• Nie Znaleziono Wyników

Factors controlling Cenozoic anthracogenesis in the Polish Lowlands

N/A
N/A
Protected

Academic year: 2022

Share "Factors controlling Cenozoic anthracogenesis in the Polish Lowlands"

Copied!
16
0
0

Pełen tekst

(1)

Geo log i cal Quar terly, 2016, 60 (4): 959–974 DOI: http://dx.doi.org/10.7306/gq.1321

Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands

Jacek Rob ert KASIÑSKI1 and Barbara S£ODKOWSKA1, *

1 Pol ish Geo log i cal In sti tute – Na tional Re search In sti tute, Rakowiecka 4, 00-975 Warszawa, Po land

Kasiñski, J.R., S³odkowska, B., 2016. Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands. Geo log i cal Quar terly, 60 (4): 959–974, doi: 10.7306/gq.1321

The ac cu mu la tion of large amounts of phytogenic mat ter, lead ing to the for ma tion of lig nite de pos its of eco nomic im por tance, has been de ter mined by two groups of ex ter nal fac tors: (a) cli ma tic fac tors de ter min ing the in dis pens able pro duc tion of or - ganic mat ter and (b) geo log i cal fac tors al low ing pres er va tion of this mat ter in the sed i ment and its diagenetic trans for ma tion in the pro cess of coalification. The over rid ing item among cli ma tic fac tors was ob vi ously the pro duc tion of suit able amounts of phytogenic mat ter. It could be ac cu mu lated only un der fa vour able veg e ta tion con di tions and there fore a warm and hu mid cli mate was a con di tion sine qua non for the in ten sive pro duc tion of phytogenic mat ter. Prob lems of lig nite or i gin do not gen - er ally re late to the lack of pro duc tion of phytogenic ma te rial, but to pre vent ing pres er va tion in the sed i ment due to rapid ox i - da tion of this ma te rial in very warm con di tions. There fore, the coal-form ing pro cess was con strained by two crit i cal tem per a ture val ues, which had to be nei ther too low nor too high, wherein suf fi ciently high hu mid ity per sisted through out the pro cess. There fore, the range of mean an nual tem per a ture, which en sured fa vour able con di tions for the growth and pres er - va tion of phytogenic mat ter, was from approx. 15.5 to 24°C. In the Ce no zoic, such con di tions com menced in the Early Oligocene and per sisted up to the later Mio cene – this was the in ter val of the most in tense anthracogenesis in the Pol ish Low lands. In the wide spread low land ar eas, lush swamp for ests and peat fens de vel oped, and thick lig nite seams re flect the ac cu mu la tion of phytogenic mat ter. This in ter val be gan with the cool ing at the Eocene/Oligocene bound ary and ter mi nated at the be gin ning of the next cool ing and dry ing phase known as that of the “C4 grass land” in the Late Mio cene. Both the crit i cal points are re lated to the sur pass ing of tem per a ture lim its: too high for the pres er va tion of phytogenic de pos its, and too low for the ex ten sive de vel op ment of lig nite-form ing veg e ta tion. An im por tant con di tion for the emer gence of a large thick ness of phytogenic sed i ments is pri mar ily an ex is tence of the accomodation space, where a con sid er able amount of plant mat ter might ac cu mu late. This oc curred only in con di tions of dy namic equi lib rium be tween the growth of plant mat ter and the low er - ing of the depositional sur face, which en sured sta bi li za tion of the ground wa ter level. The rate of sub si dence of the depositional sur face must be bal anced by the rate of veg e ta tion growth. There fore, no sin gle lig nite seam cor re spond ing in age to the whole pe riod of po ten tial ac cu mu la tion was formed at that time. Rather, a few lig nite seams, sep a rated by thick suc ces sions of min eral de pos its, then formed. The veg e ta tion of the wetlands which cre ated the in di vid ual lig nite seams was sim i lar, this be ing mostly a fa cies el e ment. Dif fer ences in the com po si tion of veg e ta tion are found mainly in plant com mu ni - ties out side peat-fens and it is the plants out side of the wetlands which al lowed for sub se quent dat ing of the lig nite seams.

The thermophilous veg e ta tion was re placed by plants of lower ther mal re quire ments dur ing the pro gres sive cli mate cool ing to wards the end of the Mio cene. The ul ti mate cool ing and com ple tion of peat/lig nite pro duc tion was gen er ated by the Mid dle Mio cene up lift of the Carpathians arc in the Al pine orog eny. This nat u ral bar rier con sid er ably lim ited the cir cu la tion of warm and hu mid air masses from the south to the Pol ish Low lands area.

Key words: lig nite, or i gin con di tions, Paleogene/Neo gene, Pol ish Low lands.

INTRODUCTION

Dur ing the Paleogene and Neo gene, the ac cu mu la tion of large amounts of phytogenic mat ter took place in the ex ten sive low land ar eas of north ern Eu rope from the Neth er lands to Belarus and Ukraine. As a re sult, thick lig nite seams de vel oped, which are now com monly used as en ergy re sources. The in flow of warm and hu mid air masses from the south, i.e. from the Paratethys area, pro vided a long in ter val of sta ble cli mate, over ca. 22 Myr, with fairly high tem per a ture and sig nif i cant hu mid ity,

con trib ut ing to the ex pan sion of peat-form ing veg e ta tion. Dur - ing the Paleogene and Neo gene wide spread peatlands de vel - oped, sim i lar to peatlands re cently known from the Gulf of Mex - ico and south east ern China. Their crit i cal el e ments in cluded lush mixed swamp for ests, swamp shrubs and ri par ian de cid u - ous for ests (Fig. 1). Bul rush and sedge-moss peat-fens, and also sub aque ous veg e ta tion, played a sec ond ary role in these an cient peatlands.

CHARACTERISTICS OF THE PALEOGENE/NEOGENE PEAT-FORMING PHYTOCOENOSIS

The re con struc tion of veg e ta tion that grew within the Paleo - gene and Neo gene peat-form ing ba sin and its sur round ings is based on re search into mi cro- and macrofloral re mains, such as

* Corresponding author, e-mail: barbara.slodkowska@pgi.gov.pl Received: July 21, 2016; accepted: October 6, 2016; first published online: November 7, 2016

(2)

leaves, fruits, seeds, wood, or pol len grains and spo res. The macrofloral re mains are usu ally el e ments of the lo cal veg e ta - tion that may be re lated di rectly to a peat-bog area. By con trast, the microfloral re mains (pol len and spores) largely orig i nated be yond the peat-bog and were trans ported there in two ways:

lifted by wind and air cur rents or trans ported by rivers and streams. Pol len drops to the bot tom of a lake or peat-bog and, to be able to be pre served in a fos sil state, it must be cov ered by wa ter. Fluc tu a tions of the wa ter ta ble, es pe cially pe ri od i cal low - er ing, cause dry ing and ox i da tion of the ac cu mu lated pol len and pre vent its pres er va tion in the fos sil re cord. For the re con - struc tion of the depositional en vi ron ment, proper de ter mi na tion of pol len grains con tained in the sed i ment and of their re la tion - ship to con tem po rary bo tan i cal veg e ta tion are par tic u larly im - por tant (Stuchlik et al., 2001, 2002, 2009, 2014). For the re con - struc tion of the depositional en vi ron ment, the most sig nif i cant fac tor is pol len de rived from lo cal veg e ta tion grow ing in the di - rect vi cin ity of the peat-fen lake, and com pos ing the main peat-form ing bio mass: swamp shrubs, bul rush and swamp for - ests (Fig. 1). Pol len de pos ited in wa ter may also be de rived from veg e ta tion grow ing in ar eas lo cated more dis tantly from the peat-fen mar gin, mainly from ri par ian for ests and mixed mesophilous for ests (Kasiñski et al., 2010).

Swamp for ests were a com mon el e ment of the Paleogene and Early Neo gene land scape of the Pol ish Low lands. Marshes were mainly dom i nated by co ni fers such as Glyptostrobus (now oc cur ring only in east Asia) and Taxodium (cur rently noted only in North Amer ica), ac com pa nied by de cid u ous trees such as Nyssa and Alnus. In the un der growth of the for est there was Sphag num peat moss, Polypodiaceae and Osmunda ferns.

Betula, Cornus, Myrica, Fraxinus, Salix and Populus also oc - curred. Warm-tem per ate el e ments in cluded: Ilex, Ficus, Liquid - ambar, and rep re sen ta tives of the Tiliaceae and Lauraceae fam i lies. An other el e ment of the peat-form ing plant com mu nity was bul rush, which in cluded: Sparganium, Typha, Carex, Nym - phea, Potamogeton, Butomus, Phragmites, Nuphar, Trapa, grasses (Poaceae) and wa ter ferns such as Sal vin ia and Az ol - la. An im por tant el e ment of the peat-fen was swamp shrubs in - clud ing the Clethraceae, Cyrillaceae, Myricaceae, Ericaceae, and Salicaceae. Apart from wetlands, very di verse ev er green and de cid u ous mixed for ests grew. They were dom i nated by plants with high tem per a ture re quire ments, such as: Mastixia,

Aralia, Mag no lia, Carya, Lirio den dron, Liquid ambar, Phelloden - dron, Se quoia, Sciadopitys, Cryptomeria, Ginkgo, Ficus, lianas and ferns. These plants were sim i lar to those grow ing to day in warm-tem per ate and hu mid sub trop i cal cli mates. The com po si - tion and mu tual pro por tions of the plants of these for ests re cord cli mate changes, mainly tem per a ture and hu mid ity os cil la tions.

The con fig u ra tion of the wet land veg e ta tion com pos ing in di - vid ual lig nite seams is sim i lar, be cause the fun da men tal tax o - nomic vari abil ity of the dom i nant part of the pol len spec trum, known as the fa cies el e ment (Dyjor and Sadowska, 1977), is re - lated to the plant en vi ron men tal re quire ments. Thus, the con tri - bu tion of in di vid ual taxa, al though very vari able in par tic u lar sam ples, and al low ing for the as sign ment of lig nite to dif fer ent peat-fen zones, is sta tis ti cally sim i lar within all the lig nite seams ex am ined.

POSITION OF CENOZOIC LIGNITE IN THE STRATIGRAPHIC COLUMN

The most in tense Ce no zoic lig nite pro duc tion in Eu rope took place dur ing the later part of the Early Oligocene and in the Mio cene – in an in ter val dem on strat ing a fairly con sis tent char - ac ter of the “new” flora. Changes in veg e ta tion, in which the an - ces tors of re cent flora be gan to dom i nate, took place ear lier than the be gin ning of the Neo gene, in fact al ready in the Oligocene, in an in ter val that cor re sponds to the “ice house” cli - ma tic pe riod that be gan in the Early Oligocene (S³odkowska and Kasiñski, 2016).

As a re sult of rapid ac cu mu la tion of phytogenic mat ter, a sin gle thick lig nite seam (with the ex cep tion of a few lo cal ap - pear ances) that would en com pass the pe riod of in tense anthracogenesis did not per sist con tin u ously through out the en - tire Oligocene and Mio cene. Rather, sev eral thin ner lig nite seams, sep a rated by less or more thick se ries of siliciclastic de - pos its, were formed. Thus, five main lig nite seams oc cur in the suc ces sion of the Oligocene-Mio cene sed i ments, cov er ing the time in ter val from the Early Oligocene to the Mid dle Mio cene (Fig. 2; Piwocki and Ziembiñska-Tworzyd³o, 1997). These lig - nite seams are as fol lows:

– 5th Czempiñ seam,

960 Jacek Rob ert Kasiñski and Barbara S³odkowska

Fig. 1. Zonal vari abil ity of peat-form ing veg e ta tion in the Paleogene/Neo gene peatlands

(3)

– 4th D¹browa seam, – 3rd Œcinawa seam, – 2nd Lusatian seam, – 1st Mid-Pol ish seam.

How ever, the to tal thick ness of lig nite seams is sig nif i cantly smaller than the thick ness of the interbedded min eral de pos its sep a rat ing them within the Oligocene/Mio cene suc ces sion.

This is be cause lakes, swamps, marshes, and bogs are ephe - m eral bod ies, rel a tively short-lived in geo log i cal time. Also a much higher com pac tion ra tio of the phytogenic sed i ments in re la tion to min eral de pos its (Hager et al., 1981; Hager, 1986) re sulted in a post-depositional re duc tion of the lig nite seams’

thick ness. The oc cur rence of al ter nat ing pack ets of lig nite and min eral de pos its re cords the dy nam ics of en vi ron men tal chan - ge in a con ti nen tal and brack ish re gime in rel a tively sta ble cli - ma tic con di tions, con tin u ously pro mot ing the ac cu mu la tion of lig nite-form ing mat ter.

Due to sim i lar sed en tary con di tions of peat de po si tion in the dis tal part of the North Sea Ba sin, to which the Pol ish Low land area be longs, the Neo gene peat-form ing com mu ni ties con - sisted gen er ally of sim i lar plants. Dif fer ences in the pol len com - po si tion of sub se quent lig nite seams re flect the chang ing con - tri bu tion of spe cies from plant com mu ni ties be yond the peat - lands, mainly from mixed mesophilous for ests and are also due to fluc tu a tions of the ground wa ter level (von der Brelie and Wolf, 1981; Mosbrugger et al., 1994; Huhn et al., 1997). Spe - cies di ver sity of plant entomophilous pol len, par tic u larly highly thermophilous spe cies, is of di ag nos tic sig nif i cance for the de - ter mi na tion of cli mate con di tions dur ing sub se quent lig nite - -form ing cy cles. The con tri bu tion of rep re sen ta tives of thermo -

philous flora grad u ally de creases in the youn ger seams in fa - vour of plants of a tem per ate and drier cli mate, dom i nat ing in the lat est Neo gene. How ever, tem per a ture and hu mid ity were suf fi cient for the de vel op ment of a rich peat-form ing veg e ta tion dur ing the en tire pe riod of lig nite sed i men ta tion. Sporomorphs iden ti fied within in di vid ual lig nite seams have been clas si fied af - ter Ziembiñska -Tworzyd³o et al. (1994a, b) as palaeotropical, palaeofloristic el e ments (P1 – trop i cal and P2 – sub trop i cal), and Arcto-Ter tiary palaeofloristic el e ments (A1 – warm-tem per - ate and A2 – tem per ate). The mu tual pro por tions of these el e - ments pro vide re li able palaeoclimatic in for ma tion. On this ba - sis, cli ma tic con di tions dur ing the sed i men ta tion of the lig nite - -form ing peatlands have been de ter mined (Ta ble 1).

CHARACTERISTICS OF THE ECONOMICALLY SIGNIFICANT MAIN LIGNITE SEAMS

Dif fer ences in the veg e ta tion com po si tion oc cur mainly within the plant com mu ni ties be yond the wetlands that com - prise plants from the com mu ni ties known as cli mate el e ments (Dyjor and Sadowska, 1977). They al low the strati graphic po si - tion of the in di vid ual lig nite seams to be dis tin guished (S³od - kowska, 1998). In sub se quent seams, thermophilic veg e ta tion is sys tem at i cally re placed by veg e ta tion with lower ther mal re - quire ments (e.g., Nyssa ® Alnus in the swamp for est com mu - nity), re sult ing from grad ual cli mate cool ing to wards the end of the Mio cene.

Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands 961

Fig. 2. Strati graphic po si tion of the Paleogene/Neo gene lig nite-form ing cy cles in the lig nite-bear ing ba sin of the Pol ish Low lands (af ter Kasiñski et al., 2010)

(4)

962 Jacek Rob ert Kasiñski and Barbara S³odkowska

T a b l e 1 Sporomorph tax o nomic di ver sity in the lig nite seams

Taxon Bo tan i cal af fin ity Palaeofloristic

el e ment

Lig nite seams 1st 2nd 3rd 4th 5th Spores

Camarozonosporites heskemensis Lycopodiaceae: Lycopodiella P +

Cicatricosisporites dorogensis Schizaeaceae P1 +

Concavisporites sp. Gleicheniaceae? P +

Leiotriletes sp. Lygodiaceae P + +

Neogenisporis neogenicus Gleicheniaceae, Cyatheaceae P2 + +

Polypodiaceoisporites corrutoratus Pteridaceae: Pteris P/A1 +

Stereisporites stereoides Sphagnaceae: Sphag num A1 +

Gym no sperms

Cathayapollis sp. Pinaceae: Cathaya A1 + + +

Cedripites sp. Pinaceae: Cedrus A1 +

Cunninghamiaepollenites janinae Taxodiaceae: Cunninghamia A1 + +

Cunninghamiaepollenites lignitus Taxodiaceae: Cunninghamia A1 + +

Distachyapites sp. Ephedraceae: Ephedra A +

Inaperturopollenites concedipites Cupressaceae: Taxodium, Glyptostrobus P2/A1 + +

Inaperturopollenites dubius Taxodiaceae A1 + + +

Pinuspollenites sp. Pinaceae: Pinus sylvestris type A + + + + +

Sciadopityspollenites sp. Sciadopityaceae: Sciadopitys A1 + + + +

Sequoiapollenites sp. Cupressaceae: Se quoia, Se quoia den dron, Metasequoia A1 + + + + +

Zonalapollenites sp. Pinaceae: Tsuga A + +

An gio sperms

Araliaceoipollenites euphorii Araliaceae: Aralia cordata type P/A1 +

Araliaceoipollenites reticuloides Araliaceae: Hedera he lix type A1 +

Arecipites parareolatus Arecaceae P/A1 +

Arecipites pseudoconvexus Arecaceae P2/A1 +

Boehlensipollis hohli Elaeagnaceae, Lythraceae P2/A1 +

Caprifolipites viburnoides Adoxaceae: Vi bur num P/A1 +

Celtipollenites bobrowskae Ulmaceae: Celtis sinensis type A1 + +

Cercidiphyllites minimireticulatus Cercidiphyllaceae: Ceridiphyllum A1 + +

Cornaceaepollis ma jor Cornaceae: Cornus sanguinea type P/A +

Cornaceaepollis satzveyensis Mastixiaceae P +

Cupanieidites eucalyptoides Myrtaceae?, Sapindaceae? P/A1 +

Cupuliferoipollenites oviformis Fagaceae: Castanea, Castanopsis, Lithocarpus P2/A1 + + Cupuliferoipollenites pusillus Fagaceae: Castanea, Castanopsis, Lithocarpus P2/A1 + + + +

Cyrillaceaepollenites bruhlensis Cyrillaceae, Clethraceae P + + +

Cyrillaceaepollenites megaexactus Cyrillaceae, Clethraceae P + + + + +

Dicolpopollis kockeli Arecaceae; Calamoideae: Cal a mus, Metroxylon P + + +

Dicolporopollenites middendorfii un known ? + +

Edmundipollis edmundii Mastixiaceae, Cornaceae, Araliaceae P1 + + +

Ericipites sp. Ericaceae P/A + +

Eucommioipollis sp. Eucommiaceae: Eucommia A1 + +

Faguspollenites sp. Fagaceae: Fagus A + +

Fraxinipollis sp. Oleaceae: Fraxinus P/A + + +

Fususpollenites fusus Fagaceae: Trigonobalanus P1 + + +

Intratriporopollenites insculptus Malvaceae: Tilioidae, Brownlowioideae P/A +

Iteapollis angustiporatus Iteaceae: Itea P +

Liriodendroipollis verrucatus Magnoliaceae: Lirio den dron P2/A1 + +

Magnoliaepollenites sp. Magnoliaceae: Mag no lia P/A1 + +

Milfordia incerta Restionaceae: Hypolaena, Lepyrodia P + +

Momipites punctatus Juglandaceae: Engelhardia, Alfaroa, Oreomunnea P2 + + +

Momipites qui etus Juglandaceae: Engelhardia, Alfaroa, Oreomunnea P +

Monocolpopollenites tranquillus Arecaceae: Arecoideae, Coryphoideae P +

(5)

5TH CZEMPIÑ SEAM (LOWER OLIGOCENE)

The 5th Czempiñ lig nite seam oc curs in the form of two iso - lated patches across a lim ited area of west ern Po land, oc cu py - ing a to tal area of ca. 7,700 km2 (Fig. 3A). Its thick ness is usu - ally small and does not ex ceed 1 m. How ever, lig nites of the 5th seam oc cur also in the over bur den of many salt domes in the Pol ish Low lands. As a re sult of synsedimentary salt out flow and/or of subrosion (i.e., salt karst) pro cesses (Kasiñski et al., 2009), this seam reaches a con sid er able thick ness in de pres - sions within the salt dome caps. In ex treme cases (e.g., the RogóŸno and Wapno salt domes), its thick ness may ex ceed 40 m (Kasiñski and Saternus, 2010).

Lig nites of the 5th Czempiñ seam orig i nated within iso lated wet land bas ins, as shown by their lim ited ex tent and thick ness (Fig. 3A). Veg e ta tion sur round ing the bas ins was very lush, dom i nated by the mesophilous mixed for est com mu nity. Plants with highly thermophilous re quire ments dom i nated: Fagaceae, Fabaceae, Myrtaceae, Eleagnaceae, and Arecaeae (Fig. 4).

Ma rine phytoplankton in di cates the paralic char ac ter of the swamp ba sin, with ma rine in flu ence. The cli mate at that time, as re con structed on the ba sis of plant com po si tion, may be de - fined as very warm, al most sub trop i cal.

4TH D¥BROWA SEAM (LOWER MIOCENE)

The 4th D¹browa lig nite seam oc curs in south west ern Po - land as one com pact lobe cov er ing an area of 7,000 km2 (Fig.

3B; Piwocki, 1998). The seam reaches its great est thick ness in the Legnica-Œcinawa de posit, where it lo cally ex ceeds 30 m.

The 4th D¹browa seam, clearly rec og nized in west ern Po - land, was formed in con ti nen tal con di tions in wetlands with out ma rine in flu ence. The rich veg e ta tion was dom i nated by sub - trop i cal plant com mu ni ties. Two prev a lent types of plant com - mu ni ties al ter nated – peat-form ing swamp bushes and mesophilous mixed for ests with highly thermophilous plants.

The al ter na tion of plant com mu ni ties was caused by hydrogeological changes – pe ri od i cal os cil la tions of the ground - wa ter ta ble, fa vour ing the pro gres sive over growth of swamp bushes by a mesophilous for est. The spore-pol len as sem blage in the 4th seam rep re sents mainly plants that re cently live in a hu mid sub trop i cal cli mate (Fig. 5).

3RD ŒCINAWA SEAM (LOWER MIOCENE)

The 3rd Œcinawa lig nite seam cov ers an area of about 30,000 km2 in south west ern Po land (Fig. 3C; Piwocki, 1992).

The seam is usu ally up to 35 m thick (e.g., Mosty and Œcinawa de pos its) and it is much thicker only in the Kleszczów Tec tonic Graben – Be³chatów lig nite de posit. There, to gether with the 2nd Lusatian seam, it lo cally reaches up to 250 m (Piwocki, 1992; Kasiñski et al., 2000). The 3rd seam has been fully rec og - nized in the Zittau Ba sin, where mod els of sedimention and of the peat-form ing plant suc ces sion have been es tab lished (Kasiñski, 1991, 2000; Kasiñski and Ziembiñska-Tworzyd³o, 1998; Kasiñski et al., 2010).

Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands 963

Tab. 1 cont.

Taxon Bo tan i cal af fin ity Palaeofloristic

el e ment

Lig nite seams 1st 2nd 3rd 4th 5th

Multiporopollenites maculosus Juglandaceae: Juglans sigillata type P2 + +

Myrtaceidites myrtiformis Myrtaceae: Myrtus, Cal lis temon P/A1 +

Nyssapollenites sp. Nyssaceae: Nyssa P/A1 + + +

Olaxipollis matthesii Olacaceae: Olax P +

Ostryapollenites rhenanus Betulaceae: Ostrya, Ostryopsis A1 +

Parthenopollenites

marcodurensis Vitaceae: Parthenocissus, Am pe lop sis, Cayratia, Leea P/A1 + +

Periporopollenites stigmosus Altingiaceae: Liquid ambar A1 +

Platanipollis ipelensis Platanaceae: Platanus P/A1 + +

Platycaryapollenites miocaenicus Juglandaceae: Platycarya A1 + + +

Polyartiopollenites sp. Juglandaceae: Pterocarya A1 +

Quercoidites henrici Fagaceae: Quercus P2/A1 + + + +

Quercoidites microhenrici Fagaceae: Quercus P2/A1 + + + +

Quercopollenites sp. Fagaceae: Quercus P2/A1 + +

Reevesiapollis triangulus Malvaceae; Helicteroideae, Reevesia P + + +

Sapotaceoidaepollenites sp. Sapotaceae P + +

Symplocoipollenites vestibulum Symplocaceae: Symplocos P + +

Symplocospollenites rotundus Symplocaceae: Symplocos P + +

Triatriopollenites rurensis Myricaceae: Myrica P2/A + +

Tricolporopollenites dolium un known ? + +

Tricolporopollenites fallax Fabaceae P/A + + +

Tricolporopollenites liblarensis Fabaceae P/A + + + + +

Tricolporopollenites

pseudocingulum Fagaceae?, Styracaceae? P/A + + +

Tricolporopollenites quisqualis Fabaceae P/A1 + + +

Tricolporopollenites

staresedloensis Hamamelidaceae: Parrotia, Distylium P2 +

Tricolporopollenites villensis Fagaceae? ? + +

Vitispollenites sp. Vitaceae: Vitis P2/A1 + +

(6)

964 Jacek Rob ert Kasiñski and Barbara S³odkowska

Fig. 3. Geo graph ical ex tent of ma jor lig nite seams in the Pol ish Low lands

A – 5th Czempiñ seam (af ter Kasiñski and Saternus, 2010); B – 4th D¹browa seam (af ter Piwocki, 1998); C – 3rd Œcinawa seam (af ter Piwocki et al., 2004, sup ple mented); D – 2nd Lusatian seam (af ter Piwocki, 1992); E – 1st Mid-Pol ish seam (af ter Piwocki, 1992)

(7)

Sedentation of peat of the 3rd lig nite seam was dom i nated by highly thermophilous for est veg e ta tion with tax o nom i cally rich com mu ni ties of a mixed mesophilous for est (Fig. 6).

Warm-tem per ate flora had a lower con tri bu tion. A warm to sub - trop i cal cli mate pre vailed. The or i gin of the 3rd seam is re lated to the Mid dle Mio cene cli mate op ti mum (cf. S³odkowska and Kasiñski, 2016: fig. 9). Ac cu mu la tion of the peat-form ing plant ma te rial took place within three dif fer ent hab i tats: sub aque ous peat-fens, swamp for ests and swamp bushes. A re duced hu - mid ity then was not fa vour able for the de vel op ment of ex ten sive marshes. This is re flected by the smaller thick ness and com - pact ness of the seams, al though the rea sons in this case may also be dif fer ent, such as lack of ac com mo da tion space. A few ma rine in gres sions ex pressed by the pres ence of ma rine phytoplankton have been noted in west ern Po land at that time (S³odkowska, 2014).

2ND LUSATIAN SEAM (MIDDLE MIOCENE)

The 2nd Lusatian lig nite seam oc curs across an area of ca. 61,000 km2 in south west ern and cen tral Po land (Fig. 3D;

Piwocki, 1992). The seam is usu ally up to 40 m thick (Czempiñ, Gostyñ, Krzywiñ, Mosina, Naramowice, Rado - mierzyce and Szamotu³y lig nite de pos its) and lo cally reaches up to 250 m within the Kleszczów Graben – the Be³chatów lig -

nite de posit, where it oc curs to gether with the 3rd Œcinawa seam. The 2nd Lusatian lig nite seam is also an im por tant cor - re la tion ho ri zon, which can be traced across a large area of the Pol ish Low lands.

Lig nites of the 2nd Lusatian seam orig i nated in limno - thelmatic con di tions. Ma rine in flu ence was ev i dent only within the peatlands of west ern Po land. A very rich pol len spec trum of a mixed mesophilous for est, where sub trop i cal el e ments are com mon, is a fac tor char ac ter is tic of this seam (Ap pen dix 1*). High tem per a ture and hu mid ity fa voured the lush de vel op - ment of swamp for est com mu ni ties, usu ally with Taxodium, Glyptostrobus, Nyssa and a small con tent of Alnus. Warm - -tem per ate taxa in the 2nd lig nite seam are more fre quent than in the 3rd lig nite seam. They are an im por tant ad di tion within a mixed mesophilous for est. Swamp for est and swamp bush com mu ni ties pre dom i nated in the peat-form ing veg e ta tion.

A warm tem per ate to sub trop i cal cli mate pre vailed at that time.

The large thick ness and com pact ness of the seams points to the high hu mid ity that pro moted the de vel op ment of wide - spread wetlands.

1ST MID-POLISH SEAM (MIDDLE MIOCENE)

The 1st Mid-Pol ish lig nite seam oc curs across an area of ca. 70,000 km2 in west ern and cen tral Po land (Fig. 3E; Piwocki, Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands 965

Fig. 4. Pol len di a gram of the 5th Czempiñ seam in the Warszyce 19 bore hole (af ter Grabowska, 1969, mod i fied)

* Supplementary data associated with this article can be found, in the online version, at doi: 10.7306/gq.1321

(8)

1992). This seam is up to 20 m thick in the de pos its of the Konin re gion. The 1st Mid-Pol ish lig nite seam is also an im por tant cor - re la tion ho ri zon through out much of the Pol ish Low lands.

Lig nites of the 1st Mid-Pol ish seam formed in con ti nen tal con di tions within swamps and back wat ers de vel oped within ex - ten sive al lu vial plains. Ma rine in flu ences was ev i dent only within lim ited ar eas of west ern Po land. The plant com po si tion of the mixed mesophilous for est of the 1st seam be came pro gres - sively de pleted in com po nents with high ther mal re quire ments, whereas the sig nif i cance of ri par ian for est com mu ni ties with com mon warm-tem per ate plants in creased (Fig. 7). Pol len of plants of the cold-tem per ate cli mate be came pro gres sively more nu mer ous. Dur ing the time of the 1st seam sedentation a warm-tem per ate cli mate with high hu mid ity pre vailed, fa vour - able for the de vel op ment of ex ten sive marshes, as shown by the fairly uni form char ac ter of the lig nite seams.

CLIMATE CHANGE – RECORD IN THE LIGNITE-BEARING STRATA WITHIN A CONTEXT

OF OCEAN WATER AVERAGE TEMPERATURE

The Early Oligocene anthracogenic pe riod be gan af ter the cli ma tic cool ing at the Eocene/Oligocene bound ary (Pearson et al., 2009). Its ter mi na tion is as so ci ated with cli mate cool ing and aridisation known as the “C4 grass land event” in the Late Mio cene (Fig. 8). Dur ing 8–4 Ma, the ground wa ter level chan - ged, which was prob a bly re lated to the tec tonic re shap ing of the Carpathians. A de cline in the at mo spheric CO2 con tent be - low the thresh old value oc curred also as an ef fect of the growth of ice sheets in the North ern Hemi sphere. As a re sult, ex pan sion of plants of the C4 pho to syn the sis type be gan at that time. Grow ing sea son al ity and pro gres sive aridisation caused a lower den sity of the for est cover and the tran si tion from for est to grass land (Ed wards et al., 2010; Singh et al., 2013). Af ter this global eco log i cal event, ex ten sive peat-form -

ing wetlands no lon ger de vel oped in the Eu ro pean Low land ar - eas (Osborne, 2008).

Dur ing the Early Paleogene, be fore the cool ing at the Eocene/Oligocene bound ary, only a few sig nif i cant lig nite oc - cur rences, i.e. Geiseltal (Haubald, 1989; Wilde and Hellmund, 2010) and Helmstedt (Lietzow et al., 1990; Lenz and Riegel, 2001; Riegel et al., 2015) are known in the Eu ro pean Low - lands. Through out the en tire EECO there were per fect con di - tions for phytogenic mat ter pro duc tion: high tem per a ture, i.e.

higher than dur ing the main anthracogenic pe riod, and sub - stan tial hu mid ity. How ever, the prob lem of lig nite or i gin in this case does not re fer to the lack of the pos si bil ity of pro duc tion of the phytogenic ma te rial, but to the lack of pos si bil ity of its pres - er va tion in the sed i ment. This was due to rapid ox i da tion of this ma te rial, al ready de pos ited at the sur face and in the up per lay - ers of the sed i ment, in high tem per a ture con di tions. In fact, the ox i da tion rate of phytogenic mat ter de pos ited in the soil ex po - nen tially in creases with ris ing tem per a ture as shown by ex per - i ments (Davidson and Janssens, 2006). There fore, the lig - nite-form ing pro cess was in most cases con strained by two crit i cal tem per a ture val ues. Tem per a tures have to be nei ther too low nor too high, while high hu mid ity is re quired dur ing the time of the pro cess (Fig. 9).

As sum ing the for ma tion of the 5th Czempiñ lig nite seam as the be gin ning of ex ten sive lig nite de po si tion (ini tial stage) in the Pol ish Low lands, and the for ma tion of the 1st Mid-Pol ish seam as its ter mi na tion (fi nal stage), the range of mean an nual tem per - a tures of these two stages can be de ter mined. Ac cord ingly, the com po si tion of veg e ta tion, re con structed on the ba sis of the sporomorph con tent, was ana lysed for the seams cor re spond ing to these stages. The co ex is tence ap proach method, CA method, was used for the re con struc tion of the ther mal re quire ments of fos sil taxa (Mosbrugger and Utescher, 1997). This method re fers fos sil taxa to their near est liv ing rel a tives (NLRs) and de ter mines the range of var i ous cli mate vari ables, in this case mean an nual tem per a ture, in which the con tem po rary equiv a lents ex ist. The range of fa vour able tem per a tures for the re cent rep re sen ta tives of fos sil gen era and spe cies of both stages was de ter mined us -

966 Jacek Rob ert Kasiñski and Barbara S³odkowska

Fig. 5. Pol len di a gram of the 4th D¹browa seam in the Grêzawa 28 B-bis bore hole

(9)

Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands967

g i

F . 6 .Pol lendi a gramo fthe3rdŒcinawaseam ni the“Turów I ”open-pit fo theTurówLig niteMine(af te rKasiñski te la ,. 2010 ,mod i fied)

(10)

968Jacek Rob ert Kasiñski and Barbara S³odkowska

g i

F . 7 .Pol lendi a gramo fthe1stMid-Pol ishseam ni the“JóŸwin”open-pit fo theKoninLig niteMine(aferKasiñski te la ,. 2010,mod i fied) r

o

F otherex pla na tionsseeFig ure6

(11)

ing the Palaeoflora Da ta base (Figs. 9 and 10; Utescher and Mosbrugger, 2016). For the ini tial stage of ex ten sive lig nite for - ma tion (5th Czempiñ seam) the tem per a ture is in the range of 17.2–23.9°C, and for the fi nal stage (1st Mid-Pol ish seam) the tem per a ture is in a slightly lower range of 15.7–19.7°C. There - fore, the range of mean an nual tem per a ture, which en sured fa - vour able con di tions for the growth and pres er va tion of phyto - genic mat ter, was from about 15.5 to 24°C. Cli mate con di tions pre vail ing dur ing that time, par tic u larly tem per a ture and hu mid ity, may be re lated to the re cent con di tions af ter the sub-di vi sion of Köppen (Köppen, 1900 fide Kottek et al., 2006). They cor re - spond to a hu mid sub trop i cal cli mate (Cfa type) char ac ter ized by hot, usu ally hu mid sum mers and mild win ters.

This type of cli mate cur rently dom i nates in the south east ern mar gins of some con ti nents, such as the south east ern United

States, south east ern China, south ern Brazil and east ern Aus - tra lia (Ta bles 2 and 3).

Such con di tions ex isted dur ing al most the en tire pe riod af ter the cool ing at the be gin ning of the Oligocene (EOT) up to the cool ing and sub stan tial dry ing (C4) in the Late Mio cene. At that time, the cli ma tic con di tions fa voured in tense growth of peat - -form ing veg e ta tion and cli mate changes did not bring ma jor ob sta cles to the anthracogenic pro cesses. How ever, the lig nite seams, widely de vel oped in the low land ar eas of Eu rope with a few lo cal ex cep tions, such as the main lig nite seam in the Lower Rhine embayment (Zadwijn and Hager, 1987; Hager, 1993;

Schaefer and Utescher, 2014), or the Kleszczów Graben (Kasiñ ski et al., 2000; Piwocki et al., 2004), which cor re spond to lon ger strati graphic in ter vals) gen er ally do not ex ist in the form of a sin gle con tin u ous seam cor re spond ing to the whole of the Oligocene and Mio cene time (cf. Figs. 2 and 8).

Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands 969

Fig. 8. Pe ri ods of in creased lig nite for ma tion within the con text of Ce no zoic changes in global ma rine tem per a ture (ox y gen iso tope curves af ter Zachos et al., 2001, 2008)

EECO – Early Eocene Cli ma tic Op ti mum, EOT – Eocene-Oligocene Tran si tion, MECO – Mid-Eocene Cli ma tic Op ti mum, MMCO – Mid-Mio cene Cli ma tic Op ti mum, MSC – Messinian Sa lin ity Cri sis,

PETM – Paleocene-Eocene Termal Max i mum

(12)

FACTORS CONTROLLING THE PERIODIC CHARACTER OF PHYTOGENIC ACCUMULATION

(SEDENTATION)

The ac cu mu la tion of sig nif i cant amounts of phytogenic mat - ter, lead ing to the for ma tion of lig nite seams of eco nomic im por - tance, was fi nally di vided into two groups of ex ter nal factors:

a) cli mate fac tors de ter min ing the nec es sary pro duc tion of phytogenic mat ter and its pres er va tion in the in ter val prior to coalification,

b) geodynamic fac tors con trol ling the pos si bil ity of pres er - va tion of phytogenic mat ter within the sed i ment and its trans for - ma tion from peat into lig nite dur ing coalification.

The pri mary role of cli mate fac tors is ob vi ous. Suf fi cient phytogenic mat ter can be pro duced only un der con di tions fa - vour able for veg e ta tion and, there fore, a warm and hu mid cli - mate is a sine qua non for the ex ten sive pro duc tion of phyto genic mat ter. More over, cli mate fac tors de fine the time lim its (the be - gin ning and end) of ex ten sive anthracogenic pro cesses.

Sed i men tary cyclicity is clearly vis i ble in the suc ces sion of the Paleogene/Neo gene lig nite-bear ing as so ci a tion, as in all lig nite-bear ing de pos its. This is em pha sized by the pres ence of mul ti ple lig nite seams (Kasiñski, 1985, 2000). The lig nite seams are in ter ca lated with pack ages of min eral de pos its of var i ous thick nesses (Fig. 11).

Biogenic com po nents may be ob served at the con tact of the lig nite seams and min eral sed i ments. Tree roots grow into the min eral beds be low, while their coalified trunks com pose the con stit u ents of the lig nite seam (Fig. 12A). Above the seam roof, in situ tree trunks and stumps may oc cur within the min eral sed i ment. They are re mains of a swamp for est bur ied in sand (Fig. 12B).

Geodynamic fac tors re sult ing in the dis tor tion of dy namic equi lib rium be tween the rate of low er ing of the depositional sur - face and the rate of phytogenic mat ter ac cu mu la tion are re - spon si ble for breaks in phytogenic ac cu mu la tion de spite the con tin u a tion of fa vour able cli ma tic con di tions (Fig. 13; Bouroz, 1966). Fac tors de ter min ing the low er ing of the depositional sur - face may be auto- or allocyclic (Kasiñski, 1983). The autocyclic fac tors in clude:

– com pac tion of the un der ly ing phytogenic de pos its (Kasiñ - ski, 1983; Widera, 2002, 2015; Widera et al., 2007), de - pos ited dur ing the ear lier stages of ba sin de vel op ment;

the peat/lig nite com pac tion ra tio – ac cord ing to the re - search noted above – is be tween 2 and 4;

– subrosion within salt domes, where phyto genic de pos its ac cu mu late in the over bur den de pres sions (Meiburg, 1980; Kasiñski et al., 2009).

The allocyclic fac tors in clude:

– eustatic sea level changes (mostly in the plat form ar eas);

– tec tonic sub si dence, par tic u larly im por tant in the area of tec tonic de pres sions (grabens), char ac ter ized by the high est am pli tudes, re sult ing in large depositional space, wherein – in the case of a long-term dy namic equi lib rium – the thick est lig nite seams are formed (Ka siñski, 1985, 2000, 2004; Hager, 1993; Wide ra, 2004; Widera and Ha³uszczak, 2011);

– re gional (epeirogenic) sub si dence as so ci ated with ver ti - cal dis place ments of the sed i men tary ba sin base ment blocks (Kasiñski and Piwocki, 2002);

– tec tonic salt out flow from the salt dome bod ies (Kasiñski et al., 2009), where phytogenic de pos its ac cu mu late within the over bur den;

– rise of the ero sional base in the ba sin mar gin, which is equal to the rel a tive de crease of depositional sur face; si - mul ta neously, it cre ates more in tense ero sion of the ar - eas sur round ing the peat-form ing ba sin and in creased sup ply of clastic sed i ments into it.

DISCUSSION

The range of crit i cal tem per a ture val ues for ex ten sive anthra - cogenesis does not mean that lig nite and coaly de pos its were not pro duced dur ing the Paleogene and Neo gene be yond these lim - its. Due to the dif fi cul ties as so ci ated with the pres er va tion of or - ganic mat ter, these de pos its usu ally form much thin ner lig nite seams with a sig nif i cant min eral ad mix ture (Pes ter, 1967; Kuhl - mann et al., 2006). How ever, thick lig nite lay ers could have been formed spo rad i cally even in re gions with a fully trop i cal cli mate, as in the past, e.g. in north west ern In dia (Dutta, 2011), and pres - ently, e.g. on the Kalimantan Is land (Dwiantoro et al., 2013). This could hap pen only un der spe cific con di tions, en sur ing rapid iso - la tion of the de pos ited sed i ment from the ox i diz ing en vi ron ment, as a re sult of abrupt burial un der min eral de pos its or sud den flood with a thick layer of wa ter.

970 Jacek Rob ert Kasiñski and Barbara S³odkowska

Fig. 9. Mean an nual tem per a ture of near est liv ing rel a tives (NLRs) based on fos sil pol len from the 5th Czempiñ lig nite seam (af ter Utescher and Mosbrugger, 2016)

(13)

Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands 971

Fig. 10. Mean an nual tem per a ture of the near est liv ing rel a tives based on fos sil pol len from the 1st Mid-Pol ish lig nite seam (af ter Utescher and Mosbrugger, 2016)

T a b l e 2 Mean an nual pre cip i ta tion and mean monthly pre cip i ta tion in the dri est/warm est months based

on fos sil pol len from the 5th Czempiñ lig nite seam (af ter Utescher and Mosbrugger, 2016)

NLR-taxon MAPmin MAPmax MPdrymin MPdrymax MPwarmmin MPwarmmax

Taxodium sp. 290 2615 0 93 19 227

Glyptostrobus lineatus 222 1864 0 67 3 227

Se quoia sempervirens 222 1613 0 93 3 227

Cyrilla sp. 961 1520 42 56 99 196

Clethra sp. 650 3151 1 165 6 229

Trigonobalanus sp. 1217 3869 7 256 118 297

Castanea sp. 473 2336 2 93 1 304

Castanopsis sp. 397 10798 0 165 1 1100

Lithocarpus sp. 529 10798 0 64 1 1100

T a b l e 3 Mean an nual pre cip i ta tion and mean monthly pre cip i ta tion in the dri est/warm est months based on fos sil

pol len from the 1st Mid-Pol ish lig nite seam (af ter Utescher and Mosbrugger, 2016)

NLR-taxon MAPmin MAPmax MPdrymin MPdrymax MPwarmmin MPwarmmax

Taxodium sp. 290 2615 0 93 19 227

Glyptostrobus lineatus 222 1864 0 67 3 227

Se quoia sempervirens 222 1613 0 93 3 227

Cyrilla sp. 961 1520 42 56 99 196

Clethra sp. 650 3151 1 165 6 229

Mastixia sp. 1096 3293 1 132 28 248

Castanea sp. 473 2336 2 93 1 304

Castanopsis sp. 397 10798 0 165 1 1100

Engelhardia sp. 740 10798 5 152 79 1100

Fagus sp. 376 2648 3 94 5 431

Platycarya sp. 378 2500 1 80 73 431

Liquid ambar sp. 619 1823 2 93 5 195

(14)

The model of a suc ces sion of wet land sed i men - tary en vi ron ments pre sented con cerns the dis tal zone of the North Sea Ba sin, in clud ing the area of the Pol ish Low lands. Slightly dif fer ent mod els of a fen sed i men tary suc ces sion func tioned in more pro x i mal zones, where sig nif i cant ma rine in flu ence has been in di cated (paralic coal bas ins). De tailed stud ies con - ducted in the Lower Rhine Embayment (Hiltmann, 1976; von der Brelie and Wolf, 1981; Mosbrugger et al., 1994; Huhn et al., 1997) have shown that these se quences can be ex tremely vari able as a re sult of rapid changes in the ground wa ter level.

The for ma tion of thick phytogenic suc ces sions is usu ally re lated to late transgressive sys tems and early highstands, which are oc cur par tic u larly com - monly in warm cli mates (Courel, 1989; Chesnut and Greb, 1992; Davies and Hummell, 1994; Diessel, 2004).The ap pli ca tion of the near est liv ing rel a tives method re quires con sid er ation of its re stric tions, be - cause it is usu ally very dif fi cult to clearly iden tify a con tem po rary an a logue of the fos sil spe cies. Pro - gres sive evo lu tion and ra di a tion within the gen era, i.e. the or i gin of new spe cies, and a dif fer ent palaeo - ge ogra phy and at mo spheric com po si tion dur ing lig - nite for ma tion should also be taken into ac count. Dur - ing the anthra cogenic in ter val, rel a tively sta ble con di - tions pre vailed with a equa ble con tent of at mo spheric CO2 higher than the re cent level, at 450–500 ppm.

The global sea level was about 50 m higher than at pres ent. All these fac tors might have also af fected the pre vail ing con di tions, which were fa vour able for the for ma tion of ex ten sive wetlands, inter alia, in the Pol ish Low lands ter ri tory.

CONCLUSIONS

The most in tense lig nite-form ing pro cesses in the Ce no zoic of the low land part of Eu rope took place dur ing the Oligocene and Mio cene. This is an in ter val show ing gen eral con sis tent

“new” flora. In Po land dur ing this time, five main lig nite seams from the 5th to the 1st of ma jor eco nomic sig nif i cance were formed. The in ter val be gan from the cool ing at the bound ary be - tween the Eocene and Oligocene and ter mi nated with the be - gin ning of the aridisation known as the “C4 grass land event” of the Late Mio cene. Both crit i cal points are re lated to the sur pass - ing of tem per a ture lim its, which re spec tively be come: (1) too high for the pres er va tion of phytogenic de pos its, and (2) too low for the ex ten sive development of the peat-forming vegetation.

972 Jacek Rob ert Kasiñski and Barbara S³odkowska

Fig. 11. Gen er al ized pro file of the lig nite-bear ing as so ci a tion in the Zittau Ba sin, SW Po land

Sed i men tary cyclicity caused by al ter nat ing beds of phytogenic and min eral de pos its (af ter Kasiñski et al., 2010)

Fig. 12. Con tact of a lig nite seam with min eral beds A – tree roots pen e trat ing sands un der ly ing the 1st Mid-Pol ish lig - nite seam; B – tree trunks and stumps pro trud ing from the sands over ly ing the 1st Mid-Pol ish lig nite seam; Konin Lig nite Mine,

“JóŸwin I” open pit, cen tral Po land

Fig. 13. Im pact of a wa ter ta ble po si tion on phytogenic ac cu mu la tion (sedentation) in a peat-form ing area

(af ter Kasiñski, 2000)

(15)

Cli ma tic con di tions fa vour able for ex ten sive peat-form ing veg e ta tion per sisted through out the en tire in ter val of lig nite for - ma tion. Dur ing this pe riod, cli ma tic changes did not pose any ma jor ob struc tion to the anthracogenesis pro cess. How ever, in some parts of Eu rope (e.g., Lower Rhine and Kleszczów grabens) this pro cess was con tin u ous for a much longer time.

Sed i men tary cyclicity of the lig nite-bear ing suc ces sion was con trolled by auto- and allocyclic mech a nisms. Geodynamic fac tors dis rupted the dy namic equi lib rium be tween the low er ing of the depositional sur face and the phytogenic mat ter ac cu mu - la tion. De spite the still fa vour able cli mate con di tions, these geo - dynamic fac tors were re spon si ble for gaps in lig nite for ma tion.

Fac tors in flu enc ing the low er ing of the depositional sur face in - clude:

– tec tonic sub si dence,

– salt out flow and subrosion of salt domes (for de pres - sions in the salt dome over bur den),

– com pac tion of un der ly ing phytogenic mat ter, – re gional epeirogenic sub si dence,

– rais ing of the ero sional base.

Ac knowl edge ments. The au thors thank heart ily all the re - view ers: Anon y mous, W. Stankowski and T. Utescher, whose com ments con trib uted to the im prove ment the work. We par tic - u larly thank Thorsten Utescher for in sight ful com ments that helped to en rich the work and to clar ify the con clu sions.

REFERENCES

Bouroz, A., 1966. La sédimentation des séries houillÀres dans leur contexte paléogéographique. CongrÀs pour l’Avancement des Études de Stratigraphie du Carbonifére, Compte Rendu, 4: 65–78.

Chesnut, D.R., Greb, S.F., 1992. Lowstand ver sus highstand eustatic mod els for peat pres er va tion: the coal-bear ing rocks of the Breathitt Group, East ern Ken tucky. GSA Ab stracts with Pro - grams, 24: 7.

Courel, L., 1989. Organics ver sus clastics: con di tions nec es sary for peat (coal) de vel op ment. In ter na tional Jour nal of Coal Ge ol ogy, 12: 193–207.

Davidson, E.A., Janssens, I.A., 2006. Tem per a ture sen si tiv ity of soil car bon de com po si tion and feed back to cli mate change. Na - ture, 440: 165–173.

Davies, D.J., Hummell, R.L., 1994. Lithofacies evo lu tion from trans gressive to highstand sys tems tracts, Ho lo cene of the Al a - bama Coastal Zone. Gulf Coast As so ci a tion of Geo log i cal So ci - et ies Trans ac tions, 44: 145–153.

Diessel, C.F.K., 2004. Coal pe trol ogy in se quence stra tig ra phy: a re view. Ab stracts of the 21th An nual Meet ing of the So ci ety for Or ganic Pe trol ogy, 21: 66–69.

Dutta, S., Mathews, R.P., Singh, B.D., Tripathi, S.M., Singh, A., Saraswati, P.K., Banerjee, S., Mann, U., 2011. Pe trol ogy, palyno logy and or ganic geo chem is try of Eocene lig nite of Mata - nomadh, Kutch Ba sin, west ern In dia: im pli ca tions to depo si - tional en vi ron ment and hy dro car bon source po ten tial. In ter na - tional Jour nal of Coal Ge ol ogy, 85: 91–102.

Dwiantoro, M., Notosiswoyo, S., Anggayana, K., Widayat, A.H., 2013. Paleoenvironmental in ter pre ta tion based on lithotype and macerals vari a tion from Ritan’s Lig nite, Up per Kutai Ba sin, East Kalimantan. Procedia Earth and Plan e tary Sci ences, 6: 155–162.

Dyjor, S., Sadowska, A., 1977. Prob lem of the age and cor re la tion of Up per Mio cene brown coal seams in the west ern Po land (in Pol ish with Eng lish sum mary). Geologia Sudetica, 12: 121–136.

Ed wards, E.J., Osborne, C.P., Strömberg, C.A.E., Smith, S.A., C4 Grasses Con sor tium, 2010. The or i gins of C4 grass lands:

in te grat ing evo lu tion ary and eco sys tem sci ence. Sci ence, 328:

587–591.

Grabowska, I., 1969. Rewizja pozycji stratygraficznej osadów wêglo wych z rejonu RogóŸna na podstawie analizy sporowo - -py³kowej (in Pol ish). Manu script, Na tional Geo log i cal Ar chive, no. 4129/812, Warszawa.

Hager, H., 1986. Peat ac cu mu la tion and syngenetic clastic sed i men - ta tion in the Ter tiary of the Lower Rhine Ba sin, FR Ger many.

Mémoires de la Société Géologique de France, N.S., 149: 51–56.

Hager, H., 1993. The or i gin of the Ter tiary lig nite de pos its in the Lower Rhine re gion, Ger many. In ter na tional Jour nal of Coal Ge - ol ogy, 23: 251–262.

Hager, H., Kothen, H., Spann, R., 1981. Zur Setzung der Rheini schen Braunkohle und ihrer klastischen Begleitschichten. Forts chritte in der Geologie von Rheinland und Westfalen, 29: 319–352.

Haubald, H., 1989. Die Referenzfauna des Geiseltalium, MP Lev els 11 bis 13 (Mitteleozän, Lutetium). Palaeovertebrata, 19: 81–93.

Hiltmann, W., 1976. Pollenanalytische Untersuchungen im Rheini - schen Hauptbraunkohlenflöz der Tagebaue Frechen und For - tuna unter besonderer Berücksichtigung der makropetro gra - phischen Ausbildung der Kohle. Ph.D. theisis, Rheinisch - -Westfalische Rheinische Hochschule, Aachen.

Huhn, B., Utescher, T., Ashraf, A.R., Mosbrugger, V., 1997. The peat-form ing veg e ta tion in the Mid dle Mio cene Lower Rhine Embayment, an anal y sis based on palynological data. Pro ceed - ings of the 4th Eu ro pean Palaeobotany and Palynology Con fer - ence: the peat-form ing veg e ta tion in the Mid dle Mio cene Lower Rhine Embayment, 58: 211–218, TNO, The Hague.

Kasiñski, J.R., 1983. Mech a nisms of cy clic sed i men ta tion of Ter - tiary sed i ments in de pres sions in the Sudetic fore land (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 31: 237–243.

Kasiñski, J.R., 1985. Synsedimentary tec ton ics as a fac tor con trol - ling sed i men ta tion of brown-coal for ma tion in tec tonic de pres - sions in west ern Po land. In: Solid Fuel Min eral De pos its (ed.

V.S. Borisov). Pro ceed ings of the 27th In ter na tional Geo log i cal Con gress, Mos cow, 14: 247–279, VNU Sci ence Press.

Kasiñski, J.R., 1991. Ter tiary lig nite-bear ing fa cies of the Zittau Ba - sin: Ohøe rift sys tem (Po land, Ger many and Czecho slo va kia).

IAS Spe cial Pub li ca tions, 13: 93–107.

Kasiñski, J.R., 2000. Geo log i cal At las of the Ter tiary Lig nite-Bear - ing As so ci a tion in the Pol ish Part of the Zittau Ba sin. Pañstwowy Instytut Geologiczny, Warszawa.

Kasiñski, J.R., Piwocki, M., 2002. Low rank coals in Po land:

prospection – min ing – prog ress. Pol ish Geo log i cal In sti tute Spe cial Pa pers, 7: 17–30.

Kasiñski, J.R., Saternus, A., 2010. Oligoceñskie wêgle brunatne w nadk³adzie wysadów solnych na Ni¿u Polskim (in Pol ish). In: 33.

Symp.: “Geologia formacji wêglonoœnych Polski” (ed. I. Lipiar - ski): 21–33, Wyd. Akademii Górniczo- Hutni czej, Kraków.

Kasiñski, J.R., Ziembiñska-Tworzyd³o, M., 1998. Geo log i cal char - ac ter is tics of the Turów de posit in the Zittau Ba sin and the flora of the “Turów” brown-coal opencast mine. In: Ter tiary-Qua ter - nary (Pleis to cene) flo ras of Be³chatów (Mid dle Po land) and sev - eral lo cal i ties in south-west ern Po land (eds. A. Sadowska and A. Szynkiewicz): 26–37. The 5th Eu ro pean Palaeobotany and Palynology Con fer ence, Pol ish Acad emy of Sci ences, Szafer In - sti tute of Bot any, Kraków.

Kasiñski, J.R., Czarnecki, L., Frankowski, R., Piwocki, M., 2000.

Ge ol ogy of the Be³chatów Lig nite De posit and en vi ron men tal im - pact of ex ploi ta tion. In: 4th Eu ro pean Coal Con fer ence – guide to field trips (eds. J. Jureczka and J.R. Kasiñski): 40–65.

Pañstwowy Instytut Geologiczny, Warszawa.

Kasiñski, J.R., Czapowski, G., Piwocki, M., 2009. Halokinetic im - pact on or i gin of the Ter tiary lig nite de pos its on the Pol ish Low - Fac tors con trol ling Ce no zoic anthracogenesis in the Pol ish Low lands 973

(16)

lands (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 57: 964–975.

Kasiñski, J.R., Piwocki, M., Swadowska, E., Ziembiñska - -Tworzyd³o, M., 2010. Char ac ter is tics on the base of se lected pro files (in Pol ish with Eng lish sum mary). Biuletyn Pañstwo - wego Instytutu Geologicznego, 439: 99–153.

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006.

World Map of Köppen Gei ger Cli mate Clas si fi ca tion up dated.

Meteorologische Zeitschrift, 15: 259–263.

Kuhlmann, G., Langereis, C.G., Munsterman, D., Leeuwen van, R.J.W., Verreussel, R., Meulenkamp, J.E., Wong, T.E., 2006.

Chronostratigraphy of Late Neo gene sed i ments in the south ern North Sea Ba sin and paleoenvironmental in ter pre ta tions. Palaeo - ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 239: 426–455.

Lietzow, A., Paul, J., Ritzkowski, S., Schmidt, B., 1990. Ma rine Ingressionen in der eozänen Halle-Helmstedter Bucht als Anzeiger für Meerespiegelschwankungen. Nachtrichten der Deutschen Geologischen Gesellshaft, 43: 138–139.

Lenz, O.K., Riegel, W., 2001. Isopollen maps as a tool for the re - con struc tion of a coastal swamp from the Mid dle Eocene at Helmstedt (North ern Ger many). Fa cies, 45: 177–194.

Meiburg, P., 1980. Subrosions-Stockwerke im Nordhessischen Bergland. Aufschluss, 31: 265–287.

Mosbrugger, V., Utescher, T., 1997. The co ex is tence ap proach – a method for quan ti ta tive re con struc tions of Ter tiary ter res trial palaeoclimate data us ing plant fos sils. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 134: 61–96.

Mosbrugger, V., Gee, C.T., Belz, G., Ashraf, A.R., 1994. Three-di - men sional re con struc tion of an in-situ Mio cene peat for est from the Lower Rhine Embayment, north west ern Ger many – new meth ods in palaeovegetation anal y sis. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 110: 295–317.

Osborne, C.P., 2008. At mo sphere, ecol ogy and evo lu tion: what drove the Mio cene ex pan sion of C4 grass lands? Jour nal of Ecol ogy, 96: 35–45.

Pearson, P.N., Fos ter, G.L., Wade, B.S., 2009. At mo spheric car - bon di ox ide trough the Eocene-Oligocene cli mate tran si tion.

Na ture, 461: 1111–1113.

Pes ter, L., 1967. Übersicht über die Braunkohlenlager stätten im Gebiet zwischen Halle, Lepzig und Bitterfeld. Berg bautechnik, 17: 113–120.

Piwocki, M., 1992. Ex tent and cor re la tion of main groups of the Ter - tiary lig nite seams on Pol ish plat form area (in Pol ish with Eng - lish sum mary). Przegl¹d Geologiczny, 40: 281–286.

Piwocki, M., 1998. Char ac ter is tics of the IV D¹browa Lig nite Seams Group in the Lower Mio cene in Po land (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 46: 55–61.

Piwocki, M., Ziembiñska-Tworzyd³o, M., 1997. Neo gene of the Pol ish Low lands – lithostratigraphy and pol len-spore zones.

Geo log i cal Quar terly, 41 (1): 21–40.

Piwocki, M., Kramarska, R., Badura, J., Przybylski, B., Kasiñski, J.R., 2004. Ni¿ Polski i jego po³udniowe obrze¿enie (in Pol ish).

In: Budowa geologiczna Polski. 1. Stratygrafia. 3a. Kenozoik.

Paleogen, neogen (eds. T.M. Peryt and M. Piwocki): 13–201.

Pañstwowy Instytut Geologiczny, Warszawa.

Riegel, W., Lenz, O.K., Wilde, V., 2015. From open es tu ary to me - an der ing river in a green house world: an ecologic case study from the Mid dle Eocene of Helmstedt, North ern Ger many.

Palaios, 30: 304–326.

Schäfer, A., Utescher, T., 2014. Or i gin, sed i ment fill, and se quence stra tig ra phy of the Ce no zoic Lower Rhine Ba sin (Ger many) in - ter preted from well logs. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 165: 287–314.

Singh, S., Awasthi, A.K., Parkash, B., Kumar, S., 2013. Tec ton ics or cli mate: What drove the Mio cene global ex pan sion of C4 grass lands? In ter na tional Jour nal of Earth Sci ences, 102:

2019–2031.

S³odkowska, B., 1998. Palynological char ac ter is tics of the Neo - gene brown coal seams. Prace Pañstwowego Instytutu Geolo - gicznego, 160: 28–33.

S³odkowska, B., 2014. The Mio cene cli ma tic changes in the west - ern Po land in the palynological re cord”. Ab stract vol ume 9th Eu -

ro pean Palaeobotany – Palynology Con fer ence, 26–32 Au gust 2014, Padova, It aly: 251.

S³odkowska, B., Kasiñski, J.R., 2016. Paleogene and Neo gene – a time of dy namic changes of cli mate (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 64: 15–25.

Stuchlik, L., Ziembiñska-Tworzyd³o, M., Kohlman-Adamska, A., Grabowska, I., S³odkowska, B., Sadowska, A., 2001. At las of pol len and spores of the Pol ish Neo gene, 1 – Spores. W. Szafer In sti tute of Bot any, Pol ish Acad emy of Sci ence, Kraków: 5–158.

Stuchlik, L., Ziembiñska-Tworzyd³o, M., Kohlman-Adamska, A., Grabowska, I., Sadowska, A., 2002. At las of pol len and spores of the Pol ish Neo gene, 2 – Gym no sperms. W. Szafer In sti tute of Bot any, Pol ish Acad emy of Sci ence, Kraków: 3–237.

Stuchlik, L., Ziembiñska-Tworzyd³o, M., Kohlman-Adamska, A., Grabowska, I., S³odkowska, B., Wa¿yñska, H., Sadowska, A., 2009. At las of pol len and spores of the Pol ish Neo gene, 3 – An gio sperms (1). W. Szafer In sti tute of Bot any, Pol ish Acad emy of Sci ences, Kraków: 3–233.

Stuchlik, L., Ziembiñska-Tworzyd³o, M., Kohlman-Adamska, A., Grabowska, I., S³odkowska, B., Worobiec, E., Durska, E., 2014. At las of Pol len and Spores of the Pol ish Neo gene, 4 – An - gio sperms (2). W. Szafer In sti tute of Bot any, Pol ish Acad emy of Sci ence, Kraków: 3–466.

Utescher, T., Mosbrugger, V., 2016. The Palaeoflora Da ta base. At http://www.geologie.unibonn.de/Palaeoflora

Widera, M., 2002. An at tempt to de ter mine con sol i da tion co ef fi cient of peat for lig nite seams (in Pol ish with Eng lish sum mary).

Przegl¹d Geologiczny 50: 42–48.

Widera, M., 2004. Phases of Palaeogene and Neo gene tec tonic evo lu tion of se lected grabens in the Wielkopolska area, cen - tral-west ern Po land. Annales Societatis Geologorum Poloniae, 74: 295–310.

Widera, M., 2015. Com pac tion of lig nite: a re view of meth ods and re sults. Acta Geologica Polonica, 65: 367–378.

Widera, M., Ha³uszczak, A., 2011. Stages of the Ce no zoic tec ton - ics in cen tral Po land: ex am ples from se lected grabens.

Zeitschrift der deutschen Gesellshaft für Geowissenschaften, 162: 203–215.

Widera, M., Jachna-Filipczuk, G., Kozula, R., Mazurek, S., 2007.

From peat bog to lig nite seam: a new method to cal cu late the con sol i da tion co ef fi cient of lig nite seams, Wielkopolska re gion in cen tral Po land. In ter na tional Jour nal of Earth Sci ences, 96:

947–955.

Wilde, V., Hellmund, M., 2010. First re cord of gut con tents from a mid dle Eocene equid from the Geiseltal near Halle (Saale), Sachsen-Anhalt, Cen tral Ger many. Palaeobiodiversity and Palaeoenvironments, 90: 153–162.

Von der Brelie, G., Wolf, M., 1981. Zur Petrographie und Palyno - logie heller und dunkler Schichten im rheinischen Hauptbraun - ko hlen floez. Fortschritte in der Geologie von Rheinland und Westfalen, 29: 95–163.

Zachos, J.C., Pagani, M., Sloan, L.C., Thomas, E., Billups, K., 2001. Trends, rhythms, and ab er ra tions in global cli mate 65 Ma to pres ent. Sci ence, 292: 686–693.

Zachos, J.C., Dick ens, G.R., Zeebe, R.E., 2008. An early Ce no zoic per spec tive on green house warm ing and car bon-cy cle dy nam - ics. Na ture, 451: 279–283.

Zagwijn, W.H., Hager, H., 1987. Cor re la tion of con ti nen tal and ma - rine Neo gene de pos its in the South east ern Neth er lands and the Lower Rhine dis trict. Mededelingen van der Werkgroep voor Tertiaire en Kwartaire Geologie, 24: 59–78.

Ziembiñska- Tworzyd³o, M., Grabowska, I., Kohlman-Adamska, A., Skawiñska, K., S³odkowska, B., Stuchlik, L., Sadowska, A., Wa¿yñska, H., 1994a. Tax o nom i cal re vi sion of se lected Pol - len and spores taxa from Neo gene de pos its. Acta Palaeo bo - tanica, Suppl., 1: 5–30.

Ziembiñska-Tworzyd³o, M., Grabowska, I., Kohlman-Adamska, A., Sadowska, A., S³odkowska, B., Stuchlik, L., Wa¿yñska, H., 1994b. Check list of se lected gen era and spe cies pol len grains or dered in mor pho log i cal sys tem. Acta Palaeobo tanica, Suppl., 1: 31–56.

974 Jacek Rob ert Kasiñski and Barbara S³odkowska

Cytaty

Powiązane dokumenty

The most important social variables fostering development of relation- ships are trust, commitment, frequent interpersonal contacts, shared norms and values, quality of

Strati graphic range charts of foraminifera spe cies from the Oxfordian de pos its of the Pol ish Low lands (cen tral, south ern and east ern Po land); the Submediterranean stan

According to the present investigation, the vast deep depressions near Surai, infilled with lake and marsh deposits (lake clay, gyttja, muds and peats; the peatbog

The over all lithofacies pat tern of the Up per Cre ta ceous- Danian suc ces sion shows a gen eral trend of con tin u ous car bon - ate/chalk sed i men ta tion in the west

Nev er the less, Late Cre ta ceous and Ce - no zoic intraplate de for ma tions re corded in the Pol ish Low - lands, the Carpathian Fore land and the Outer Carpathian Ba sin tes

Moreover, two ramiform species have been deter- mined: Ozarkodina tortilis Tatge (PI. Characteristic feature of Neogondolella cornuta Budurov et Stefanov is a

Comparison of thickness maps of Albian and Cenomanian deposits (Figs. 4 and 5) shows continuity of the general tendencies in the northeastern part of the investigated area

On the other hand if M G is very low (for a value of d equal to 0), the distance from which the gravity represented by the mass M G has no longer an effect will be very low