• Nie Znaleziono Wyników

On a dusty-gas shock tube

N/A
N/A
Protected

Academic year: 2021

Share "On a dusty-gas shock tube"

Copied!
82
0
0

Pełen tekst

(1)

- 4 JAN. i962 ON A DUSTY-GAS SHOCK TUBE

TECHNISCHE HOGESCHOOL DElFT

WCHTVAART· E RU:Mr 'AARTïECHNIEK by BIBlOTH ë

Kluyverweg 1 - DELFT

H. Miura and I. I. G1ass

May, 1981

UTIAS Report No. 250

(2)

Submitted February, 1981

"

ON A DUSTY-GAS SHOCK TUBE

by

H. Miura and I. I. G1ass

(3)

0/

Acknowledgements

We wisb to express our appreciation to Mr. T. Saito for valuable advice on using tbe random-cboice metbod for tbis problem.

One of us (H. Miura) is grateful to tbe University of Osaka Prefecture, Sakai, Japan, for making possible bis leave at UTIAS.

Tbe financi~ support received from tbe Natural Sciences and Engineering

Researcb Council of Canada, tbe U.S. Air Force under Grant AF-AFOSR-T7-3303, tbe U.S. A:rmy Researcb Office, and tbe Defence Researcb Establishment, Suffield, is acknowledged wi tb tbanks.

ii

(4)

S~y

Analytical and numerical methods were used to investigate the flow induced by a shock wave in a shock-tube channel containing air laden with suspended small

solid particles. Exact results are given for the frozen and equilibrium shock-wave properties as a function of diaphragm-pressure ratio and shock-shock-wave Mach numbers. The driver contained air at high pressure. A modified random-choice method together with an operator-splitting technique show clearly both the decay of a discontinuous frozen shock wave and a contact discontinuity and the forma-tion of a staforma-tionary shock structure and an effective contact front of finite thickness.

The effects of particle diameter, particle-number density and diaphragm-pressure ratio on the transitional behaviour of the flow are investigated in

detail. The alteration of the flow properties due to the presence of particles is discussed in detail and compared with classical shock-tube flows.

(5)

,--- -1. 2.

3.

4.

Acknow1edgements Sunnnary Notation INI'RODUCTION ANALYTICAL CONSIDERATIONS

RES~S AND DISCUSSIONS

CONCLUSIONS Contents Page i i Ui v 1 2

5

9

REFERENCES 11

APPENDIX A: LIST OF NUMERICAL PRmMM APPENDIX B: FROlEN AND EQUILLBRTIJM FLOWS

APPENDIX C: NONEQUILIBRIUM SHOCK-TUBE PROFILES USING STOKES' DRAG

LAW

TABLES

FIGURES

(6)

m

~

p Q R T t u u s v x Notation

=

equilibrium speed of sound

=

frozen speed of sound

=

specific heat of solid material

=

gas specific heat at constant pressure

=

gas specific heat at constant volume

=

drag force acting on a particle

=

dirumeter of particles

=

gas thermal conductivity = reference length

[Eq.

(22)]

=

mass of a particle

=

particle number density

=

gas pre s sure

=

rate of heat transfer to a particle

=

gas constant

=

gas temperature

=

ti~ from diaphragm rupture

=

gas velocity

=

propagation velocity of shock wave

=

velocity of particles

=

space coordinate measuredfrom diaphragm

=

temperature of particles

= gas viscosity

=

gas densi ty

=

density of solid partieles

=

mass concentration of partieles

(7)

Dimensionless Quantities

CD

=

dreg coefficient of a particle

M = u lalf or u/al

s s s e

Nu

= Nusselt number of apartiele

P

= P/Pl

P2l

=

p/pl

P

4l

= P4 /Pl

Pr

= gas Prandtl number

Re = Reynolds number of a parti cle

T

=

T/Tl or El/Tl T2l

=

T2/Tl T3l

= T3/Tl

U

= u/~ or v/~

U2l

=

~/al X

= xlt

a

= ratio of mass concentrations of partieles to gas [Eq. (19)]

13

= ratio of speeific heats of two phases [Eq.

(18)]

ï'

=

gas specifie heat ratio

ï'e

=

specifie heat ratio of an effective perfect gas

r

=

p/~ or cr/crI

r

2l

=

p!P

l

r3l

=

p/p

l

T ::11 t/U/alf)

Note: P 21' l'2l' U2l and

r

21 can have frozen and equilibriumvalues; at equilibrium

r

2l

=

P

2/Pl

=

CT

2

/CT

I •

(8)

1. INrRODUCTION

When a gas carries a lot of solid particles, they significantly affect the flow through the transfer of momentum and heat from or to the gas. Shock waves propagating in such a dusty gas are characterized by a transition region orders thicker than that caused by viscosity and heat conduction in a pure gas. Across the transition front, the interaction of the gas and the particles leads to an equilibrium state of the mixture. The structure of stationary shock waves (Refs.

1-5)

and its format ion by a moving piston (Refs.

5, 6)

have been studied theoretically on the assumption th at the formulae for the drag and the rate of heat transfer for a single spherical particle placed in a steady flow can still be applied to the motion of many particles conta±ned in a dusty gas.

Some experimental studies of shock waves in a dusty gas inside a shock tube were done in order to get some data on the interaction of the two phases (Refs. 7-10). Some of the results showed an effective drag coefficient, obtained from the observation of the acceleration of the particles behind the shock waves, which differed appreciably from that for a single parti ele. However, tre re were many factors influencing" the results and a definitive conclusion on the

appropriate drag coefficient to be used is not available as yet.

Recently, numerical analyses foilowed these experimental studies. The shock-tube problem for a dusty gas was solved numerically by Otterman and Levine (Ref. 11) using the particle-in-cell methode They investigated the difference in the transient flow field due to different assumptions of the drag and the heat transfer coefficients. Outa, Tajima and Morii (Ref. 10) made a numerical analysis of the penetration of a shock wave into a dusty-gas region for comparison with their experiment al results • Satofuka and Tokita

(Ref. 12) discussed the efficiency of various numerical techniques applied to the case when both sides of a diaphragm are filled with a dusty gas.

The work of Otterman and Levine provided a rough sketch of the transient flow behaviour in a shock tube. However, they treated cases of unusually high mass-loading ratio and their numerical results include obscure points regarding the frozen shock front and the delay of particle acceleration.

At present, a more extensi ve and clear analytical study is required for comparison with experimental results. In this paper, we consider the classical problem qf the shock tube where the driver contains high-pressure air and the channelcontains a dusty gas, as would be the case in actual experiments • The effects of the ratio of mass concentrations, the size of the particles and the diaphragm pressure ratio upon the flow characteristics are fully discussed. Working curves are produced for the physical properties as a function of the initial conditions and the diaphragm pressure ratio. The transitions through the shock front and contact region as well as the rarefaction wave are studied in detail as functions of time. Some of the randonmess produced by mesh size and drag relations on physical properties are also shown.

The study of shock waves in dusty gases provides a good introduction to real-gas effects. Frozen shock waves, transition to equilibrium flow, frozen and eqVi~ibrium sound speeds and dispersed shock waves are all encountered and weil illustrated by analogy with re al-gas flows.

(9)

2. ANALYTICAL CONS]])ERATIONS

We consider the transient flow occurring af ter diaphragm rupture in a shock tube (Fig. 1). In order to formulate the motion of the mixture, we must make several assumptions (Refs. 1-6). The gas is assumed perfect and

its viscosity and heat conductivity are neglected except for the interaction

with the particles • The particles are assumed to be spheres of uniform size and their number' is so large that the flow may be treated as a continuum.

The volume occupied by the particles is neglected.

Let p, p, T, u be the pressure, density,temperature and velocity of the

gas, and ~, 8, v be the mass concentration, temperature and velocity of the

particles, respectively. Using the assUlDptions stated abave, we can express

the equations of motion of mass, monentum and energy for either the gas or the particles as follows:

op

+

0 (

u)

=

0

dt

di

p

o~

0

öt+öX(ov) =0

The thermally perfect equation of state for the gas is given by

p

=

pRT (1) (2) (3)

(4)

(6)

The interaction of the two phases is incorporated in the terma of the drag

and the heat transfer on the right-hand sides of Eqs.

(3)-(6).

Specification

of the dependence of D end Q on the flow quantities is needed to obtain a closed

set of equations. While various formulae valid for a single sphere exist (Refs.

3, 4),

attention should be paid to the fact that in the present transient case the Reynolds number of the particle takes on a high value initially because of the large difference in velocity between the two phases. We assume that

(10)

D

d2

p(U_V)

lu-v lCD

=

É

d2

p(U_V)

lu-v 1(0.48 + 28 Re-O. 85 )

for the drag (Ref. 13) and

-1

Q

=

77$C Pr (T-9)Nu p

-1 1/3 1/2

=

~~C p Pr (T-8)(2.0 . + 0.6 Pr Re )

(8)

for the heat transfer (Ref. 14), where Re is the Reyno1ds number based on the diameter of the partic1e and the re1ative velocity of the partic1e to the gas

Re = p lu-v /d/Il (10)

and Pr ts the Prandt1 number

(11) The viscosity and the thermal conductivity of the gas are assumed constant

for stationary shock waves (Ref.

9),

since the change in temperature of the gas is smal1 overthe re1axat1on region. In the present case, however, the particles interact not only with a hot compressed gas between the shock front and the

contact front but alsq wi th a co1d expanding gas behind the contact front. In addition, the temperature of the gas varies with time. Therefore, the variations of the viscosity and the thermal conductivity with temperature must be taken into account. With /3.ir (Ref. 15) inside the tube

-4

(T

)o:rr

Il

=

1.71 x 10 x 273 poise (12)

and

Pr = 0.75 (13)

The high pressure air in the driver obeys Egs. (1), (3) and (5) with

cr

=

0, and Eg. (7).

The initia! conditions at t

=

°

are as fo11ows:

L

=.e... =.!....

=2:....

=!L =

1 P1 P1 Tl CT1 Tl '

R..

-

P T P4 - P4

=

T

:::

1, u

=

v

=

°

for x

>

°

(14)

°

°

(11)

It is assumed here that the gas and the particles initia11y are in equili-brium. The system of equations (1)-(7) for seven unknowns (p, P, T, u,

rr,

8, v) together with the supp1ementary equations (8)-(13) subject to the initiaJ. conditions can be solved n1llOOricaJ.1y. We app1y the random-choice method (Refs. 16-19) to the present prob1em, for it describes discontinuities

c1early without the use of imp1icit or explicit artificia1 viscosity. AD.

operator-sp1itting technique makes its app1ication possib1e (Refs. 18, 19). The solution is obtained by solving the two sets of equations alternate1y in eachtime step, that is, the equations derived from Eqs. (1)-(6) with the right-hand sides omitted and the equations obtained by omitting the deriva-tives with respect to

x.

~he element of the randam-choice method, which solves the former set, is to determine by means of random sampling the solution at the middle point between the two adjacent points where the solution is known at a previous time. The initia1 condition in this calculation is taken as a step-1ike

di scontinui ty • The procedure for the gas phase has been wri tten in a few papers (Refs. 17-19) and is omitted in this paper.

On the other hand, a difficulty arises in the treatment of the equations for the particles in this stage, which are reduced to

orr

+

0

(crv)

=

0

dt

dx

Cv

dv

dt

+v

öx

08

+

08

dt

vöX

= 0

=

0 (15)

A discontinuous initia1 condition would result in a multivalued solution for the velo city v. The flow variables of the particles are continuous and we assume the initial condition of 1inear distribution only for the particles in order to avoid this difficulty. Consider two adjacent points with distance

b;x. apart, where the solution is known. We take the fo11owing initlal

condi-tions:

(16)

where the sUbsCfipts r and

t

refer to the two ~oints x

=

± ~ ~ (for convenience), respective1y. The solution of Eq. (15) subject to the condition (16) is given by

(12)

1

{(Vr v,t)x

+~

(vr +

V-t)}

v

=

(Vr - V-t)t

!:sx. +

El

=

fiX + (v - v-t)t 1 {(er - e )x ,t +!:sx. 2 (er + e,t) + (8.tvr - erv -t)t} (17) I :t' r 7 ~ t,;x 2 {(cr - cr,g)x +

~

(cr - crrV-t)t} ..

-+ cr,t) + (cr-tVr Iq'= (!:sx. + (Vr _ V-t)t} r r

Random sampling of the solution between the two points determines the values of flow variables at the middle point a little time later. Two repetitions of this procedure bring ab out a time evolution by a time step, say, llt. The time step must be appropriately small so that the so-called Courant-Friedrichs-Lewy condition is satisfied, otherwise the result loses physical meaning.

Al-though most points are treated in this way, the point bordering the region of the dusty gas is an exception. Since the diffusion of concentration is not considered, we must take a discontinuous initial condition at this point so as to get a clear boundary of the particle cloud.

The other portion of the operator-splitting tecQnique is accomplished by integration of the equations with respect to time. This procedure must be carefully done for maving discontinui ties, because it may produce a significant error of the first order. Consider the case when a discontinuous surface

passes across a point in a time of llt. The surface should be regarded to have moved over the distance !:sx. between the middle points on both sides of the point. Therefore, the contribution to the integration in llt at the point must be

con-sidered separately for the two halves of

!

llt.

3 •

RESULTS AND DISCUSSIONS

An assignment of several parameters is needed for the numerical calculations. We take air (1 = 1.4) as the gas in both the driver and the driven sections. The

gas is assumed to be at room temperature (Tl

=

T4) before diaphragm rupture. The

i~tial p:r8Fsure Pl in the driven section is taken to be one atmosphere. Further,

we: res,trict ourl3elves to the case where the ratio of specific heats of the two p~ses

(18)

is unity. The remaining factors, on which flow behaviours depend, are the ratio of mass concentration

(19)

the diameter of the particles d and the diaphragm pressure ratio

!

(13)

The results for the case of ex

=

1, d

=

10 !-lm and P4l

=

10 are presented

in Figs. 2-6. Normalized quantities are used in all the figures. Flow

quan-tities, except the velocity, are referred to corresponding values in the stationary regiop (1) ahead of the shock wave. The velocity is normalized by the speed of ~ound in the gas phase, i.e., the so-called frozen speed of

sound:

(21) The distance x is also measured in units of

8m 4 Pp

i

=

7TPl d 2 =

'3 •

P l d

(22)

and the time t in t/alf • [Note the value of

t

can be obtained from Eq. (4)]. Numerical calculations have been done in the manner stated in the previous section. A mesh size ~ of 0.1 is used together with time step ~t as large as the Courant-Friedrichs-Lewy condition may allow.

Flow structures af ter a small time has elapsed af ter the diaphragm rupture are shown in Fig. 2, for the case of P4l

=

10, a

=

1, d

=

10!-lm for "a time T

=

4.

Under these conditions with Pl = 1 atm and Tl = 300 K, using glass beads, the "

number density to provide ~

=

1 would be 0.94 x 106jcc;

t

=

2.72 cm; alf

=

350

mjs

and T

=

4

=

3.11 x 10-4 sec (see Table 1 for further details). The dashed lines arefor the classical shock-tube problem. The solid lines show the frozen

shock wave as an abrupt change followed by a gradual approach to equilibrium. In this case the flow is far from equilibrium. Note in Fig. 2(b) the particle concentration rises gradually though the shock fron~ reaches a maximum at the contact front and then drops to zero at the driver gas. It should be noted that the rarefaction is weaker than for the gas case only. In addition there are spurious numeri cal oscillations near the tail of the wave in all flow properties.

" Ön1y the gas" responds to the abrupt change at the instant of diaphragm rUpture, -while the particles cannot folow any sudden change. Af ter the frozen shock front has passed by, the velocity and temperature of the particles are raised gradually through interaction with the gas. On the other hand, the gas is decelerated and loses energy. A comparison of the results with the so~ution

for a pure gas exhibits a decay of the frozen shock front due to this inter-action. The velocity of propagation of the shock wave also diminishes as can be seen by looking at the values of X for both cases. The deceleration of the gas results in a compression and its pressure away from the frozen shock front attains a higher value than in the case of a pure gas. The

rarefaction wave weakens as aresult. Same particles cross the frozen contact surface and drop to zero in the cold gas. Thus the temperature of these particles drops. However, the gas temperature [see Fig. 2(c)] also drops but not as low as for the frozen flow since the particles act as a heat reservoir.

Stibsequent transitional behaviours of the physical quantities are shown in Figs. 3-5 for increasing time T. Both the velocities and temperatures of the gas

and the particles bebind the frozen shock front approach each other wi th time and a new uniform region in equilibrium forms some distance behind the discontinuous frozen shock front. An almost stationary shock structure of finite thickness can be seen in Fig. 5. For our case of Pp

=

2.5 g/cm3 , this state is attained

(14)

..

af ter

2.49

'

x

10-3

sec and the thickness of the shock transition is about

34

cm. If, for example, Pp is made smaller for

a

=

1, the particle number density will increase and the transition length will decrease.

It is very useful to assume that everywhere the particles reach the equili-brium-flow limi~ of the gas velocity and temperature • This must occur because the flow except for relaxation regions of finite length must approach this limit after a sufficil:lnt time elapses. The mixture in this limit behaves effectively as a perfect gas with the specific heat ratio given by (Ref.

4)

re

=

(r + C43)/(1 + C43)

(23)

and the speed of sound by

(24 )

The shock-tube solution for this equilibrium-flow limit is also shown in Fig. 5

for comparison. ' The agreement of the equilibrium flow limit and the nUIDerical results is very good indeed. Besides the relaxation region of the shock wave, the contact surface also has a structure of finite thickness. The particles in this layer are in equilibrium with the gas. The structure of the effective contact surface must depend on how the particles have interacted with the gas.

A wave di&gram is shown in Fig.

6.

The paths of the discontinuous frozen and equilibrium shock fronts are shown. For comparison the present numerical results are also shown. As noted on Fig.

6,

the present data shows the relaxa-tion distance between the present frozen shock and the idealized equilibrium gas-particle front. It shows that the present frozen shock moves at a velocity closer to the idealized equilibrium shock front than the perfect gas frozen shock wave af ter a sufficient time has elapsed. At times close to zero it would move closer to the perfect gas shock.

The path of the contact surface has been made possible by choosing a point on its transition region such that the temperature equals the original

gas temper~ture Tl. Consequently, the results by definition must lie on our

equilibrium contact front path for convenience of illustration. The results for the tail of the rarefaction wave were obtained by extrapolating the

straight lines of the pressure curves in regions (2) and (3) the uniform states, unt~l it hit the rarefaction wave profile. It can b~ seen that the agreement with the idealized equilibrium value is very good by large. Note that the t~l of this wave is weaker than the perfect gas tail. Of course the head of the rarefaction wave is identical for all three flows as shown.

The changes in temperature and pressure of the gas immediately behind the frozen shock front as it moves are shown in Fig.

7.

They start from values for a pure gas and approach finally the values calculated fram the shock speed attained in the idealized equilibrium-flow limit.

(15)

Small randam disturbances in the numerical results are characteristic of the use of the random-choice method. Taking a smaller mesh size makes

the disturbances smaller. (We ' confirmed this by comparing the results wi th

those for a half and quarter-size mesh smaller, although only for a short

time owing to th~ increased cost of the camputations - see Figs. 8 and 9.)

It should be noted that the thermal equilibration between the two phases is achieved faster than the equilibration of velocity (see Figs. 2c, d and

3c, d). This fact is also reflected in th at longer length fram the discontinuous shock front is needed for velocity equilibration than for temperature equilibra-tion (see Figs. 5c and 5d).

Next, we investigate the influence of the size of the particles on the

transition of the flow. The results for the cases of d

=

20 ~m (see Figs.

10-12) and d = 40 ~m (see Figs. 13-15) with other parameters unchanged, are

shown in Figs. 10-15, respectively. It is interesting to find almost similar

flow fields at T = 4 in the three cases of 10-40 ~m. Note that the actual

times and distances are different for different particle diameters, being proportional to the diameter according to Eq. (22). This is nearly true for

later times as well. This similarity may be related to the constancy of the

drag coefficient of the particles for large Reynolds nunbers. The rate of heat transfer is much greater for smaller particles. For example, a comparison

of Figs. 2c and l3c soon show that the 10 ~m particlediffers greatly from the

frozen value but the 40 ~m particle is very close to the frozen value.

The results at T = 32 may be compared with the structure of a stationary

shock wave. It can be seen that the stationary shock values are almost'

achieved. The length of the relaxation region is naturally longer for larger particles on account of their larger inertia. Alternatively, the relaxation length depends on the diameter d [Eq. (22)]. However it is found to lie between d and d2 • As seen fram Figs. 7, 12 and 15, the time required for the stationary shock wave to form also depends on the diameter of the particles. However, it

is not a linear relation. The time T for the 20 ~m particle to achieve

equili-brium is much less than a factor of two for the 10 ~m particles. Nevertheless

the actual time is longer than two but less than four.

Calculations have been done for cases of different ratios of mass

concen-trations with the remaining parameters the same as the first case. The results

for

a

= 0.4 and

a

= 2.0 are shown in Figs. 16-18 and 19-21 respectively. It

can be seen fram comparison of the flow fields at T = 4 that a larger mass

concentration of particles causes in the gas phase larger deviations fram the

frozen flow. However, the final quasi-equilibrium state is accamplished more

quickly when

a

is smalle For example, compare median curves through Figs. 18,

7 and 21 and it will be clear that equilibrium is faster for the small loading

ratio

a

= 0.4. The effect of the mass concentration of particles on the

thick-ness of the stationary shock wave is not so apparent. In the case when

a

= 2.0,

the propagation of the shock wave becames so slow that the discontinuous jump

in the gas phase cánnot be supported (see Fig. 20). The transition to the fully dispersed shock wave is characteristic of this case. The contact surface consists of a region of dusty gas of finite thickness which is followed by a discontinuity in the gas phase (see Figs. 20b and 20c).

The difference in transi tional behaviour due to the strength of the diaphragm pressure ratio is studied next. The results for the cases of P4l = 5.0 and P41= 20.0 are shown in Figs. 22-24 and 25-27, respectively. The length of the relaxation

(16)

region of the stationary shock wave forming af ter a sufficient time is larger

for weaker shock waves (see Figs. 23 and 26), i.e., smaller diaphragm pressure ratio. When the diaphragm pressure ratio is lower than a critical value, the shock wave is weak and the decay due to absorption of energy by the particles

is so large that the shock wave becomes fully dispersed, that is, the frozen

shock front disappears. In fact, the case of P4l = 5.0 lies in,this range.

Comparison of the changes in the pressure jump at the frozen shock front with time clarifies that the stationary shock wave forms also in a shorter time for

a higher diaphragm pressure ratio (see Figs. 7, 24 and 27).

Finally, several figures (Figs. 28-34} are presented illustrating the effect of the existence of particles upon the uniform states between the shock wave, the contact surface and the rarefaction wave for the idealized gas-particle

equilibrium flow limit. Flow quantities are given by the exact classical shock-tube solution (Ref. 20) (see Appendix B) for the effective perfect gas based on re and alf (see Table 2). Variations of shock Mach mmlbers based on the frozen or the equilibrium speed of sound with the diaphragm pressure ratio are

shawn in Fig. 28 for values of ex over the range 0

<

ex

<

2. The particles reduce

the velocity of propagation of a shock wave and since the speed of sound of the

gas is fixed the Mach nUIDber Ms falls with increasing ex for a fixed P4l' The

reason lies in the fact that the particles absorb kinetic and thermal energy. However, the equilibrium speed of sound becomes much smaller and as a re sult

the effective shock Mach number increases with ex for a fixed P4l. The shock speed is even less than the frozen speed of sound if the amount of particles

is sufficiently large. Then, the shock wave becomes dispersed without a discontinuous frozen front. The region below the dashed line Ms

=

1, is that of dispersed shock waves over the P4l range. The variations of flow quantities

behind the shock wave with diaphragm pressure ratio are illustrated in Figs.

29-32. The flow quantities of the gas immediately bebind the frozen shock front

are also plotted. The temperature and the velocity reduce as ex takes on larger

value. On the contrary, the equilibrium pressure and density increase owing to

compression. It should be noted that at equilibrium the frozen values of the pressure and the density of the gas decreases with particle concentration. The

density and the temperature between the contact surface and the rarefaction

wave are plotted in Figs. 33 and 34. The presence of particles bring about

compressive effects on the flow in this region, such that these values increase

with particle concentration for a given diaphragm pressure ratio.

4 • CONCLUSIONS

Flow properties in a shock tube, in which many solid particles are

sus-pended in the driven section, were analyzed numerically. Use was made of the

random-choice method modified so as to be applicable to a dusty gas together

with an operator splitting technique.

The particles remove momentum and energy from the gas behind the shock wave. As aresult, the strength of the discontinuous frozen shock wave in

the gas phase decays. If the number of particles is sufficiently large or the shock is fairly weak, the frozen shock decays to a Mach wave and the

shock wave becomes fully dispersed. The deceleration of the gas, while the particles accelerate behind the shock wave, produces a compression and the

equilibrium pressure become.s higher than for the case of a pure gas at some distance from the front. In this manner a thick stationary structure arises, where the particles finally reach the same velocity and temperature as the

(17)

Some particles remain in the contact region, such that they interact with the hot gas in front of it and with the cold gas behind it. Thus, the

sharp discontinuities in tezqperature and density of the gas become transi-tional and a contact region of finite thickness appears~ For the cases con-sidered here, with larger drag values, it is possible for the particles to vanish abruptly at the cold side of the contact region. As a consequence, there is a sudden discontinuity in tezqperature and density typical of a contact surface (see Fig. 20).

The influence of particle diameter, particle-number density and diaphragm pressure upon the transient properties of the flow have been studied with the following conclusions. Particles of large size increase the time required for the flow to be in quasi-equilibrium and also increase relaxation length or time

to the final stationary shock wave. The degree of increase varies with particle diameter d and lies between d and d2 • When the particle number density is

large, variations in the flow quantities occur quickly but the final equilibrium flow values are reached af ter a longer time. Strong shock waves have much

shorter relaxation lengths.

The flow quantities in the equilibrium-flow limit were calculated from exact shock-tube relations. The speed of sound and the specific-heat ratio of this effective perfect gas take on fairly low values owing to the increase of the effective molecular weight. The increase in pressure and density of the dust-laden gas from its frozen values at the shock wave can be quite large. The tezqperature and velocity on the other hand decrease.

The results obtained in this paper have been based, in particular, on the assumption that the drag force and the rate of heat transfer to the particles are given by Eqs. (8) and (9) (see Appendix C for other assumptions). However, there are many causes in practice to make these assumptions questionable. Among these are non-spherical shape of particles, variation in loc al distribution of particle-size, interaction between particles, rotation of particles and

electro-static forces. Nevertheless, the quantitative and qualitative nature of the flow in a dusty-gas shock tube has been made clear in our study.

Undoubtedly izqprovements will be made in the future to take into account some of the above non~ideal properties of the particles. It is possible that even volume and partial-pressure effects will be considered in future for comparison with the present study.

(18)

1. Carrier, G. F.

2.

MarbIe,

F. E.

3. Kriebel, A. R.

4 •

Rudinger, G.

5.

Miura, H.

6.

Rudinger, G. Chang, A.

7.

Crowe, C. T. Nicho11s, J. A. Morr1son, R. B. 8. Se1berg, B. P. Nicholls, J. A. 9. Rudinger, G. 10. Outa, E. Tajima, K. Morii, H. 11. Otterman, B. Levine, A. S. 12. Satofuka, N. Tokita, K. 13. Gi1bert,~. Davis, L. Altman, D. REFERENCES

"Shock Waves in a Dusty Gas", Journal of F1uid

Mechanics, Vol. 4, 1958, pp. 376-382.

"Dynamics of a Gas Containing Smal1 Solid Particles" , Combustion and Propulsion AGARD Co11oq. 5th, Pergamon Press, 1963, pp. 175-213.

"Analysis of Normal Shock Waves in Partic1e Laden Gas", Trans. ASME, Journal of Basic Engineering, Vol. 86, 1964, pp. 655-665.

"Same Properties of Shock Re1axation in Gas F10ws Carrying Smal1 Particles" , The Physics of F1uids, Vol. 7, 1964, pp. 658-663.

"Weak Shock Waves in a Dusty Gas", Journa1 of the Physical Society of Japan, Vol. 33, 1972, pp. 1688-1692.

"Analysis of Nonsteady Two-Phase Flow", The Physics of F1uids, Vol. 7, 1964, pp. 1747-1754.

"Drag Coefficients of Inert and Burning Partieles Acce1erating in Gas Streams" , 9th Int. Sy!I!p. Combust., Academic Press, 1963, pp. 395-406.

"Drag Coefficient of Smal1 Spherica1 Particles " , AIAA Journal, Vol. 6, 1968, pp. 401-408.

"Effective Drag Coefficient for Gas-Partic1e Flow in Shock Tubes", Trans. ASME, Journa1 of Basic Eng., Vol. 92, 1970, pp. 165-172.

"Experiments and Analyses on Shock Waves Propagating through a Gas-Partic1e Mixture", Bulletin of the JSME, Vol. 19, 1976, pp. 384-394.

"Analysis of Gas-So1id Partic1e F10ws in Shock Tubes", AIAA Journal, Vol. 12, 1974, pp. 579-580.

"Finite Difference Calculation of Gas-Partic1e F10ws in Shock Tubes", The Memoirs of the Faculty of Indus-trial Arts, Kyoto Technical University, Vol. 28, 1979, pp. 28-39.

"Velo city Lag of Particles in Linear1y Acce1erated Combustion Gases", Jet Propulsion, Vol. 25, 1955, p. 26.

(19)

14.

Knudsen, J. G. Katz, D. L.

15.

Chapman, S. Cowling, T. G.

16.

Glimm, J.

17.

Chorin? A. J.

18. Sod, G. A.

19.

Saito, T. Glass, I. I.

20.

Glass, I. I. Hall, J. G.

"Fluid Mechanics and Heat Transf'er", McGraw-Hill,

New York,

1958.

"The Mathematical T heory of' Non-Unif'orm Gases" ,

Cambridge Univ. Press,

1961.

"Solutions in the Large f'or Nonlinear Hyperbolic Systems of' Equations", Comm. on Pure and Appl. Math.,

Vol.

18, 1965,

pp.

697-715.

"Random Choice Solution of' Hyperbolic Systems",

Journal of' Computational Physics, Vol.

22, 1976,

pp.

517-533.

"A Numerical Study of' a Converging Cylindrical Shock", Journal of' Fluid Mechanics , Vol.

83, 1977,

pp.

785-794 •

.

"Applications of' Random-Choice Method to Problems in Shock and Detonation-Wave Dynamics" , UTIAS Report No.

240, 1979.

Handbook of' Supersonic Aerodynamics, Section

18,

Shock TUbes, Government Printing Of'f'ice, Washington,

D.C.,

1959.

(20)

APPENDIX A

LIST OF NUMERICAL PROGR.AMS

In each time step, four calculations are done in order: integration of inhomogeneous equations for ~ ~t, two app1ications of random-choice procedure to homogeneous equations and integration of inhomogeneous equations for ~ ~t.

Godunov's iterative procedure (Refs. 17-19) is used in sOlving the Riemann prob1em for the gas.

(21)

' i.-r '- -<.

c

APPENDIX A r j\, 1- H; I 1 L ~,J lO \.: t: 1 u l, L (C L .s

,Y

"r. s )

t-)A::.-Tlc'i-L:::;' CGr\iTAli ... ...:D u/\LY Ii\~ LU,\ ~\!·-.. t:~5u;-\: Sliit.:

--'~" .' C(:;'·y'~i\:i:~~ .. ·/ A/l.;"!\ .. (~~, uc.. '~)0 , GL. t .. ;1-'

C L: I\'~ t,-, n ~~ / ~. / L) ~ • X {\ t F~ L , U L ~ P L , I'~;- ,U f.:. , f) I" , I" , U , :.)

U 1 ;\~ E. ;" S ~ L;\. ;J li ( 1 d ij ~ ) , :-i C ( 1 ;)~) J ij 1 0 ( 1 0 ü J ) • u iJ { 1 0 0'::; } , 1 ~', ~.' ( I ( 1 () 0 -~ ) t L T ;_~ ( J ti ü ~'l j • L li" ( 1 -i U ~j) '~': f.. ( 1.J 0 1 ) , '

---r('~-i'nT0-~':fT_;ITll:JLZr-.?/_[Tü.T<?'J·-.liCl-JO 2) .-....

:3 Al':) ( 5 'J 0) • L I II U ( !.l Ü .) • L LiJ [ ( :~'j IJ) , 1., ~ i-' ( (, ) • l." ( .~') ) , i.. r ( ~~ ) • 1.', LJ ( L ) • C. :, ( /.. )

Lil, liL l ~', fJr~L: l. L ::d ... :-... O!,;. L::" C

c

CC; i\:;:, T r,\;":T5 ~.; f',: -;.. I ~; 0 () N ~),,,,-1 (j ,I Ü N /\,=. f\N / 2 - - - i ' jr :!.:·î \ l \ + I - - -· -1'., C=i\;'/ + 1 hL

'\M

'

r,:;:.f"C-~ 1 LJ ',f. f-' L :.: L~ 0 • Ü ... =1.0 l) X

=

\)

.

1 j"L;= .2 KA=7 - - - , r ( [J:.=:3---.- -- -[j S i:' LU

=

1 i J (I-!J 7 • C Ü GA

=

1 • 4 .:, t'· '" () • S ~( ( '~I\ + 1 • C ) (; C :-:: C • ~j .~ ( u;' - l' • 0 ) ':';L,'= ~,iC,h T (Gi-!) GL=GC/ rj/4, "~ =1.',(_/ \,1) ·---..:,\.-LT-ï·\:O:- l-.-.. (}"--- - - --- '- - - - -.... - --- .. -·-, --,- ._. -, -.- . ULli\:.::.l . u L' i 1\ ~'-=-1 • OE· - ~~ r (J 1 ;..: 1 • ," <::j (. - J ~, J • " '.I t l: (~ 1.: G I )\:"1 / 1 • l 1 1 '. - ,~/ { ( .:.) (). U /~: 1.j • 0 i ~,~; O. 1/ ;l) r-G ;: .:. (J • O~: 1 • 1 1 [ -:p;' ( (.J U 0 • 0 / ;~ 1 j • 0 ) ~,~-ü • 1 u Ó } ~.-G A / 0 • "1 ~ / D I Ai Il / i i L. T A / 1 ~.40u~q/1.~2~E-~ r~ (. :; ='J • () ;~ { 0 • "7!J :~ ... ~ ( 1 • 0 / 3 • ~ l ) l t , l l l A L CGh;l)lll.JN!.) ,..,.t.~'n-.,--r:r-rG~r--'---­ f..!L'= 1 0.0 1L=-1.0 UL =0.0 . L.T~ l.:.. J • 0 -iTL=0.i) i:UL-=O.O Ph: ,= 1 • 0 / G.~ ---rj,-,,7~ .~~ -T ,,(.:= 1 .0 Ui~=-IJ ... O ,~~,f~:.:: i • U -_ .. ~---_._. . ... OL T R:::' T r~~ -.-". /_ vh'=Uf( ~'hl=i\L : ! ~,1 I .=..! ~ r\ - - - 1 ) L, 11) T=r,7"f,\-PC ( I ) =iJL 1([;(I)=h/L ïU(I)=:TL A-l

(22)

UI) ( r ) '=UL

":':'hC { ! >·=Z~~L

... __ ._ .. __ ._. Z1L,;( r } ~LTl." · LUC( 1 )-.:..UL

.,,;: \ 1) ·:::1

X{I):.:(FUJAT( l-Nr;)+O.5)~'yX

.l. v-'CCiITTl'\: 0 L

OL.. 20 1 =:..Ju ,i\C

IJL; ( 1 J

=,.>,.

ΫJ <.1) =r-.:r: TG(I)=ïi';' UC. (I) =ur:. i/·L.(l )·~Li~; ... L1 iJ( 1 )=2TI-< ---~,~·r:;\··rJ'-:.-ZUT.:­ I<L(I):::,? :_ - - - - ---_. __ ..

_

_

.. _._._--. X ( 1 )

=

(

i~ L I.'.~':, T ( 1 -N [; ) + 0 • :) )

*

û X 20 C U r, rL t, LJ L I S ~ I:' CK.:=. f\d'; + ..2 C. J\.L ~ ;') L C -;. :..; T ( • / / Î< L. r ~ G 1 / Ij-i ·ll.Ji< '" 1 • CALL PLCT{ü.C,l.U.-3) . C /. L L F:\ CT :.J '-. ( C • é ~ ) l 4 ) - - - r,Î;-(i-=1--V

.

-

<.'

--

---

----

--

--

.

-

.

.

---

.

-

---

-

.

-

.

H?;"":E..=:; • .553 ~IP2F=2. ut: L-Il G L:

=

(

GA'r A L /. i\ ',C;:_ "1 A J / { 1 • () + /\ L 1-I\~' ~ eTA) H T ,è f:.;:. ( H (, t: + 1 • 0 -I ( I-H' L -1 • U ) ~ i··i P .é~ '-) / ( H (J L ;- 1 • C -t ( r-I (H': - 1 • 0 ) / H P 2[7 )

H ï ;2}-

=

(

~ A + 1 • ü·H :iA - 1 • 0 ) ,;, H':;? I-' ) / ( G f\ t-1 • CI·H vA - 1 • IJ ) / HP 2 f-'" ) r.T3E=(HP;~L/h-'/~)~,,~,( 1.O-1.O/CA)

:1 T .,:;i-=--( Hl' .:2/. / H F' 'i H·"); ( I. • U'- 1 • Û / U 1\ )

---rITuSi--:::::;V1,1-TTT~-Cl=v~-J":rl-._1JT1-._IJ-/·i l'Gt) -r.-t Hj>;.'i~· -1 .0) ) 1(: ( 1 '.0 + 1\1...1" A 1(: I ï Î .'\

1 / G ,:. ) / \ 1 • 0 -1-,', L j' 1\ } / ( i . v + /\l r / .... '; L. 1 t ) 1

HL SI =::, l.H' r ( 1 • U + v. !.J ~" ( 1 • .; I-1 • ,) / u 1\ ) .}. < Hl) 21- - 1 • IJ } )

i JU ;:: F =- (Iii'~ I· ~ 1 • ü H<; ',;W T ( 2 • () / 'v /\ / ( ( (,/~ +-1 • 0 l ~, I iP ·~T t , j 1\ - 1 • .)} ) H U ~ r':-: ( I I;') 2 l - 1. C ) 1,'. !J u;"~ T ( I.: • cl 11-1 V i j ( (~v L t 1 • ij ) ~. H P ~~ L t-I ~ ,j t - 1 • U ) 1 -* ( i • 0 +':"L f 1\ >:' u i: T" / l.;.~ ) /- ( l • () t-;\ U ' A ) / ( 1 • ',H A U- A'~ U E: TA) )

'-lh 2i-~iiUSf' / (liUSF-IiU2 F )

1-11, ZE:;. ho.) ~L. / t IIU~E-H U2 t-.)

- - - tt;,--::rt-=n(· ... ~l'-r! 1 J t: f il.; ::; r -= 1·1IJ ê.f" / H T :~ F T(1):=:0.0 ')r: ( 1} =iIP2f-.-. . _.--_.- ... -.. -... T,. ( 1 j =-1-iT2 f . -.. ---... -.-.. ---.. ---...•.. -. - . PG(M_+1)-=(.'.O ,lLJ (i'~C +~ ) =-?:'; 1-' U (j\.('+l )=1..' . 0 ---RiIn~L>_-~: ; --<._.,...'-• ...,.~---T l, ( 1'; C + 1 )= (; • Ü TL. { t\c +,~ } =. ti • ..:> UL- (~"C+- l j:.:..0.J -,_ ... ~-_ .. _ ... ""UG ((·,C'+2..) ':":'C· ~·2·-·-·-·_---·· '--'~--"''''-' .. _.-'.~ .. -.' ... . . z.. I;. G ( r'.: C + 1 ) "-~) • J i~ h, L (i'1 C + 2 ) .;...;2 .~; LTL(l\;C+l)=O.O .L!L.\f\iC+.:) 0 • .) ":UC(NC+l)=-iJ.ü L. l· G ( i, ( + L } =, û • 2 X { t\: (+ 1 ) =--~ ü • \.'

(23)

r-" I ' ) \ 1 \ \ I', { f ... ( +;' ) ::;; 1 U • Ü TLI.:>l==t •• O T IÎ I ~:,\,,-ll • G C 1 1 fo(~. 5

n

o.

P IJ L i. Cl v r·., T

.=::::

~, S NZ =: l. ;:;HûC ,.~ +!;. -------r;;-r.=-rçc--=,'TZ-- - --

---

-

---

-IJ-' (i\T .Ll:'.i.;) Ge ;c, 31

ZI\=:0. (J

IJe. .Y) 1 :;::.;.~ I • '" 2

Z S ;::. t-;j S ( Lh.; ( r ) ) + ~ (h, 1 ( '-' A ~~ fJ U ( 1 ) /

i,

U ( I ) j Ir' l ... [.; .. G T .. Lh) i 11'-L h

3 C CLl\ TI f\UL jjT=U():I;DA/LA

---'G-:-C-i J .).2 - .- -.- - - . - - ----.... ---.-.-.-.... -_._._. ___ .. __ "'_'_' . :31 [;·I=.;CJ.:;'~>;"JX . .j .::. J (i'i T )

=

T ( N T - 1 ) +:) T Ü S .= 0 • :, ,;, Cl T t 1-~~~LP{F1RST) D U I 1., l) I=:, d • 1 S H (J (. K 11- {I':,L ( i ) • t. \..t • 1 J.; l.J T Cl 1 C 0 PA=P(i(I) - --- - - r .-:--"h ~TX·\· r-·,· ----.. _. Ut,:::.lJl;( 1) T A·'" GA '" I) i\/ I . A l :, A = L h ~.1 ( 1 J ;:: T /,:.: ~ T U i r ) Z LJ /,'=7. UiJ ( 1 ) F~L=f Gl*HA*ALS(UA-LLJA)/(TA*~G.7~d) U' (F:H:.LT.l .ve-(I)Gert:: 1.':'2

- - - r . - I __ cc-""u-;-,*c.7F2-;}";-·c-nFT::-:':r--::-Ci-. ij'!:;) -... ----.- --.. -___ .

I: f 1 = ;;: I\~' (;; /, - ..: li /I )

*

1\ IJS ( L 1\ - ;:: lJ 1\ ) ,; i' C IJ r ~~ L = ~ .. 0 +j-G ~ ~, ( i: ~~ L ~, ,~ c • ;) ) . Gc, TlJ I ( J 1(;2 FF 1':::0. \) F 1': LJ=-.é' .0 1 ()::3 f f ? =1" G~: ~, ( TA *;; .: • 7 L (.) ) ,;: F 1\ U';. ( T 1\-,_ TA) 4. iJL ( I ) =: L U t~ t· U ~ -Î' f' t- 1 ---·---,j'G"r-TT:=..,J7,'--~;:;--:;--l't:rï\T7.E-I\7ï~/\':'f·;-:-r---.---.. --.-__ ._ ... __ .. __ _ L !L( i )=LTAt-C~~'Fr.2 (. P l, ( I ) =:,) /\ - G C t~ r< A';' { (U D ( I ):{:~, ,2 ) - I. U A

*

*

2 ) ) - ;: • ü~, l. C.; AL F /, >'r-Z. i: 1\

*

L U ,\ ~:i'" f· 1 ') •. ' ~ 1 - ,\U-1\';' l'L T 1\/ C fJ.:lrL f,/\~;

r

-

r ,:: ';'C"'; 1 6 ü ei:, j; T r t" dl I'~ l ~,'~) T ~-; 1 !.: j )

i'~U"-:"~dil( ~;u 11,1;. i';''\)

uG=-':(,l.:JI· _, (iJ.;t.l:[)) ---r~.=--r\JG -fTT-C-,-;TTl'l.J"T7Fl.:.T TTT7~7\T-'--u-;-5--- -- --X/\=:.:.,~ U;( ;~,l =td f l ~··l--,.:PlJ ( N 1 ) ld . .;. f~ G ( i~ 1 ) lJ L ::: Ij L; ( N 1 ) d'L.=LI",,; (N i ,( 1 L·'" 7 1 () ( f\J 1 L \.Ï,[ .;.:.2. U ul Nl-) K.ZL=KZ(Nl) - - - _._ - - - - ---_ ...

_

.

--_ .. _--_._ ._----_ ..

_

-

--_._--.. - ... DL) 40 1':':;\l.:'; t i\2 Ph=-P{j l I ) A-3

(24)

l.: h . .:0 "Ll( I ) Uk=-UC (I ) .. ... 'ZI, V;';:'L: I,U{ 1 ) 2.. 1 J<::: L 1 C ( I ) L LJ·':.:.i UU ( 1 ) KiF; =r<

i (

r ) . - - - ' T ' l - i - '·--r-'( SlTS"Tt-T::::1'1::TT.L~1-;'CL--'n7,ï.]'-j-J~:+-;Y--'--"-'-' .... --- -.. - - ... . LF (/';,;~;S(I,L-j.'f'J l~.Ll.1.<)l-(~)':;U TG 40 C 1\ L L_ CL 1 j,l~~ P L ( I ) = I·J "c.; ( I> .=-:.;: U (J ( 1 ) .:;:.U 11'- (KZ"'.f:C'. l }GL Tl! liS I r (t<...:. L • t:. (; • 1 ) (. ': T ( I 4 tJ . ---1rr·(h·:::;;:,-r-;.;:-t~:."l.;_;':-l_,_._C-j-.t.C (:--'~-1-;:,'r-l-'U - t1' 1--- ---" --.. _... ... ... -"... .. -' -... ~Gl=0X+iZ~R-~lL)*OS

LUL (I .l

=

{ (

DJ I • .:... ZUL ) '~X /I. + \ol .:j ,;. C';" .(, ( Z U f-' ... Z UL ) ) / L UZ '

/~ I (j ( I ) =:: ( ( i '1 h:-.i TL) ~, X J\ + () • ~;~. 0:< 'i· ( .? r;~ + ,,: TL) + ( L. 'I L 'i: Z LJ K- oL 1 ;,~, L 'JL ) .\ot)~; ) / .~ ',~ i. L (: C. ( I ):= ( ( ';:h f·. - L i7< L J

*

X I~ + 0 • :; ~; D X ~; ( ;: j,'I·: +1. ~~L ) T ( .:.: f.. L

*

/~ U i:' - L:';:" :, L LiL ) .. ; i j S) ':. !.: .v.

I / Z

uz

i.' ~; 2 . GL Tl~ 4',) 41 XL. =/UL>!q)S --'---"'T'I~",stÎt'-·!:;:-:-t._r_j.-t.:1'O!.__o_'c=zrn',ü-ltr' [.0'1'-""'--'--'-' m _ . . . l !:>hL~(!<"=r . (;u 1 C dU? t~ Ü 1 [ !:> li Ci c.. i'.= r - 1 IJ- ()o./,. G T • X": ) G C Tu 4 ? LU(J(I)=lUL L1C!(I)-=ZTL L K Li ( I )

=

i I': L \.lC I,,;';~ 1\r-·-,--'--- - -- · .. ----·---·-... ----· .. · .. -... -.. -.... 42 Zlh, ( I ) =zur.: ,,'1 O(! )=LTh lhL (I )=Zf-:I..; GTJ ,o~ ö lO-'" 4!;; XL -= LU f·;>:qJ:.J 1 r ( XA • G ï • X i.. ) G C LUC ( 1 )=LUL ---:i:-T"C7f'I-l='èT-t:::--'--- - -·- - - -- - - ---.... -... -.-.- -.--,,-.-- .. -.---- --.... _ L!',C;( 1 ).:::,é.fU K c( I ) =r~ l L l>lJ Tl; l~ <j . ... "'Ij. C Z. U C ( I ):::ZUR .-: TL ( IJ·:.: L Tf, i i, i j ( 1 ):o:: ... :! 'I' ~L ( 1 ) =Ki..I~ - - - -7p;-P1.':.-= 1-'1<' ij Ü leL ::·1· 1··' UL =:.lJl ( i f·( L ';;'/"1.1< ZTL=Zn~ I. U L= L. U I": KL L-=-K L! .. c un I ~~IJi: - --.,;)'-, r"L"L-'CN C :.. I i... I' .-.-N IJ ~ :'~G () ( ~, U I-K U • i< 1.\ )

lou·=('GUL'.t·~( OS!:'::/)) ulO

- - - ---,,---_ .. -... _-- ---,-._--,---.. _

---:,;,.:;: ( G J of I-L (,I A I (N L.) ) I :" L L! /. 1 \ r-:. /\ ) - 0 • 'j

(25)

r : X ,\:;: ::-;,~ DX PL=,.JU(Nl) .' i': L .:;;. r ... t; ( I\; 1 ) UL=UU(Nl) LI,L·=Lr'u(Nl> LTL=-lTI)(Nl) ---,L"TC...,-Lr-,'=ZüDTrTi."-1-l---.-:...---·-,·,·,--.-.. - --- ... --.--- -.---.----... "LL;;,o<..i.(N1 > DL 50 1';.;1\,1, i\2 Ph::-F'(J(l*lj RR=I-.û { 1+1 ) lJ k '-' l"li.( 1 + t ) .. :i~j,·=LI·:.ll 11-1 > ~ 1 i\ -= ..:. T J) ( r + 1 ) -Zl.:JT:'::·Z-Uû'(Trr )-. - . - - - - --- . - - .----.. KL. h'=K t.:'. ( 11-1 ) I F L AU :.;, ( h: 1-< - h 1\ 1 ) • L 1 • 1 • (J L - (. ) .; '.J 1 l) ::, 0 U {J\lJ ~~ l hL - f.: IV, 1 J • LT. 1 • 0 E - 4 ) GL_ T..) :.:. 0 CALL GLIMlI, tJO(I)=P j..:C(l)-=-R U('(l)=-U - - --- -- rr0-:7R .. ~ ë(T.-l -J C:C-T'C-S"T-- -" Ir· «(.;. ~ L ~ t. ,j • 1 ) (j l 1 i j J ~ I t- {:~ i:3 !:> ( I~. i~ - i ~ : I, I ) • Lr. 1 • 0 f: -

i.

)

G I_I T (; S 1 l:uZ=DX+ (':Ui'-LLL)~'LJ~

L lJ C ( I ) =-( ( L U i, - Z U i... )

* ;.:

A -+ C • G .:<J X ,~ ( Z Li !i -I-ZUL) ) / L. LJ L

L 1 C' 1 )

=

(

( .:_

T !:.: - LT L ) .>;. X 1\ + C • !:-~, ,) X i,; ( .:.. T,- I-/. TL) t- ( ,: TL;' ;:: U k- Î. T" >;, i: I) L ) ';'.J :-,) / 1-~).:

".:r~ L 'I ):: { , ~: r~ H -. L I':L } ::< X J\ + i.1 • .:i >,~ D X ~'. l Z. r< ,\ + L. r~L ) + ( Z f;;L >:' iï,J 1-;- Lid < >(, i U L. ) ~ I; :::-) ',' G /.

1 / L. U Z ~, :;, <~ G-C-TI:r~----.. --' - --- - - ·--·---" !:.; 1 ;Ci =i-: UL -;q I ~ 11- ( AU ~ ( !'. - ; .... r< I ) • L 1 • 1 • G L:. -/~ ) \;(i lt. ~i'l 1 1 SHU( ~,=-l GG TG 812 UIl I SHLC l\.':: 1,-1 tl12 1I (XA.·::;T.X~)-::;C Tu ::;2 oe: û c. { I ) ~ L',) L --zTG\TT-:.:-;:Tï...-- - - -- -- - - --"- - '--"- -'-'-'-- --.. _-... --.. -.. - ... -._. -.-... . L I' (j ~ 1 l

=

L." L liL) lt.] ,);~:J j;O' / 0(;(1 )~LUr; . L. T L. ( I ) -" ï.:T I;, L. t~ l, { I ) = L I H, GL TU d20 55 X i .= Z u ~~ ':< L.. S [ f· ( XA . " I.xLT,,·--rL~' ...,.-\ ~I.J""--J""'· . . , . . \ . ) - - - -- - .- - - - . --.- •• ---.••.. -.-- - ..•• - -- -.•. -.• -.. • .•... L l.J C ( I ).~ ,:'1 J L L.TC(l )=[;'L lf<U (I J=b ':L 't<.,~ ( r ) =Î'.~l~ .. lûU~)T'=1+1 GL 10 J 'j ~: LW ( r ) == L ui ~ L I U ( I r=Z""'I-'I-~ ---Lf'\lJ (1 ) =zr~l~ 10.: ( I )= ~~ Lr~ 1 DU:..,T

=

I -_._--- --..--_._-_ .---_._-_ ... _-,----... -A-S

(26)

J ':i ~., L. ,~ P t-:, L.:;~, I, ... UL=Ui;. 4:i\ L :.:;~.'\ r~ .!.. 1 L =/~ T 1·( _ _ _ _ _ _ _ _ i._U~L~=.;.. U r;~ r\. i-L ~ ;,~-- -~ ecu Î\i 1 r r\j UL'_

( T - ::", t:-Lr) ( S L. C. .:.; Î\l.~ ) (;~c DlJ ",; l=l'n.lSI-l..lU~ I F ( "Z ( I ) • c:. v • 1 i GI:J T 0 U 1 P/~::;Pw ( I ) i,~;\

=

,,(j { 1 } U A=ULi ( I ) ---·- - --T f, ·:,'e:·y';'-? .. ,/' r'~ 'i, je:. i\ = i i·: l) ( r ) L1 i\~,:':T,.J (I J l.v/I.:.;/.: Ud{I) t' h. f':;.: F G 1 ,;, ~~ 1\ ;; i\ 2' S ( u 1\ - L U A ) / ( T A ~:* ,) • " ( 3) ; i .. (ri·! E. LT. 1 • Ji:·-;.d ULJ '1 C l;.~

F' C D

=

'.)

,+ () + 2 t~ • 0 / (r 1< L: :;, 1(-0 • i::i ~ ) F F' l ·=-i';: A~' (U j. •. - L I) /l ) ';'''::'[:3;:) ( v { l -LU A ) :;-;

cc

---;i-'Nt:='c.-J+r"'ti-.J'*i-M,t.-~')-.~ l - - - -- --.. - --- .... ---.. -. -.. -.--.. -.... (;U TI; f::3 u;:. fF-l=0.ü F:"U;~2 • 0 6 :3 F F 2 =F G.2 >;, ( 1 " )~ ':. Û • (().J ) ::' i-1\ U ~" ( T ;.. - oL T A I Ë.:.U(J( I }==ZJ':\tC:::i~'Ft 1 U U ( r ) == U ;\ - L,;:' ~: A:... F .r. ,;: L 1".'1 1\ / ,~ f, ~:;:: ï 1 L 'l U( ! )=LTA+[)::;~'rt-è

---·- -.. -·- P[J'{ IT=-'PI\-·GC'~·ï:;-" ·:rCT'JT;·T r )':·, :c:~·)-,-, CT" 'Î"~~:» -~~ • Ow: GC ':< ;'l,U 1 -/\L r ~\:.:.' L,L, 1 ,"\ / G /I~.,..: ;.~ A >:~ ,-f·· ~~ !:=-;~ ~ /:; 1 T ü ( .l ).:.:. GA >;'.1-'" l 1 ) /" G { 1 ) (',0 Cl;~, T r NU E:.. I F UH • û l • 3 > G L.: T:; lOl i-J ~- (r~ï ) ::: HiJ <:' r-1T ( i" T ) == 11 r;.~ r Gli T f_ 7 (';;:. ----(..,-,-.v...,r-·rl-'r.:I'-("KT1~c-rr:ïri'l:Ci"_r__M', , , -T i (i, 1 ) :.:: 1 Cl ( I S H C C< ) 1 vL:' Ij ( 1 ~)h~)C r~.l {1. l\i~V;.i\l-n ) Ge r ._; ;~ ,.i 1 1 i ( 1 ( NI) • '-' 1 • 1 C V,,'\; d ) .; C l ;''; ~ 0 1 . e L I Si \'. i: 1 T r. ( t, .~;, CO) 1\ 1 ,1 { 1\1 T } • 1 S h OL i\. , I ' J-' , i' r ) .1 t (j, T ::,JO r(.f,il.f\ T ( l ;-j .10X.It.F,",~:::.u: .2t'j.::;j . [ 1- ( T ( I~ T ) • LT. i L 1 ~,j } ~ ,: T (j 1 -:. J - - -.-- --;::ï-; TTFC "'''-:; r:-rrrr"iT )- -.-. - - - --- --- ..

:,,)1 f-(Jt,i'1!\T(IIlC ,uf-'IU:L =.; ..J.:'i) lLi~l~:LI~l +rAluA )e. 70 l= l . : ' l . ,-;, L ( I ) ::. ,:J C. \ I ) .:';; f. .--. - .. ---- .-- . /0 CLNTI~U[ . :"' ... 0::'T·-.::;.1 :>'ICCK-I;)l;:~T 12 LJ t j ~( ~ j.:... 1 ~ ~,f) l... ~ T 1 :"-'11JiJST -T ·F:J--·- - - -- -.--... --.-.-... ---.---.-.--- - .... --.-- ... AI)Û( JJ .::X( I ) llUû( J)=Z'iG( 1) ..: LJ ,; L ( J l= Z U C ( i ) A-6

(27)

: 72 CCf\;TIN0c· X [) [) ( N [. IJ SI ... 1 ) :;; -~) ;; • U X~D(~DJST+~ ):lO.C ,_l'l)Dl !\UGSTr 1 }·':·J .. 0 LT~~(NUGST+; )=O.3 ZUCO(NDLlST+l )=0.0 .---.=,_ -üff,Tl\iDL·S Tf"2-1·;·CJ."2·--- - - " ' - - -· -·--- - -... -.. ---.-.-.-... -..

e

AL L .Ä X IS' l) • \) • II • LJ. 1 H X , - 1 , 1 (j .. 0 , IJ" ü , -::> 0 • IJ t 1 0 • 0 ) C ,\ L 1_ I, X .1 S ( 0 • U • CJ • () • 1 r-l {~ • + 1 • :::, • Cl • ') lJ • (j • ,G .0 , ;:: • ::, ) 1.I\LL ,")LUT(lû.C,O.ü.3) CALL FLLT(l ,;.C.5.0.2.> CAL L P L t, T ( .) • Ü • G • Ü t ;, } C 1\ L L 1. 1 i\, C i. T (- 1 ) LALL L l ! \'': (X.,J'L,i-lC .. l , ,; ,0) - - - C ï l : C L·-Lli'C7."Tlo-1 - - -

-_

..

_

-_

.

_

-

...

_-

_

.. _._ -CALL Lll\~ (X.Z~~.NL.l.\).O) CALL PLCT(0.0,d.O,-3) C /I L l 1\ X I ::> ( U • 0 .:") • ij • 1 11,·; • - 1 , 1 d • ,) , 1) • () , -~) Ij • U, 1 I) • C ) ( t l L L 1\ Á I ::..; { 0 • C ,\; • I j • 1 j :;:l • + 1 • J • Ü , ,} Ij .0 • ij • G , é' • :J ) C,\LL I-'Ll.JT(lO.~,O.O. ,:j) CALL PLl~1(lIJ.I..~.U,2j CALL PL~T(U.O.~.O.2} ---C-t,L:1:--·t -I·;,C.-J1· ( -·1 }--.---.- .. ---._.-- .. _-- . -\.~ ,". L L. L 1

!'

.

..

(

~,

,

IJ C , ;';C • 1 , IJ , ü ) cr,L.L. L I NL· ,.1 (û ) CALL ~LLT(1~ .I..Ü.0,-~) C i\L L A X I ~ ( U • .; ,0 • 0 • 1 1 (X . -1 , l \ ) . U ,

o. o.

-

S Ü • O. 1 Û • 0 ) C t, L L 1\ X. I ~; ( I j • d ,0 • v , 1 I1 T • + 1 ; ~i • ti , () 0 • J. l) • U , () • ~ )

CALL PLUT( lü.C,O.0,3}

CALL PLlcT(iG.C.':.:>.o,?) --CAL--c-PCCTTCT;-C-.--s-;v....-ïl-- ··- - ---···-·---·--···--. . .. - - .- .- .. CA LL L H,L .. , 1 {-1 ) l. iI L l L 1 "il:. ( X • ·1 l • ~,~ • 1 • Ü , Ü ) (. ALL L 1 t;L •• i (\) ) CAL L L I r<c (. i: f.) ii , ,:~ T 'J~) • N D L~~ T , 1 • Cl • 0 CALL PLGT (0 •. 0

,-M.

U. -_i) C;', L L A X I :::'( U • Ü • v • v , 1 I ! Ä • - 1 • 1 0 • V I ,j • u • -~) '.l • J. 1 0 • \) ) CAL L /I. X i ~:, ( û • 0 ,.::. 0·. 1 i I L , t 1 • ::., • u • ':) Ü • Ü • () • () , ij • 2 ) ---rc-.. /ITr"FCDî·n--:y-;-c-,-.;-;.-o • .;; ) --- - - -.---.----.... - - - --.. (ALL ?LLT(lU.C,~.v, 2) (.i\Ll. r)LCT(O.L: ~5.~t2) L /" L L L I ~,~:: \', T (-1 ) (ALL · Lr

r-

.

C:

(

;(~ LC. i'l c ; r . J , ü ) CALL L 1 :'IH;· r

«() )

cAL L L 1 t~,=-( "i) [; • L iJ~) i) •

t

,

D l SI. 1 • u • 0 )

Cf\LL PLCT(lA. c , ' , . J , - J l - - - . . , . . , i ) 11 7Ti-'-='T . ï " C - - -- - -- - - -i 't, ( r )::-p [; ( 1 ) / GA ·/1 CUI ... 1 I t.;lj r: (~P( / )·=·;).0 CP(i:)) =é! .S · 'j h ( "7 ) .:::. (; • ~J uh(L)=.2.'j (J T ( 7 ) = IJ • ~) ··CTT-{)J-=.::v;7- -- - - --- - - -- - ---.. ---.-.. _ ... ----" 0 " - , -IJ U ( 7 ) ;;: () • 0 (JL(b)=.u.2 ClX (7 )·=-SV . 1) A-7

(28)

(. >, l I:· ) ,:: 1 () • D 1 I~ \ -; ( ~,r ) • c) • ( 1 t, I !) A + 1 • 0 ) J IJ U ')' C, 7 .} f-1r.>2:....1·:~2.F h;, ~'= ~-i I·;;: F ~;I"\' ~.::...Hj,Jf· Hl <',:=fIT;~ F - - - . - ,7ö -'-I-~,:::',', T3,-· -HG;.:.=f';<.)c:F til ' ~) .= 1 i U J r' (,U 'l ~ f t'., -,::; 11 (T(t,."),Lï.17.ü)uC re lvv 1",,,:; ~·:.::i·!f) ~~ i" Hh~~=-I;f-:;~L I i f., ~ =-;-) • .' ~~ C ---·1',n'~ ö.:_I·fj' ;~'i.. ----.- -,- -- .- - - - ----.-- -, -.--.. -,---.. -- ... - '-" .. --... I i 1 ~: =-1' I L,; l:. "I L. ;,~;;:' i ,U ,: I';. r IV~· =:-: i U j ,. 7 4 ":J J, ( 1 ) ~ - 1 ( ~" 1 L~!) l l ) = HPt4. (j t'·. ( 1 ) :;:.:,.1-I; iJT ( l ) = l . () ei t.;-li -r'=-: 1)'. 0- - ---- ,----.-- --.. ' - .. -. ti x ( (;) = ( HU ,:- s ~ h 1 ( H;--> ? / 1 l i d ) ) ,7: I ( NT) L. I-' t t ) =-I f P ,~ l.'h( u )=iil-.J GT ( u ) '=I'I1.J Ql; ((; )=HU2 Dl; '"I':.:> .J=2,~) L.À (.J) =-, ... ,>" ,1) tu .2* (, ..

1>,

(L ) -·: ... X( 1» '-:<r'LL.)AT{ J - l ) --n-;<.:::-r-;::.-o-:;;..r,rÀ\~]17Tlï_n·--)~'\-(;-.t\';...1--. ~j)-) I ('.;.-i\-Fl ,; Cn Uh ( J ) :.=, { l" ,\ :.:. ~: ( ~: • \.) / ( (j ,:, - 1 • \'; ) ) ) .;, 1 ilj I~ Ü ,) ( J) ,:;:0 ( }'lI'-' /. ;, "I ( 1 • 0 - '-> l\ ) ) ~, { c: ;,~ (J ) ,;, -~ ..::. t. ) vT ( ..J.) =-tJJ> ( J) /lll< (J) Ol.iC .; ) :;; 2 • ;) / ( (. ,u 1 "J') ~: ( ~ X (.J ) / T ( t.; T ) t- t • V ) '/t; Cu i'< 1 1 t\I.,iL CALL PLGT(-2~.0,O.O.-~) CALL FL1~~ ( G~ .~~ ,0~ 1.C.O) - - - -'CitC.----r.:----Pt.uTT'û-;-c-.-7.r.--o-, - ~ Î c ;~ L L i· L H, L ( \.. X • U IJ. 6 • 1 • Cl , G ) C i\ L L P L I . T { 1 ,! • C , u. () • - J ) Ct,LL I l_l"'IL{(~X.\..Il ,t.. 1,(;,0) '(.·\l..L· PLeT (0 . C',":'ü '-0 j -'.J) ,. C f\ L L t· L 1 ,\j i, l ,) ;<. , Cl U • :. • 1 , Ü , \) ) c/il.l. ')LLT( - l J .O, v .ü .-;31 Cl A ( IJ =lJ X( " ) \.A t,· rr-}-"'l'lT'Z - - - -() 1< ( 1 ) :::I-I!, ... I U I t I ) :.. 11 I _) Cl

v

t 1 ) ,-(H';;~ (J >: ( .?) ::: h ~J2 .;. T ( ;', T ) l. ~ (Z) =11 I':~ ;j h , 't'~ ) .:..1 ij.; .J '.~ 1

«

'

)

'

:;:':

s

- - - , - - ---·-.:n.;-rZFc... ~:ruz--·---·--- - -,----.-.--.-.. -0;'" l_~ i=OX (;,') Û~·) ( ':::',) ':"::!'IP;~ ',n, ( ~~ ) .::: ~ i j < ;,: A-8

(29)

I

I

I

l

\..l r (.:,) =-I·n 2 IJ L' ( ~: ) .:;;.:HU;':: (.,; >.: ( 4) ·:::H U S:.« T ( h l ) UF:(lj}:.:fiF-'2 t. j-. ( ft)

=

Hj·. 2 Cl T (I. ) .:::HT2 ---.I..J~-:::I1G2·---· ~---_ ... _. __ . -.-_ ...

-

_

.. '-_.- --'.'--' .' -~ ._ ... OX ( ~:d =0>« 4 ) uF'(!.J)=t.l) ,11,(:")=1.0 (;T(~;)=-l.U (.) \J ( ~) 1 ::: Ü • 0 (,;X (L;""~~O .u C:,:J «(,) ·=-1 .0 \~r'·(l.p:'r;-T···---·-"---·--"--".- ---.--... -UT «(,)';"1.0 ~H;( l;):='U.O (,:..Lt. L.A:'.HL(;';'X,G:,:,t ,1) ~ALL ~LLT(~.O,8.J.-~) C~LL DASHL,QX .~~.u,l) LI\LL FLLTU,j.O.u.0.-;;J C f\L l. () A ~ HL { ,) X • ,~ï • ö , 1 ) CA LT"-'Pc-cT' ( C .·G·. -'l\·;J .... ·_~· .. ) . --... .. C /, L L D A .:, I' j L ( G;', ,(: IJ • t, • 1 )

~ALL PLe1 (~ j $C'u.ü,-~}

CL:t,l l ~:Ul

100

201 CALL I\XIS(J.O.0.J.~~TIM~ .-4.~.C.0.J.O.ü, b.O)

<.. ALL A X 1 ~; ( J • U ,\J • Q • 1 ,; IJ ,

*

1 • '.) • (, • '.) (.; • 0, 1 • Û • (; • 4 ) CALL PLCr(S.u,U.U,3) (.{, L L ~. LU' (:,:, • u • s • U • :2 ) -- -·--·-C7\TLi:r1_-GT\O -~tJ-;u-;-Z1---· ... --.---. --iJ f (~, 1 i· 1 );:; 1 • 0 i ,!", {i'~ 1 + :.~ ) '::: l ... ' • tJ r ( '" Î --I- 1 )

=

ij • Ü T ( ;'-i T + 2. ) == ü • 0 c.. k LL L 1 M:'. '" 1 ( - i ) CAL L L IN;':. ( ï • P ~ • ,--.; r t l • C , 0 ) CALL Lif\.:::V.T (() - - - -· - ---,C-)'\'( rrl'l-=-GT-r'iJ~S-;-::;-;-';"-S-;--"---'-"--'---.--.. - --.... --.. -. C. f\ L L_ J\)~ 1 ~; .( d .0 t '..: .• ',.,I t lJ hl 1;"~ ~ t - /t • ~) • Û tG. 1,.) t

r

,

I,.) , t;.. () ) CAL L l'\)\ 1 S ( II • (j • u • .) • 1 i 1 1 • + 1 ,:... • " • (J i) • 0 • 1 • G • 0 • 1 ) I...f,U_ I·LL.T(~.û.,).d, .: ) l. /. L L 1-'. LeT ( ::) • C • L; • l) • ,'. ) c.. ,\ L L ~'>L U, ( " • ,j .~) • J , ~~ ) T ~ {î-. T ,. 1 ) C~ 1 • IJ T r ( i, T + ...: ) .::.. ,) .' 1 ---cï,rr.LT;·~-::_Tr.:.-n---. ---.. --. '.' Cl" L l. L 1 !'-i:. ( T • T f· ,:'-i'r • 1 ,,) , 0 ) C f\ L L L I 1'; :.:., T { Cl ) (; i, L L ,J!. L 1 ~,D ST L1' L:'NU ,

(30)

SLhl,,;UT I:'-IL GLI~""!l

C( ~~~N/A/GA.C~.GC.GDJGL.GF

.. CL: ,,< ;-':;; !', / ~j/ CS. X t> • RL, û L .t F L • ;-: F; • lJ,( • Pi..' , ~: • U, ;.'

C :, Ci L_ lJ TIC i\ U I-' I, r c>, /ü. N f~ r\ C :J L 1::: h L: Y i'.; fj D L N CV'::" rTt. i~ i', T r V E :\T 1 ~ C :.J

ti I,::: 1 • () L~P= 1. OL-ó ---.,..-1"';.,.:=1.;.0 - - - -.--·- - - --- - ----··-··- - - --_ .... ---.-.-... " -... . l L ::. ~:' 0 J;: T ( h_ ':' i ~ L ) C j .. :

=

~l\...i H T \.) i ... *' f\ i ~ ) ~ 11.::. G ;·)/\=0. S';' (P,-1 PF<) 1 0 I T .~: J T + 1 PA·::.; jl. ;'''i,'\ Xl ( l F • P ft ) CL::: C .. ~:T y 4 fJ 1\ / ,;) L ) c-r:;-c;:'C~"::'~-Y( j.r:t\-/pr;-,-- · - - ·- --·---· .. - ... -_. --... . IJv={ ûL-UfH I-Jl~/GF(+PL/<.L)/ (1 • (j/\.tl~ + 1 • ()/(~L) P S:-I· f;-(J ,'I 1 f· ( J\ L S ( P ~) • LT. EP) G lJ 1 C 2. ,) PA=-r)/\+II.I\~~PS 1f-(lT.U:.I:")GL TC lC A f,:.::.. 0 • :',,'P.A II-'(AA.LT.~P IGC TU 20 ----·----,v,..,...c- Tj ~u;--:T--··-·-·· ... __ ._----.- - ._ ... --... _ ... . <...

20 U/,-:= (i·>L -f-'i-;+(1I()~·UI,+CL ';:0L J/(~~î';+Ol. ) j·:;\t\uUfvj i..dul CL X x·=-Ui. ,;. L) S lF(XA.GC.~X)GC 1G 70 If {P/\ .LT.fJL)':";C TI. (1-0 ,,·:::UL-CL/i"L >--X == v,;, D~ h·~ hL U=l.JL 1·I=PL. CC TL! 2 G'J .JO h-=QL/lUJ\-\,,) U=Ui~ }),;:; i J/\ vl. 1 \J (:oV-~. 40 W=SQ~l(GA~PL/~L) AX= { UL-\, )'q :;, s 11' (À/\.t~L.>,X)<~L TL; !:.lO i~, =-I~L 1j=-l.JL I·'=PL V t- Tl; ,: u Ü - - - - S ' ( J - C C=TJL-TC1::ZC>::T,·-G7,-j . . · -h /1.= (,.) IJ CC J ':' >;c ( 1 • () / GA) V.\·.=S(.f~l (G,..\:;·:PA/l,/\) ); X -::: ( ,j /, - \', ,', ) ~: D S '-' _ ... - ... 1 f ()~A • CL • A)~}"G C'T GoOf, J ' -.. ' ' ... _.' U -::.: ( X i\ / L) :.' + i'. + C C

*

U l_ ) / (, I :, p

=

(

(U-XI,/U::") :;:,,:;::./ vAl C<...) ;!" ,. ( 0 . '...>/ C,C) P=Cc..':« h:'~'~GA) - - - r - G L . I û ~ 0lY-- - - -. - - ---_.---~._----_ ... é; G ,< =-f~:; U=U/, A-IO

(31)

(,L ll, .!UG 70 l f (~A.LT.~h )~C TG 140 .... (. :.:. U F + C :;; / ; : r,: i\ >:::.:;. ':' e!::> I f (XA.L. 1 .XX )(,L Il.l 1-)0 .~= F F, ·-- - -.,..u,.,· ·'"0'-,,'-· -t--:::~I, (, l. JU ;::: lJ 0 1 ~ 0 f,-::: Qi--J ( 'l/-uA ) V=-lJÄ 1·'=1-'1, Ge TCl zoo

----_

.

_

_

.. _---_ .. _ ... _ ...

_-

._-_ .. _--_ .. _-_.---_ .. _ .. 140 ,( x=·n:rt,+,w=~CRT,yA*P~/~R) .-rn:r:.,,----- - - -·--- ----·-.. · ----- - -.. -... - . -_.-... lF(ÀA.LT.XX)GC T.:J l~J ~).o. Pf~ ";G h l ;;: (" () lSO CC.=h·'/{ :.:~~··':'GJ\) f..: j.\-=- l ;., A / cc J ~: .:: ( 1 • ij / ' j ft. )

_

__

_

__

_

_

'.:."-\

__ =

~,~; 'k-T-' {-(),...

*

l.l·:~ I ~'l\ +---... _.,.. --- .. _-" . ;., X=:( l; I, •. i·1; ;; ) " L; ~; l j- ( Ä /\ • L 1 • ;A I. ) G C. 1 I... 1 L ü u::. ('/ .. \/ D::'- <. t G C 'H),, )/ (,:.! ;, =~ ( l >-:, / u ~-'-v ) >::

*

:.

:

/

:J ti / C. c.. ) :;, .. ~ ( 0 • ~) I ,:~ (, ) f'=- \: C ~: ( k'~ ~'GA ) GL TL, 200 ltcC, }-<:::f.'/\ - - - _ .. -- ------ ------._-_ ... i' ,-P,' .

.. ~JO (ut,llt-,lJi:.

f· L 1 L;i· N L j,C) F U r·lt 1 r IW ; Y { x } C Ld., ','J :!'! / i\ / (J A .t Ge. Ge, (, [) , (; L ,G F . i-~ F' .= 1 • 0 r: - 2 ... . ... . . 11-· ( X. LT. 1 • U ) G n ., ü 1 Ü •. Y ~::, I.i i:.-r ( (, C

*

A + ( C ) f{ L l l..l-< j'.-i 10 I F « I . v XI.LI.U·jJu~ Tl· .,;0 !~ Y .-::: GF '" { 1 • 0 -

x

.> / { 1 • i) - ( X i, ;, l'; j •. : ) 1;'- E 'f U['{N 2 ü IC Y :;: GO / ( 1 • 0 - J • ':;.

* (

'

.

'

C - 1 • 0 ) :( ( 1 • u - X 1 -1 ( ~, (. - , • u ) ,; ( v l": - 2 • 0 ) I · ; ~ u

1 >i-, 1. G - À ) ';: li· é: - ( .; I - I • 0)

* (

v i:. -;.-: • ) ';' ( G i: .-_, • ü ) / ;.: .. ~ • 0 (.: ( 1 • 0 - A l (, ~, .J )

kE:.1UhN

Lt--U

(32)

-APPENDIX B

FROZEN ANI) EQUILIBRIUM FLOWS

..

The frozen-flow vaJ.ues at the instant of diaphragm rupture when the particles have no effect can readily be found from the relations given in Ref. 20. If it is now assumed that the velocity and the temperature of the particles are the same as those of the gas everywhere and we neglect the transition thicknesses of the shock wave and the contact region, the equi-librium-flow limit is readily found. In this limit, the pressure in the uniform region behind the shock wave P2 must satisf'y the shock-tube equation

(Ref. 20):

P4 P2 { (74 -

1)(~/a4)(p2/Pl

- 1)

Pl

=

Pl 1 - ../271 ../27

1 + ("1 + 1)(P2!Pl - 1)

(B1)

where "e and ale are now given by Eqs. (23) and (24) as "1 and al' respectively.

Once P2l is known, the other flow quantities are obtained from the Rankine-Hugoniot relations as follows (see Ref. 20):

1 + ("1 + 1)/("1 - 1) x (P2/P1)

- = (B2)

(B3)

(B4)

(B5)

where Us is the velocity of propagation of the shock wave.

The temperature and the density in the uniform region between the contact surface and the rarefaction wave are given by the isentropic re1ations (Ref. 20)

"4-

1

"4-

1

T3

=

(P3

)74

=

(P2/P1

)74

Cytaty

Powiązane dokumenty

Kończył się termin administracyjnej kary i dla Józefa Piłsudskiego; nie spełniły się na szczęście jego niejasne obawy, że zesłanie będzie (w tym samym trybie)

After an investigation of the added mass for vertical vibration of some typical se tions of marked V character similar to the author's series of m=7, Prohaska C2J found that, for

We rationalize these findings with a pair potential model superimposing critical Casimir interactions onto standard van der Waals attraction and electrostatic repulsion, leading

The model minimized differences in remaining equivalent flight hours for individual aircraft in future years, thereby allowing a fleet manager to alter the timeline

The Royal Castle in Warsaw, rebuilt in its historic form, has been equipped with the most modern technical facilities. All facilities and fittings in historic

W pracy jest w ięc omówiony przedm iot prawa autorskie­ go, treść tego prawa, ochrona autorskich dóbr osobistych oraz dóbr m ajątkow ych.. W iele uwagi pośw ięca

Celem pracy jest określenie wpływu zbiorowisk leśnych Puszczy Boreckiej: lasu mie- szanego, boru bagiennego, grądu, olsu i świerczyny na dobowe wahania: temperatury

Jed- ną z takich czynności jest łączenie ze sobą wyrazów zgodnie z przyjętymi w da- nym języku normami łączliwości syntaktycznej, semantycznej i stylistycznej (por.