geol. Surv., Prague.

S£ABY E. and MARTIN H. (2008) – Mafic and fel sic magma in ter ac tion in gran ites: the Hercynian Karkonosze Pluton (Sudetes, Bo he mian Mas sif). J. Petrol., 49: 353–391.

SMOLIAR M.I., WALKER R.J. and MORGAN J.W. (1996) – Re-Os ages of group II1, IIIA, IVA and IVB iron me te or ites. Sci ence, 271:

117–133.

WILAMOWSKI A. (1998) – Geotectonic en vi ron ment of the Karkonosze and Tatra gran ite in tru sions based on geo chem i cal data (in Pol ish with Eng lish sum mary). Arch. Miner., 51: 261–271.

ŽÁK J. and KLOMÍNSKÝ J. (2007) – Mag matic struc tures in the Krkonoše–Jizera Plutonic Com plex, Bo he mian Mas sif: ev i dence for lo cal ized multiphase flow and small-scale ther mal-me chan i cal in sta - bil i ties in a gra nitic magma cham ber. J. Volcanol. Geo ther mal Res., 164: 254–267.

Cytaty

Powiązane dokumenty

Rare Earth Element mobility in a weathering profile – a case study from the Karkonosze Massif (SW Poland)..

nov.; SNM Z 24724, holotype; 1 – body chamber represented by an imprint of part of the last whorl; kališčo Formation, exploitation Level 10, 87.5 metre level of the succession;

SEM photomicrographs of phosphatized ‘white’ sponges; A – interspicular space, empty space after dissolved siliceous spicule with its relict; B – close-up view of relict of

They were found in rocks from the Lubiechów Quarry (no. 1B) and the out crop near Witoszów Górny (no. 1B) in the south ern part of the Œwiebodzice Unit. The com pli cated geo log i

Growth orientation of stromatoporoids has allowed reconstruction of the palaeotopographic position of a large Frasnian organic buildup exposed in the Kadzielnia Quarry in the Holy

The first microfossil re cord of ichthyofauna from the Naujoji AkmenÅ For ma tion (Lopingian), KarpÅnai Quarry, north ern Lith u a nia. The actinopterygian microremains

The feldspars contain numerous inclusions of minerals (mainly plagioclases), which form inner rims, marking successive zones of megacryst growth, and they are surrounded by

This study of de tri tal schee lite and gold in Ce no zoic clastic sed i ments from the Sudetes and Fore-Sudetic Block doc u ments sev eral phys i cal fea tures which may po