• Nie Znaleziono Wyników

Identical pion intensity interferometry in central Au + Au collisions at 1.23A GeV

N/A
N/A
Protected

Academic year: 2022

Share "Identical pion intensity interferometry in central Au + Au collisions at 1.23A GeV"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Identical pion intensity interferometry in central Au + Au collisions at 1.23 A GeV

HADES Collaboration

J. Adamczewski-Musch

d

, O. Arnold

j,i

, C. Behnke

h

, A. Belounnas

p

, A. Belyaev

g

, J.C. Berger-Chen

j,i

, J. Biernat

c

, A. Blanco

b

, C. Blume

h

, M. Böhmer

j

, P. Bordalo

b

,

S. Chernenko

g,1

, L. Chlad

q

, C. Deveaux

k

, J. Dreyer

f

, A. Dybczak

c

, E. Epple

j,i

, L. Fabbietti

j,i

, O. Fateev

g

, P. Filip

a

, P. Fonte

b,2

, C. Franco

b

, J. Friese

j

, I. Fröhlich

h

, T. Galatyuk

e,d

,

J.A. Garzón

r

, R. Gernhäuser

j

, M. Golubeva

l

, R. Greifenhagen

f,3

, F. Guber

l

,

M. Gumberidze

d,4

, S. Harabasz

e,c

, T. Heinz

d

, T. Hennino

p

, S. Hlavac

a

, C. Höhne

k,d

, R. Holzmann

d

, A. Ierusalimov

g

, A. Ivashkin

l

, B. Kämpfer

f,3

, T. Karavicheva

l

, B. Kardan

h

, I. Koenig

d

, W. Koenig

d

, B.W. Kolb

d

, G. Korcyl

c

, G. Kornakov

e

, R. Kotte

f

, A. Kugler

q

, T. Kunz

j

, A. Kurepin

l

, A. Kurilkin

g

, P. Kurilkin

g

, V. Ladygin

g

, R. Lalik

c

, K. Lapidus

j,i

, A. Lebedev

m

, L. Lopes

b

, M. Lorenz

h

, T. Mahmoud

k

, L. Maier

j

, A. Mangiarotti

b

, J. Markert

d

, T. Matulewicz

s

, S. Maurus

j

, V. Metag

k

, J. Michel

h

, D.M. Mihaylov

j,i

, S. Morozov

l,n

, C. Müntz

h

, R. Münzer

j,i

, L. Naumann

f

, K. Nowakowski

c

, M. Palka

c

, Y. Parpottas

o,5

, V. Pechenov

d

, O. Pechenova

d

, O. Petukhov

l

, K. Piasecki

s

, J. Pietraszko

d

, W. Przygoda

c

, S. Ramos

b

, B. Ramstein

p

, A. Reshetin

l

, P. Rodriguez-Ramos

q

, P. Rosier

p

, A. Rost

e

, A. Sadovsky

l

, P. Salabura

c

, T. Scheib

h

, H. Schuldes

h

, E. Schwab

d

, F. Scozzi

e,p

, F. Seck

e

, P. Sellheim

h

, I. Selyuzhenkov

d,n

, J. Siebenson

j

, L. Silva

b

, Yu.G. Sobolev

q

, S. Spataro

t

, S. Spies

h

, H. Ströbele

h

, J. Stroth

h,d

, P. Strzempek

c

, C. Sturm

d

, O. Svoboda

q

, M. Szala

h

, P. Tlusty

q

, M. Traxler

d

, H. Tsertos

o

, E. Usenko

l

, V. Wagner

q

, C. Wendisch

d

, M.G. Wiebusch

h

, J. Wirth

j,i

, D. Wójcik

s

, Y. Zanevsky

g,1

, P. Zumbruch

d

aInstituteofPhysics,SlovakAcademyofSciences,84228Bratislava,Slovakia

bLIP-LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,3004-516Coimbra,Portugal cSmoluchowskiInstituteofPhysics,JagiellonianUniversityofCracow,30-059Kraków,Poland dGSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany eTechnischeUniversitätDarmstadt,64289Darmstadt,Germany

fInstitutfürStrahlenphysik,Helmholtz-ZentrumDresden-Rossendorf,01314Dresden,Germany gJointInstituteofNuclearResearch,141980Dubna,Russia

hInstitutfürKernphysik,Goethe-Universität,60438Frankfurt,Germany iExcellenceCluster‘OriginandStructureoftheUniverse’,85748Garching,Germany jPhysikDepartmentE62,TechnischeUniversitätMünchen,85748Garching,Germany kII.PhysikalischesInstitut,JustusLiebigUniversitätGiessen,35392Giessen,Germany lInstituteforNuclearResearch,RussianAcademyofScience,117312Moscow,Russia mInstituteofTheoreticalandExperimentalPhysics,117218Moscow,Russia

nNationalResearchNuclearUniversityMEPhI(MoscowEngineeringPhysicsInstitute),115409Moscow,Russia oDepartmentofPhysics,UniversityofCyprus,1678Nicosia,Cyprus

pInstitutdePhysiqueNucléaire,CNRS-IN2P3,Univ.Paris-Sud,UniversitéParis-Saclay,F-91406OrsayCedex,France

E-mailaddress:hades-info@gsi.de(J. Stroth).

1 Deceased.

2 AlsoatCoimbraPolytechnic- ISEC,Coimbra,Portugal.

3 AlsoatTechnischeUniversitätDresden,01062 Dresden,Germany.

4 AlsoatExtreMeMatterInstituteEMMI,64291 Darmstadt,Germany.

5 AlsoatFrederickUniversity,1036 Nicosia,Cyprus.

https://doi.org/10.1016/j.physletb.2019.06.047

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

qNuclearPhysicsInstitute,TheCzechAcademyofSciences,25068Rez,CzechRepublic rLabCAF.F.Física,Univ.deSantiagodeCompostela,15706SantiagodeCompostela,Spain sUniwersytetWarszawski- InstytutFizykiDo´swiadczalnej,02-093Warszawa,Poland tDipartimentodiFisicaandINFN,UniversitàdiTorino,10125 Torino,Italy

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received15February2019

Receivedinrevisedform14June2019 Accepted24June2019

Availableonline27June2019 Editor:D.F.Geesaman

We investigate identicalpion HBTintensity interferometryin central Au + Aucollisions at 1.23 A GeV.

High-statistics ππ andπ+π+ data aremeasuredwithHADESatSIS18/GSI.Theradiusparameters, derivedfromthecorrelationfunctiondependingonrelativemomentainthelongitudinallycomovingsys- temandparametrizedasthree-dimensionalGaussiandistribution,arestudiedasfunctionoftransverse momentum.Asubstantialcharge-signdifferenceofthesourceradiiisfound,particularlypronouncedat lowtransversemomentum.Theextractedsourceparametersagreewellwithasmoothextrapolationof thecenter-of-massenergydependenceestablishedathigherenergies,extendingthecorrespondingexci- tationfunctionsdowntowardsaverylowenergy.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Two-particleintensityinterferometryofhadronsiswidelyused to study the spatio-temporal size, shape and evolution of their sources created inheavy-ion collisions orother reactions involv- ing hadrons(for a review seeRef. [1]). The technique, pioneered byHanburyBrownandTwiss[2] tomeasureangularradiiofstars, later on named HBT interferometry, is based on the quantum- statistical interference of identical particles. Goldhaber et al. [3]

firstappliedintensityinterferometrytohadrons.Inheavy-ioncol- lisions, the intensity interferometry does not allow to measure directlythereaction volume,asthe emissionsource, changingin shapeand sizein the courseof the collision,is affectedby den- sityandtemperaturegradients anddynamicallygeneratedspace- momentum correlations(e.g. radial expansion afterthe compres- sion phase or resonance decays). Thus, intensity interferometry generallydoesnot yield thepropersource size,butratheran ef- fective“lengthofhomogeneity”[1].Itmeasures sourceregionsin whichparticlepairsarecloseinmomentum,sothatthey arecor- relatedasaconsequenceoftheirquantumstatisticsorduetotheir two-bodyinteraction.Ingeneral, thesignandstrengthofthecor- relationisaffected by (i) thestrong interaction,(ii) the Coulomb interactionifchargedparticlesareinvolved,and(iii) thequantum statisticsinthecaseofidenticalparticles(Fermi–Diracsuppression forfermions,Bose–Einsteinenhancement forbosons).Inthecase of

π π

correlations,themutualstronginteractionwasfoundtobe minor[4] comparedtotheeffects (ii)and (iii).

Pionfreeze-outdynamicsmaybe relevanttoongoingsearches forthe QCD critical point in the T –

μ

B plane, where T and

μ

B are the temperature and the baryon-chemical potential. Systems with

μ

B abovethe criticalpointare expectedtoundergo afirst- orderphasetransitionwhichmightbevisibleinanon-monotonic behavior of various source parameters. However, it is also con- ceivablethattheinitialtemperaturesofthesystem,whichcanbe reachedin heavy-ioncollisions athigh

μ

B,are not high enough tocreateadeconfinedpartonicstate.Inthisscenarioafirstorder phaseboundarycannotbereachedexperimentally.Arecentlypub- lishedexcitationfunctionofHBTsourceradii[5] fromthedomain oftheRelativistic Heavy IonCollider(RHIC) downto lower colli- sionenergiesindicates sucha non-monotonicenergydependence aroundcenter-of-massenergiesof√

sNN<10 GeV.Eventhougha partof thisbehavior can be relatedto the strong impact ofdif- ferentpairtransversemomentum intervalsinvolvedinthesource parametercompilationofRef. [5],toacertainextentthedeviation ofthe datapoints froma monotonic trend remains atlow ener- gies.Here,newprecisiondata,especiallyatlow collisionenergies of√

sNN<5 GeV,cancontribute tothe clarificationofthisexcit-

ingobservationbeforedefiniteconclusionsonachangeinphysics canbedrawn.

It is worth emphasizing that only preliminary data [6] of identical-pion HBT dataexist fora largesymmetric collision sys- tem (like Au + Au or Pb + Pb) at a beam kinetic energy of about 1 A GeV (fixedtarget,√

sNN=2.3 GeV).6Forthesomewhatsmaller system La + La, studied at 1.2 A GeV with the HISS spectrometer at the Lawrence Berkeley Laboratory (LBL) Bevalac, pioncorrela- tion data were reported by Christie etal. [7,8]. An oblate shape of the pionsource and a correlation ofthe source size with the system size were found. Also, pion intensity interferometry for smallsystems (Ar + KCl,Ne + NaF)was studiedat1.8 A GeV atthe LBL Bevalac usingthe Janus spectrometer by Zajcet al.[9]. Both groups madefirst attempts to correctthe influence of the pion- nuclear Coulombinteraction onthe pionmomenta.Theeffecton the sourceradii, however,were foundnegligible fortheir experi- ments.

In this letter we report on the first investigation of

π

π

and

π

+

π

+ correlationsatlow relativemomenta inAu + Au colli- sionsat1.23 A GeV,continuingourpreviousfemtoscopicstudiesof smallercollisionssystems[10–12].Theexperimentwasperformed with the High Acceptance Di-Electron Spectrometer (HADES) at theSchwerionensynchrotronSIS18atGSI,Darmstadt.HADES[13], although primarily optimizedto measure di-electrons[14],offers alsoexcellent hadronidentificationcapabilities[15–18].HADES is achargedparticledetectorconsistingofasix-coiltoroidalmagnet centeredaroundthebeamaxisandsixidenticaldetectionsections locatedbetweenthecoils andcovering polaranglesbetween18 and85.Eachsector is equippedwithaRing-Imaging Cherenkov (RICH) detector followed by four layers of Mini-Drift Chambers (MDCs), two in front of and two behind the magnetic field, as well asascintillator Time-Of-Flight detector(TOF)(45–85) and Resistive Plate Chambers (RPC) (18–45). Both timing detectors, TOF and RPC, allow for good particle identification, i.e. proton- pion separation. (Due to their low yield, kaons hardly affect the pionselectionatSISenergies.)TOF,RPC,andPre-Showerdetectors (behind RPC, for e± identification) were combined into a Multi- plicityandElectronTriggerArray (META).Severaltriggersareim- plemented. The minimumbiastrigger isdefined bya signal ina diamond START detector in front of the 15-fold segmented gold target.Inaddition,onlinePhysicsTriggers(PT)areused,whichare basedonhardware thresholdsontheTOFsignals, proportionalto

6 ThroughoutthispublicationA GeV referstothemeankineticbeamenergy.

(3)

the eventmultiplicity, corresponding to atleast 20 (PT3) hits in the TOF. About 2.1 billion PT3 triggered Au + Au collisions corre- sponding to the 40% most central events are taken into account forthecorrelation analysis. The centralitydeterminationisbased onthesummednumberofhitsdetectedby theTOFandtheRPC detectors. The measured events are divided in centrality classes correspondingto successive10% regionsofthetotalcrosssection [19].Here,wereportonlyonresultsofthe0–10%class;theentire centralitydependenceofpionsourceparametersanalyzed asfunc- tionofazimuthalanglew.r.t.thereactionplanewillbepartofan extendedforthcoming paper,while yieldsandphase-spacedistri- butionsofchargedpionsaretobepresentedinaseparatereport.

Generally,thetwo-particlecorrelationfunctionisdefinedasthe ratiooftheprobability P2(p1,p2)tomeasuresimultaneouslytwo particleswithmomenta p1 and p2 andtheproductofthecorre- spondingsingle-particleprobabilities P1(p1)andP1(p2)[1],

C

(

p1

,

p2

) =

P2

(

p1

,

p2

)

P1

(

p1

)

P1

(

p2

) .

(1) Experimentallythiscorrelationisformedasafunctionofthemo- mentumdifference betweenthetwo particlesofagivenpairand quantified by taking the ratio ofthe yields of‘true’ pairs (Ytrue) anduncorrelatedpairs (Ymix). Ytrue is constructedfromall parti- clepairsintheselectedphasespaceintervalfromthesameevent.

Ymix isgenerated by eventmixing, whereparticle 1andparticle 2aretakenfromdifferentevents.Care wastakentomixparticles fromsimilareventclassesintermsofmultiplicity,vertexposition andreactionplane angle.Theeventsare allowed todifferby not morethan10unitsinthenumberoftheRPC + TOFhit multiplic- ityof≥182 (i.e.correspondingtotheuncertaintyofthecentrality class0–10%[19]),1.2 mminthez-vertexcoordinate(amountingto lessthanone thirdofthespacingbetweentarget segments),and 30degreesinazimuthalangle(tobecomparedtotheeventplane resolutionofcos=0.612),respectively.

The momentum difference isdecomposed intothree orthogo- nalcomponents assuggestedby Podgoretsky [20], Pratt [21] and Bertsch [22].The three-dimensionalcorrelationfunctionsarepro- jections of equation (1) into the (out,side, long)-coordinate sys- tem, where ‘out’ means along the pair transverse momentum, kt= (pt,1+pt,2)/2,‘long’isparalleltothebeamdirection z,and

‘side’isorientedperpendicular tothe other directions.Theparti- cles forminga pair are boostedinto the longitudinallycomoving system(LCMS), wherethe z-components of the momenta cancel eachother, pz1+pz2=0.Notethat inother publicationsalsothe paircomovingsystem(p1+p2=0)isfrequentlyused.TheLCMS choice allows for an adequate comparison with correlation data taken at very different, usually much higher, collision energies, wherethedistributionoftherapidity,y=tanh1z),ofproduced particlesis foundto be notasnarrow asin thepresentcasebut largelyelongated.(Here,βz=pz/E, E=

p2+m20 andm0 arethe longitudinal velocity, the total energy and the rest mass of the particle, respectively. We use units with h¯ =c2=1.) Hence, the experimentalcorrelationfunctionisgivenby

C

(

qout

,

qside

,

qlong

) =

N Ytrue

(

qout

,

qside

,

qlong

)

Ymix

(

qout

,

qside

,

qlong

) ,

(2) whereqi= (p1,ip2,i)/2 (i=‘out’,‘side’,‘long’)aretherelative momentumcomponents,andN isanormalizationfactorwhichis fixedbytherequirementC1 atlargerelativemomenta,where the correlation function is expected to flatten out at unity. Note that,asinourprevious intensityinterferometryanalyses[10–12], we use theabove low-energy convention of q whichis common

also in studies of proton-proton correlations, in contrast to the high-energy convention of

π π

correlations, Q =2q. The statisti- calerrorsofequation(2) aredominatedbythoseofthetrueyield, sincethemixedyieldisgeneratedwithmuchhigherstatistics.

Two-trackreconstructiondefects(e.g.tracksplittingandmerg- ing effects) that are particularlyimportant to HBTanalyses were correctedbyappropriateselectionconditionsontheMETA-hitand MDC-layerlevels,i.e.bydiscardingpairswhichhitthesameMETA cell, and by excluding forparticle 2 three successive wires sym- metrically around theMDC wirefired by particle 1. Thismethod was tested with simulations carrying neither quantum-statistical nor Coulomb effects, based on UrQMD [23], Geant [24] and a detailed description of the detector response, to firmly exclude anyclose-track effect.Alsobroaderexclusionwindows havebeen tested, but nosignificant improvement was found.These simula- tionsalsoshowedthattherearenosignificantlong-rangecorrela- tions,usuallyattributedeithertoenergy–momentumconservation incorrelationanalysesofsmallsystemsortominijet-likephenom- enaathighenergies.

Thedataaredividedintosevenkt binsfrom50to400 MeV/c.

The three-dimensional experimental correlation function is then fittedwiththefunction

Cfit

(

qout

,

qside

,

qlong

) =

N



(

1

− λ) + λ

KC

q

,

Rinv

)

Cqs

(

qout

,

qside

,

qlong

) 

,

(3)

where

Cqs

(

qout

,

qside

,

qlong

) =

1

+

exp

(−(

2qoutRout

)

2

− (

2qsideRside

)

2

− (

2qlongRlong

)

2

)

(4) represents the quantum-statistical part of the correlation func- tion. The parameters N and λ in Eq. (3) are a normalization constant and the fraction of correlated pairs, respectively, and ˆ

q=qinv(qout,qside,qlong,kt) is the average value of the invari- ant momentum difference, qinv=12

(p1p2)2− (E1E2)2,for givenintervalsoftherelativemomentumcomponentsandkt.The rangeoftheone- andthree-dimensionalfits extendsinqinv from 6 MeV/c to 80 MeV/c.Log-likelihood minimization[25] wasused in all fits to the correlation functions. The influence of the mu- tual Coulomb interaction in Eq. (3) is separated from the Bose–

EinsteinpartbyincludinginthefitsthecommonlyusedCoulomb correction by Sinyukov et al. [26]. The Coulomb factor KC re- sults from the integration of the two-pion Coulomb wave func- tion squared over a spherical Gaussian source of fixed radius.

This radius is iteratively approximated by the result of the cor- responding fit to the correlation function. In Eq. (3), the non- diagonal elements comprising the combinations ‘out’–‘side’ and

‘side’–‘long’ vanish for symmetry reasons [27] whenazimuthally andrapidity integratedcorrelations functionsarestudied [28,29], as it is done in the present investigation. The ‘out’–‘long’ com- ponent, however, can have a finite value depending on the de- gree of symmetry of the detector-accepted rapidity distribution w.r.t. midrapidity ( ycm=0.74). We studied thiseffectby includ- ing in Eq. (4) an additional term −2qout(2Rout long)2qlong, where theprefactoraccountsforbothnon-diagonalterms,‘out’–‘long’and

‘long’–‘out’. We foundonly marginal differencesinthefits which delivered,foralltransverse-momentumclasses,rathersmallvalues of R2out long<1 fm2. Forall results presentedhere, we restricted the pair rapidity to an interval |yycm|<0.35, within which dN/dy doesnot varybymore than10%,andlimitedourselvesto thefitfunctionwiththeBose–Einsteinpart(Eq. (4))consistingof diagonalelementsonlyandaddedthesmalldeviationstothesys- tematic errors. The effectof finite momentum resolutions of the

(4)

Fig. 1. ProjectionsoftheCoulomb-correctedthree-dimensionalππ correlation function(dots)andoftherespectivefits(dashedcurves)for the ktintervals of 100–150 MeV/c (top),200–250 MeV/c (middle),and300–350 MeV/c (bottom).The left,center,andrightpanelsgivethe‘out’,‘side’,and‘long’directions,respectively.

Theunplottedq componentsareintegratedover±12 MeV/c.

HADEStrackingsystemisstudiedwithdedicatedsimulations.Typ- icalGaussian resolutionvaluesof

σ

q(qinv=20 MeV/c)2 MeV/c areestimated.Incorporatingacorrespondingcorrectionintothefit functionbyconvolutionofEq. (3) withaGaussianresolutionfunc- tionleadstoradiusshiftsofaboutδR/R +2%.

Fig. 1 shows one-dimensional projections of the Coulomb- corrected

π

π

correlationfunctiontogetherwithcorresponding fitswithEq. (3) forvariouskt intervals.(Due tothepermutability ofparticles 1and 2, oneoftheq projectionscan berestricted to positivevalues.) Thepeak duetothe Bose–Einsteinenhancement becomesevidentatlow|q|.Itswidthincreaseswithincreasingkt. Thecorrelation functions for

π

+

π

+ pairs looksimilar. The main systematicuncertaintiesoftheresultspresentedbelowarisefrom theslightfluctuationsofthefitresultswhenvaryingthefitranges (∼0.1–0.3 fm),fromthe forward–backwarddifferencesof thefit resultsw.r.t.midrapiditywithin similartransversemomentumin- tervals(∼0.03–0.1(0.2)fmforRinv,Rside, Rlong (Rout)),andfrom thedifferenceswhen switchingon/off the‘out’–‘long’component in the fit function (∼0.05–0.2 fm). Finally, all systematic error contributionsareaddedquadratically.InFig.2they areshownas hatchedbands.

To separate a potential source radius bias introduced by the Coulomb force the charged pions experience in the field of the chargedfireball,wefollowtheansatzusedinRef. [30],

E

(

pf

) =

E

(

pi

) ±

Veff

(

ri

),

(5) whereE isthetotalenergy,pi(pf)istheinitial(final)momentum andriistheinitial position ofthepionintheCoulomb potential Veffwithpositive(negative)signfor

π

+ (

π

).With

Rπ±π± Rπ˜0π˜0

qi qf

= |

pi

|

|

pf

| =

 

 

1

2Veff

|

pf

|

1

+

m2π p2f

+

Veff2

p2f

,

(6)

where qi (qf) is the initial (final) relative momentum, and with Veff/kt 1,itturnsoutthattheconstructedsquaredsourceradius forpairs of neutral pions (denoted by

π

˜0

π

˜0 in the following in contrasttothecasewhere

π

π

and

π

+

π

+dataarecombined) issimply thearithmetic mean ofthe corresponding quantitiesof thechargedpions,

R2π˜0π˜0

=

1 2

R2π+π+

+

R2ππ

,

(7)

Fig. 2. Sourceparametersasfunctionofpairtransversemomentum,kt,forcentral (0–10%)Au + Aucollisionsat1.23 A GeV.Theupperleft,upperright,centerleft,and centerrightpanelsdisplaytheinvariant,out,side,andlongradii,respectively.The lowerleftandlowerrightpanelsshowthecorrespondingλparametersresulting fromthefitstotheone- andthree-dimensionalcorrelationfunctions,respectively.

Blacksquares(redcircles) arefor pairsofnegative(positive)pions.Bluedashed linesrepresentconstructedradii ofneutralpionpairs(seetext).Error barsand hatchedbandsrepresentthestatisticalandsystematicerrors,respectively.

whichisvalidforallradiuscomponents(eventhoughinthe‘out’

direction, Eq. (6) looks slightlydifferent).Finally, theconstructed

π

0

π

0 correlation radii are derived from cubic spline interpola- tionsofthektdependenceofboththecorrespondingexperimental

π

π

and

π

+

π

+data.Thisinterpolationisnecessarybecause– asresultofdifferentdetectoracceptances–thechargedpionpairs exhibitslightlydifferentaveragetransversemomenta,eventhough theyaremeasuredinidenticalkt intervals.

Fig. 2 shows the dependence on average kt (determined for qinv<50 MeV/c) of the one-dimensional (invariant) and three- dimensional source radii for

π

π

(black squares) and

π

+

π

+

(red circles) pairs. While for low transverse momentum the Coulomb interaction withthe fireball leads to an increase (a de- crease) of the source size derived for negative (positive) pion pairs, atlarge transversemomentum apparently theCoulomb ef- fectfadesaway.TheeffectissmallestforRout.Notethatthecharge splitting of the source radii was early predicted by Barz [31,32]

who investigated the combined effects of nuclear Coulomb field, radial flow, andopaqueness on two-pion correlationsfor a large collision system such as Au + Au in the 1 A GeV energy regime.

EarlierexperimentalworksattheBevalacemployingathree-body Coulomb correction found the effect negligible for their studies of smaller systems [7–9]. The parameter λ derived fromthe fits with Eq. (3) appears rather independent of charge sign and de- creases only slightly with increasing transverse momentum, cf.

lowerrightpanelofFig.2.Itfitswellintoapreliminaryevolution with√

sNN establishedpreviously[5],exceptthelowestE895data point.Incontrast,λresultingfromthefitstotheone-dimensional

(5)

Fig. 3. Excitationfunction ofthe sourceradii Rout (upperpanel), Rside (central panel),andRlong(lowerpanel)forpairsofidenticalpionswithtransversemassof mt=260 MeV incentralcollisionsofAu + AuorPb + Pb.Squaresrepresentdataby ALICEatLHC(ππ+π+π+)[37],fulltrianglesSTARatRHIC(ππ+π+π+)[5], diamondsareforCERESatSPS(ππ+π+π+)[38],opentrianglesareforNA49 atSPS(ππ)[39],opencirclesareππdatabyE895atAGS[1,28],andopen (full)crosses involveππ (π+π+)dataofE866atAGS[40],respectively.The presentdataofHADESatSIS18forpairsofππ(π+π+)aregivenasopen(full) stars.Statisticalerrorsaredisplayedaserrorbars;ifnotvisible,theyaresmaller thanthecorrespondingsymbols.

(qinv-dependent) correlation function, exhibits a significant de- creasewithkt (cf.lower leftpanel),probablypointingtothefact that the one-dimensional fit function is not adequate. Note that deviationsfromGaussiansourceshapeswillbestudiedinaforth- comingpaperby applyingthe methodofsourceimaging [33,34], orbyusingLévysourceparameterizations[35].

TheexcitationfunctionsofRout, Rside,and Rlong forpionpairs produced in central collisions are displayed in Fig. 3. All shown radius parameters havebeenobtained byinterpolating theexist- ing measured data points to the same transverse mass of mt=



k2t +m2π =260 MeV at which data points by STAR at RHIC [5] are available. The statistical errors are properly propagated andquadraticallyaddedwithsystematicdifferencesoflinear and cubic-spline interpolations. Extrapolations were not necessary at thismt value. Corresponding excitation functions at other trans- verse masses show similar dependencies. Surprisingly, Rout and Rside vary hardly morethan 40% over three ordersof magnitude in center-of-mass energy. Only Rlong exhibits a systematical in- crease by about a factor of two to three when going in energy from SIS18 via AGS, SPS, RHIC to LHC. Note that in the excita- tionfunctionsofRef. [5] notall,particularlyAGS,datapointswere properlycorrectedfortheirkt dependence.WhiletheHADES Rout and Rside datafornegative pionscompletely agreewiththelow- est E895 data at 2 A GeV, Rlong deviates fromthe corresponding

Fig. 4. ExcitationfunctionofR2outR2side,ascalculatedfromthedatapointsshown inFig.3.

E895 datapoint. Both data are, however,in accordance withthe overall smooth trendwithin 2

σ

.(Thelow-energy CERES dataof Rout andthe E866 datapoint of Rlong for

π

π

pairs appearto beoutliers.)

The combinationof R2out andR2side canbe relatedto theemis- sion time duration[36],(

τ

)2≈ (R2outR2side)/βt2,where βt is thetransversepairvelocity.TheexcitationfunctionofR2outR2side is shown in Fig. 4. Up to now almost all measurements below 10 GeV are characterized by large errors and scatter sizeably.

(Here, the outlying low-energy CERES data are solely caused by thedeviationinRout,cf.toppanelofFig.3.)ThenewHADESdata show that the difference of source parameters in the transverse plane almost vanishes at low collision energies. With increasing energy, it reaches a maximum at √

sNN20–30 GeV and after- wards decreases towards zero at LHC energies. One would con- cludethatinthe1 A GeV energyregionpionsareemittedintofree spaceduringashorttimespanoflessthanonetotwofm/c.How- ever,alsotheopaqueness ofthe sourceaffectsR2outR2side which couldcauseittobecomenegative,thuscompensatingthepositive contributionfromtheemissiontime[32].

The excitation function of the freeze-out volume, Vfo = (2

π

)3/2R2sideRlong, is given in Fig. 5. Note that this definition of a three-dimensional Gaussian volume does not incorporate Rout since generallythislength is potentially extendeddueto a finite value of the aforementioned emission duration. From the above HADES data,we estimate a volume ofabout 1300 fm3 for pairs ofconstructedneutralpions.Thevolumeofhomogeneitysteadily increases with energy, butis merely a factorfour larger at LHC.

Extrapolating Vfo tokt=0 yieldsavalueofabout3900 fm3. ThelargescatterofdatapointsinFig.5below√

sNN=10 GeV isintriguingandmightindicateanon-trivialenergydependenceof theradius parametersinthisregion.However,the simplestinter- pretationwouldbetoassumeinsteadthattheenergydependence issmooth.(NotethatthedifferenceoftheHADES

π

π

dataand the lowestE895 datapointat2 A GeV is primarilycausedby the deviation in Rlong.) If, however, the variation ofthe data atlow energies,mostprominentlyseen inthenon-monotonicityof Rside (cf. Fig. 3), isto be taken seriously,new experimental andtheo- reticaleffortsareneededtoclarify thesituation,ascouldbedone withthefutureexperimentsCBMatSIS100/FAIRinDarmstadt[41]

andMPDatNICAinDubna[42] orwiththeSTARfixed-targetpro-

(6)

Fig. 5. Excitationfunctionofthefreeze-outvolume,Vfo= (2π)3/2R2sideRlong,ascal- culatedfromthedatapointsshowninFig.3.

gram [43].Finally, we wantto recallthat in Figs. 3,4,and5 we displaystatisticaluncertaintiesonly;thesystematiconeswerenot availableforallexperiments.

In summary, we presented high-statistics

π

π

and

π

+

π

+

HBT data for central Au + Au collisions at 1.23 A GeV. The three- dimensionalGaussianemissionsourceisstudiedindependenceon transversemomentumandfoundtofollowthetrendsobservedat higher collision energies, extending the corresponding excitation functionsdowntotheverylowpartoftheenergyscale.Substan- tialdifferencesofthesourceradiiforpairsofnegativeandpositive pionsare found, especially at low transverse momenta,an effect which is not observed at higher collision energies. A clear hier- archyofthe three Gaussianradii is seenin ourdata,i.e. Rlong<

RsideRout,independent oftransverse momentum.Furthermore, asurprisinglysmallvariationofthespace–timeextentofthepion emissionsourceoverthreeordersofmagnitudeincenter-of-mass energy,√

sNN,isobserved.Ourdataindicatethattheverysmooth trendsobservedatultra-relativisticenergiescontinuetowardsvery lowenergies.WhilebothRoutandRlongsteadilydecreasewithde- creasing√

sNN,aweaknon-monotonicenergydependenceofRside cannotbeexcluded.

Acknowledgements

The HADES Collaboration gratefullyacknowledges the support by the grants SIP JUC Cracow, Cracow (Poland), National Sci- ence Center, 2016/23/P/ST2/040 POLONEZ, 2017/25/N/ST2/00580, 2017/26/M/ST2/00600; TU Darmstadt, Darmstadt (Germany) and Goethe-University, Frankfurt (Germany), ExtreMe Matter Institute EMMIat GSI Darmstadt; TU München, Garching(Germany), MLL München,DFGEClust153,GSI TMLRG1316F,BMBF 05P15WOFCA,

SFB1258, DFGFAB898/2-2; NRNUMEPhIMoscow,Moscow(Rus- sia), inframeworkofRussianAcademic ExcellenceProject 02.a03.

21.0005, Ministry of Science and Education of the Russian Fed- eration 3.3380.2017/4.6; JLU Giessen, Giessen (Germany), BMBF:

05P12RGGHM; IPN Orsay, Orsay Cedex (France), CNRS/IN2P3;

NPI CAS, Rez, Rez (Czech Republic), MSMT LM2015049, OP VVV CZ.02.1.01/0.0/0.0/16013/0001677,LTT17003.

References

[1]M.A.Lisa,S.Pratt,R.Soltz,U.Wiedemann,Annu.Rev.Nucl.Part.Sci.55(2005) 357.

[2]R.Q.HanburyBrown,R.Twiss,Nature178(1956)1046.

[3]G.Goldhaber,S.Goldhaber,W.-Y.Lee,A.Pais,Phys.Rev.120(1960)300.

[4]M.G.Bowler,Z.Phys.C39(1988)81.

[5]L.Adamczyk,etal.,STARcollaboration,Phys.Rev.C92(2015)014904.

[6]G.Goebels,FOPIcollaboration,PhDthesis,Ruprecht-Karls-UniversitätHeidel- berg,1995.

[7]W.B.Christie,etal.,Phys.Rev.C47(1993)779.

[8]W.B.Christie,etal.,Phys.Rev.C45(1992)2836.

[9]W.A.Zajc,etal.,Phys.Rev.C29(1984)2173.

[10]G.Agakishiev,etal.,HADEScollaboration,Phys.Rev.C82(2010)021901.

[11]G.Agakishiev,etal.,HADEScollaboration,Eur.Phys.J.A47(2011)63.

[12]J. Adamczewski-Musch, et al.,HADES collaboration,Phys. Rev. C94 (2016) 025201.

[13]G.Agakishiev,etal.,HADEScollaboration,Eur.Phys.J.A41(2009)243.

[14]G.Agakichiev,etal.,HADEScollaboration,Phys.Rev.Lett.98(2007)052302.

[15]G.Agakishiev,etal.,HADEScollaboration,Phys.Rev.C80(2009)025209.

[16]G.Agakishiev,etal.,HADEScollaboration,Phys.Rev.Lett.103(2009)132301.

[17]G.Agakishiev,etal.,HADEScollaboration,Phys.Rev.C82(2010)044907.

[18]G.Agakishiev,etal.,HADEScollaboration,Eur.Phys.J.A47(2011)21.

[19]J.Adamczewski-Musch,et al.,HADEScollaboration,Eur.Phys.J.A54(2018) 85.

[20]M.I.Podgoretsky,Sov.J.Nucl.Phys.37(1983)272.

[21]S.Pratt,Phys.Rev.D33(1986)1314.

[22]G.F.Bertsch,Nucl.Phys.A498(1989)173c.

[23]S.A.Bass,etal.,Prog.Part.Nucl.Phys.41(1998)255.

[24] R.Brun,F.Bruyant,F.Carminati,S.Giani,M.Maire,A.McPherson,G.Patrick,L.

Urban,https://doi.org/10.17181/CERN.MUHF.DMJ1,1994.

[25]L.Ahle,etal.,E802collaboration,Phys.Rev.C66(2002)054906.

[26]Yu.M.Sinyukov,R.Lednicky,S.V.Akkelin,J.Pluta,B.Erazmus,Phys.Lett.B432 (1998)248.

[27]U. Heinz, A.Hummel, M.A.Lisa, U.A. Wiedemann, Phys. Rev.C 66 (2002) 044903.

[28]M.A.Lisa,etal.,E895collaboration,Phys.Rev.Lett.84(2000)2798.

[29]E.Mount,G.Graef,M.Mitrovski,M.Bleicher,M.A.Lisa,Phys.Rev.C84(2011) 014908.

[30]G.Baym,P.Braun-Munzinger,Nucl.Phys.A610(1996)286c.

[31]H.W.Barz,Phys.Rev.C53(1996)2536.

[32]H.W.Barz,Phys.Rev.C59(1999)2214.

[33]D.A.Brown,P.Danielewicz,Phys.Lett.B398(1997)252.

[34]S.Y.Panitkin,etal.,E895collaboration,Phys.Rev.Lett.87(2001)112304.

[35]A.Adare,etal.,PHENIXcollaboration,Phys.Rev.C97(2018)064911.

[36]M.A.Lisa,ActaPhys.Pol.B47(2016)1847.

[37]J.Adam,etal.,ALICEcollaboration,Phys.Rev.C93(2016)024905.

[38]D.Adamova,etal.,CEREScollaboration,Nucl.Phys.A714(2003)124.

[39]C.Alt,etal.,NA49collaboration,Phys.Rev.C77(2008)064908.

[40]R.A.Soltz,M.Baker,J.H.Lee,Nucl.Phys.A661(1999)439c.

[41]T.Ablyazimov,etal.,CBMcollaboration,Eur.Phys.J.A53(2017)60.

[42] A.Sorin,V.Kekelidze,A.Kovalenko,R.Lednicky,V.Matveev,I. Meshkov,G.

Trubnikov,PoS(CPOD2014)(2014)042,https://doi.org/10.22323/1.217.0042.

[43]K.Meehan,STARcollaboration,Nucl.Phys.A967(2017)808.

Cytaty

Powiązane dokumenty

We compare the scaling of the multiplicities as function of the centrality of the collisions to the previously published data on charged kaons and φ mesons [29] and the spectra

In summary, all of the MCs underestimate the amount of energy in the forward region relative to the central region, in both the minimum bias data and the underlying event, with

(1) and a Siemens–Rasmussen model function including a radial expansion velocity as parameter fixed by using the kinematic distribution of the protons in the same collision system

For the extraction of photon reconstruction and identifi- cation efficiencies, the photon energy scale, and expected properties of the isolation transverse energy distributions,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

In this work we present high statistic invariant mass and angular distributions on double pion production in np and pp collisions at an incident beam energy of 1.25 GeV obtained

diagrams of cold PLFs for three selected asymmetries (left column) and velocity distributions of lighter fragments F2 in the PLF systems (right column) evidently demonstrating

Comparison of distributions of relative velocities for event with different orientation in respect to reaction plane gives evidence that the freeze-out configuration is more