• Nie Znaleziono Wyników

Fundamental understanding of the Di-Air system (an alternative NO<sub>x</sub> abatement technology). I: The difference in reductant pre-treatment of ceria

N/A
N/A
Protected

Academic year: 2021

Share "Fundamental understanding of the Di-Air system (an alternative NO<sub>x</sub> abatement technology). I: The difference in reductant pre-treatment of ceria"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

Fundamental understanding of the Di-Air system (an alternative NOx abatement

technology). I: The difference in reductant pre-treatment of ceria

Wang, Yixiao; Makkee, Michiel

DOI

10.1016/j.apcatb.2017.04.054

Publication date

2018

Document Version

Final published version

Published in

Applied Catalysis B: Environmental

Citation (APA)

Wang, Y., & Makkee, M. (2018). Fundamental understanding of the Di-Air system (an alternative NOx

abatement technology). I: The difference in reductant pre-treatment of ceria. Applied Catalysis B:

Environmental, 223, 125-133. https://doi.org/10.1016/j.apcatb.2017.04.054

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Applied

Catalysis

B:

Environmental

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a p c a t b

Fundamental

understanding

of

the

Di-Air

system

(an

alternative

NO

x

abatement

technology).

I:

The

difference

in

reductant

pre-treatment

of

ceria

Yixiao

Wang,

Michiel

Makkee

CatalysisEngineering,ChemicalEngineeringDepartment,DelftUniversityofTechnology,Julianalaan136,2628BLDelft,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1October2016

Receivedinrevisedform6April2017 Accepted20April2017

Availableonline27April2017 Keywords: Ceria Hydrocarbonoxidation/cracking COoxidation Di-Air TAP

a

b

s

t

r

a

c

t

Toyota’sDi-AirDeNOxsystemisapromisingDeNOxsystemtomeetNOxemissionrequirementduringthe realdriving,yet,afundamentalunderstandinglargelylacks,e.g.thebenefitoffastfrequencyfuelinjection. CeriaisthemainingredientinDi-Aircatalystcomposition.Hence,weinvestigatedthereductionofceria byreductants,e.g.CO,H2,andhydrocarbons(C3H6andC3H8),withTemporalAnalysisofProduct(TAP) technique.TheresultsshowthatthereductionbyCOyieldedafastercatalystreductionratethanthat ofH2.However,theyreachedthesamefinaldegreeofceriareduction.Hydrocarbonsgeneratedalmost threetimesdeeperdegreeofceriareductionthanthatwithCOandH2.Inaddition,hydrocarbonsresulted incarbonaceousdepositsontheceriasurface.ThetotalamountofconvertedNOovertheC3H6reduced sampleisaroundtentimesmorethanthatofCO.Thedeeperdegreeofreductionandthedepositionof carbonbyhydrocarbonexplainwhyhydrocarbonsarethemostpowerfulreductantsinToyota’sDi-Air NOxabatementsystem.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

IntheEuropeanUnion(EU)theregulatedNOxemissionshave

decreasedoverthepasttwodecades.Nevertheless,9%ofEU-28 urbanliveinareasinwhichNOxconcentrationsstillexceed

reg-ulated NOx standards in 2013, according tothe Air quality for

EUin2014(source EuropeanEnvironmentalAgency[1]).Inthe EuropeanUnion,around40%oftheNOxemissionsarefromthe

traffic sector [2]. Due to the limited effectiveness of currently availableNOxabatementtechnologies,asofSeptember2017,2.1

times thecurrent Euro 6 NOx emission standard (as measured

withtheconservative,lessdemandingECE&EDCEtestcycle)is allowedforinthenewlyestablishedrealdrivingemission(RDE) test[3].InthefutureNOxemissionwillbecomeevenmore

strin-gent,whichclearlyindicatesthatcurrentlyavailabletechnologies: Three-waycatalyst (TWC), Urea-SCR(SelectiveCatalytic Reduc-tion), Lean NOx Traps (NSR – NOx Storage & Reduction), still

needsignificantimprovements.Therefore,efficientexhaust emis-sionsafter-treatmenttechnologiesarehighlydemanded.Recently, Bisaijietal.(Toyotacompany)developedtheDi-Airsystem(Diesel DeNOxSystembyAdsorbedIntermediateReductants).Shortrich

∗ Correspondingauthor.

E-mailaddress:m.makkee@tudelft.nl(M.Makkee).

and lean time intervals are created by highfrequency directly injectinghydrocarbons(dieselfuelinjection)intotheexhaust sys-temupstreamofatypicalNSRcatalyst(Pt/Rh/Ba/K/Ce/Al2O3)[4,5].

TheDi-AirsystemhasshownpromisetomeetfutureNOxemission

standardsunderrealisticdrivingtestconditions.

IntheDi-Airsystem,hydrocarbonsarethemostpowerful reduc-tantsinthereductionofNOx,ascomparedtootherreductants,e.g.

COandH2[5].However,themechanismisstillnotclear.Before

systemoptimisationwithregardtocatalystformulationandfuel injectionstrategies,theprincipleandfundamentalunderstanding oftheDi-Airsystemareaprerequisite.

CeriaisanessentialcatalystingredientintheDi-Airsystem,as itactsasanoxygenbuffer.Thecerialatticeoxygencanreactwith hydrocarbons,CO,andH2underrichconditions[6].Inourresearch,

acommerciallyavailablemodelZrandLa-dopedceriaisused.The Zr–Cesolidsolution,inwhichzirconiumpartiallyreplacescerium, providesahigher(hydro)thermalstabilityandalargeroxygen stor-agecapacity[7],whereaslanthanumispresenttoincreasetherate ofoxygenbulkdiffusion[8].Areducedceriacanselectively con-vertNOinto(di)nitrogen(N2),eveninthepresenceofanexcessof

oxygen[9].

Inthisstudy,wemainlyfocusontheinvestigationofthe reduc-tionbehavioroftheZrandLa-dopedceriacatalyst,usingH2,CO,

C3H6,andC3H8asreductants.TemporalAnalysisofProducts(TAP)

isusedtoascertainthereactionbetweenthereductantsandthe

http://dx.doi.org/10.1016/j.apcatb.2017.04.054

0926-3373/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(3)

126 Y.Wang,M.Makkee/AppliedCatalysisB:Environmental223(2018)125–133

catalyst.Sincehighintensityofhydrocarbonreductantinjections isappliedintheDi-Airsystem,thesepulseswillcreatealocally reducedenvironment.Therefore,alltheexperimentsinthisstudy are performed in the absenceof gas-phase O2. The performed

experimentswillprovideanillustrativemodeloftheproduct evo-lutionasafunctionofthecatalyst-reductiondegreeinanattempt toobtainafundamentalunderstandingoftheDi-Airsystem.To demonstratetheeffectofdifferentreductantsonNOreduction,NO reductionisperformedovertheZr–Ladopedceriabypre-treatment ofvariousreductants.There-oxidationofthereducedceriabyNO isidenticaltothereductionofNOintoN2overreducedceria.

2. Experimental

The catalyst used is a commercial Zr–La doped ceria (BASF company,denotedasceria)whichservesasacorecomponentin theDi-Aircatalystformulation.ThecharacterisationofthisZr–La dopedceriaisdescribedinmoredetailelsewhere[10].

2.1. PulsesexperimentinTAP

Thepulseexperimentswerecarriedoutinanin-house devel-opedTAP(TemporalAnalysisofProducts)reactor.Smallgaspulses, typicallyintheorderof1×1015 molecules,wereintroducedin

asmallvolume(1mL)upstreamofthecatalystpackedbed reac-tor.Theproducedpressuregradientoverthecatalystpackedbed therebycausedthemoleculestobetransportedthroughthepacked bedtotheultra-lowvacuumattheoppositesideofthereactorbed. Dependingontheactualamountofmoleculespulsed,thetransport canbepurelyKnudsendiffusion.Inotherwords,themoleculeswill onlyinteractwiththe‘walls’(catalystsurfaceandreactorwalls)of thesystemandnotwitheachother.Uponinteractionwiththe cat-alyst,themoleculescanbeconvertedintodifferentproducts.The evolutionofthereactantandproductmoleculesaretracked(one massatatime)intimewithahighresolutionof10kHzbymeans ofamassspectrometer.MoredetailsaboutTAPcanbefoundin elsewhere[9,11].

21.2mgceria(100–250␮m,BETsurfacearea65m2/g)wasused

intheTAPreactor.Inallexperimentsastartingpulsesizeof approx-imately1.6×1015molecules(excludinginternalstandardgas)was

used,thepulsesizegraduallydecreasedduringanexperimentas thereactantwaspulsedfromtheclosedandcalibratedvolumeof thepulse-valveline.Priortothereduction, theceriawasfirstly re-oxidisedatthesametemperatureatwhichthereductionwas performed,usingpulsesof80vol.%O2 inAruntila stableO2/Ar

signalratiowasobtained.Thereductionwascarriedoutby puls-ingreductantofeither80vol.%C3H6inNeor80vol.%C3H8inNe

or80vol.%COinAror67vol.%H2inAruntilastablereactantand

producttotheinternalstandardsignalratiowasachieved, indi-catingthattheceriawasequilibrated.NOpulseexperimentswere performedusing80vol.%NOinAr.

Theconsumptionoftheoxygenspeciesfromtheceriaduring H2,CO,C3H8,andC3H6pulsesexperimentswascalculatedusing

thefollowingmassbalance:

nO,consumed=nH2O,obs+nCO,obs+2nCO2,obs (1)

wherenisthenumberofmoleculesoratomsofthespecifiedspecies observed(obs),consumed,orintroduced(in).

Thenumber ofcarbon speciesdeposited onthedopedceria surfaceintheC3H6 pulseexperimentswascalculatedusingthe

followingmassbalance:

nC,deposited=3nC3H6,in−3nC3H6,obs−nCO,obs−nCO2,obs (2)

Similarly,thenumberofcarbonspeciesdepositedontheceria surfaceintheC3H8 pulseexperimentswascalculatedusingthe

followingmassbalance:

nC,deposited=3nC3H8,in−3nC3H8,obs−3nC3H6,obs−nCO,obs−nCO2,obs

(3)

ThenumberofcarbonspeciesduringCOpulseexperimentson theceriasurfacewascalculatedusingthefollowingmaterial bal-ance:

nC,deposited=nCO,in−nCO,obs−nCO2,obs (4)

Theaverageparticlessizeofceriawasaround5nm,basedon XRDandTEManalyses[10].Thehypotheticalcerialayersconcept wasusedinordertoobtaininsightinthereductantreactivityasa functionofthedegreeofceriareduction(surfaceoxidationstate).

Astheceria(111)crystalplaneisastoichiometricO–Ce–O tri-layerstackedalongthe[111]direction,weregardedeachO–Ce–O tri-layerasonehypotheticalcerialayer(0.316nm).Assuminga per-fectcubiccrystalstructureofceria(size5.0nm),thetotalnumber ofhypotheticalcerialayersweredeterminedtobe16(111)layers. AssumingthatZrisidenticaltoCe,amaximumof25%ofthe num-berofOionsineachcrystallayercanbereduced,thenumberof reducibleoxygensinonehypotheticalcerialayerwithBETsurface areaof65m2/giscalculatedtobe5.4×1018/21.2m

Cat.Detailscan

befoundin[9,10].

2.2. InsituRaman

InsituRamanspectra(Renishaw,2000)wererecordedusing atemperaturecontrolledinsituRamancell(Linkam,THMS600). Tenscanswerecollectedforeachspectruminthe100–4000cm−1 rangeusingcontinuousgratingmodewitharesolutionof4cm−1 andscantimeof10s.Thespectrometerwascalibrateddailyusing asiliconstandardwithastrongabsorptionbandat520cm−1.The spectrawererecordedduringtheflowofC3H6 (1000ppminN2,

flowrate200mL/min).

3. Results

3.1. ReductionofceriabyCO

Fig.1showedtheresultofCOpulsesexperimentat580◦C. Dur-ingtheinitialperiod(pulsenumber0–2000,Fig.1A),theCOwas completelyconvertedintoCO2.Pulsenumber2000corresponded

to0.4hypotheticalreduced cerialayers(Fig.1B).Afterthis ini-tialperiod,theCOconversionandCO2 productionprogressively

decreased,butneverreachedazeroconversionlevelduringthe durationoftheexperiment.IntheCOoxidationprocess,only oxy-genfromthecatalystcanbeconsumed,ascanbeseenfromthe oxygenbalance(Table2).Nocarbondepositswereobservedon thecatalystwithinexperimentalerror.

Similarresultswereobtainedat400–500◦C(notshown),but COconversiondidneverreachfullconversioninthistemperature window.At200◦Candlower,nosignificantCOoxidationactivity wasobserved(notshown).Thenumberofhypotheticalreduced cerialayers(1.2–1.0)wererelativelyconstantinthe400–580◦C temperaturewindow(Table2).

3.2. ReductionbyH2

Fig.2showstheresultofH2 pulsesexperimentat560◦CFor

averyshortperiod(pulsenumber0–210,Fig.2A),hydrogen con-versionwasrelativelyhighwithoutacleardesorptionofwater. In contrast to the CO experiment, the H2 conversion did not

accomplishfullconversion.TheH2conversionandH2Oproduction

(4)

Fig.1.COpulseexperimentoverapre-oxidisedceriaat580◦C,(A)withpulsenumberand(B)withhypotheticalreducedlayers.

Fig.2.H2pulseexperimentoverpre-oxidisedceriaat560◦C,(A)withpulsenumber(B)withhypotheticalreducedlayers.

Table1

DefinitionofdifferentphasesduringtheC3H6andC3H8pulsesinTAP.

Phases Hydrocarbonreactivity

I Initialfullconversionofhydrocarbon

II Hydrocarbonconversiondrop

III Hydrocarbonconversionincrease

IV Periodofconstanthydrocarbonconversion

V Hydrocarbonconversiondecrease

(pulsenumber210–end,Fig.2B).Thenumberofextractedoxygen atoms,characterisedasthenumberofhypotheticalreducedceria layers,wasattheendoftheexperimentaround1reducedlayer (Table2).

3.3. ReductionbyC3H6

Fig.3showedtheresultofC3H6pulsesexperimentat580◦C.

Differentphases wereappliedtodefineC3H6 reactivityprofiles

withpulsenumber,asshowninTable1.Thedefinitionofdifferent phaseswasalsoappliedtoC3H8reactivityinFig.5.

Fig.3Ashowedtheproductandreactantsevolutionversuspulse numberduringC3H6pulses.InphaseI(pulsenumber0–80),ahigh

activitywasobserved,wherepredominantlytotaloxidation prod-ucts,i.e.,CO2andH2Owereformed.TheH2formationwasobserved

fromthestartoftheexperiment,whileCOproductionwasinitially zero.BothH2andCOproductionincreasedduringthisphaseI.After

thisshorthighlyactivephaseI,C3H6conversionrapidlydeclinedin

Table2

Summaryofthenumberofdepositedcarbonandextractedoxygenatomsinthe ceriareductionexperiments.

Depositedcarbon Extractedoxygen

Atoms wt.%/gCat Atoms HRCLa

580◦CC3H6 3.1×1019 2.9 1.5×1019 2.6 560◦CC3H6 3.4×1019 3.2 1.1×1019 1.8 540◦CC3H6 3.3×1019 3.1 1.1×1019 1.8 500◦CC3H6 1.9×1019 1.8 9.2×1018 1.7 580◦CC3H8 1.5×1019 1.4 1.5×1019 2.6 540◦CC3H8 1.1×1019 1 0.9×1019 1.7 580◦CCO – – 6.3×1018 1.2 500◦CCO 6.0×1018 1.1 400◦CCO 5.4×1018 1.0 560◦CH2 5.2×1018 1.0

aHypotheticalreducedcerialayers.

phaseII(pulsenumber80–500).InphaseIIIandIV(pulsenumber 400–8000)predominantlypartialoxidationtookplaceandmainly COandH2wereobserved.Frompulsenumber2800–8000(phase

III),C3H6conversionincreasedtofullconversion.H2wasthemajor

productandtheformationofCOdeclinedwithtimeinthisphase III.InphaseV(pulsenumber8000–end),bothC3H6conversionand

H2 productiondeclined.TheH2productionandC3H6 conversion

remainedpersistentalthoughatalowlevelnoCOwasobserved. Somecarbon (Fig.3C)startedtodeposit onthesurfacefrom phase II(determinedfromthecarbon massbalance). Siginicant

(5)

128 Y.Wang,M.Makkee/AppliedCatalysisB:Environmental223(2018)125–133

Fig.3. C3H6pulseexperimentoverapre-oxidisedceriaat580◦C,(A)productand

reactantsevolutionversuspulsenumber,(B)productandreactantsevolutionversus hypotheticalreducedcerialayers,and(C)carbonandoxygenbalanceversuspulse number.

amountsofcarbondepositionswereobservedwhentheCO for-mationstartedtodecline,whileH2formationpersisted(phaseIV).

C3H6showedfullconversionduringphaseIandIV,corresponding

to0–0.25and1.5–2.7hypotheticalreducedcerialayers, respec-tively,asshowninFig.3B.

The estimated oxygen atom consumption and carbon atom depositionduringtheC3H6pulseexperimentat580◦Cwere

cal-Fig.4.C3H6conversionversuspulsenumberduringC3H6pulseexperimentsovera

pre-oxidisedceriaattheindicatedtemperatures.

culatedto be1.5×1019 and3.1×1019carbon atoms (2.9wt.%),

respectively,showninTable2.Fig.4showedtheC3H6conversion

versuspulsenumberinatemperaturewindowbetween500and 580◦C.SimilarC3H6 reactivity profileswereobserved,although

theoverallreactivity ofC3H6 decreased,when reaction

temper-aturedeclined.NosignificantC3H6activityandreductionofceria

wereobservedbelow500◦C.Table2summarisedtheoxygen con-sumption(hypotheticalreducedcerialayers)andcarbondeposits forthe500–580◦Ctemperaturewindow.

3.4. ReductionbyC3H8

Fig.5showedtheresultofC3H8pulsesexperimentat580◦C.As

comparedtoC3H6,C3H8inphaseIdidnothaveafullconversion

timeinterval).Fig.5Ashowstheproductandreactantevolution versuspulsenumberduringC3H6pulses.InphaseII(pulsenumber

80–1000),ashortperiodofahigheractivity(upto40%conversion) wasobserved,wherepredominantlytotaloxidationproducts,i.e., CO2andH2O,wereformed.TheH2formationwasobservedfrom

thestartoftheexperiment,whileCOproductionwasinitiallyzero, bothH2andCOproductionincreasedduringthisphaseII.TheC3H8

conversiondeclinedduringphaseIIandincreasedduringphaseIII (upto60%conversion).InphaseIIIandIV,partialoxidationtook placeandCOandH2wereobserved,whileC3H6wasonlyobserved

duringphaseIII.Thelevel ofC3H8 conversionwassubstantially

lowerascomparedtothatofC3H6.

During thepartialoxidation time interval (phaseIII, IV, and V),COandH2 wereobservedasthemainproducts.Thereaction

rateincreasedwithpulsenumberduringphaseIIIandIV.During phaseIIItheC3H6production,resultingfromthedehydrogenation

ofC3H8,increasedprogressivelybutvanishedtowardstheendof

phaseIII.AmaximuminCOproductionwasobservedwhenthe activityforthedehydrogenationreactionvanished.Inthisthe par-tialoxidationperiod,incontrasttotheC3H6pulseexperiment,the

C3H8conversionwasnevercomplete.Initially,theC3H8

conver-sionwasaround10%andreachedamaximumconversionof60%at thepointofmaximumCOproduction(Fig.6).Followingthe maxi-mumintheCOproduction,theC3H8conversionandH2production

alsoreachedtheirmaximumlevel(phaseIV,Fig.5).InphaseV,the C3H8conversionandCOandH2productiondeclined.COevolution

stoppedafterpulsenumber22,000,whileC3H8conversionandH2

productionremainedpersistentatalowlevel.Atatemperatureof 500◦Candlower,thereactivityofC3H8wasnegligibleornone(not

shown).

AsshowninTable2,theamountsofdepositedcarbonranged from1.4to0.9wt.%fortemperaturesfrom580◦Cto540◦C,which

(6)

Fig.5. C3H8pulseexperimentoverapre-oxidisedceriaat580◦C:(A)productand

reactantsevolutionwithpulsenumberand(B)productandreactantsevolution versushypotheticalreducedlayers.

Fig.6.C3H8conversionversuspulsenumberduringC3H8pulseexperimentsovera

pre-oxidisedceriaattheindicatedtemperatures.

werelessthanthatofpropene.C3H8wasabletoreducethe

cata-lystasfaras2.7hypotheticalreducedcerialayers,whichwasthe sameasthatforC3H6at580◦C,buttherequirednumberofpulses,

however,wasarounddoublethanthatofC3H6.

Fig.7. RamanspectraduringC3H6flowoverceriacatalystat580◦C.

InFig.6,theC3H8conversionwasplottedversuspulsenumber

at580and540◦C,respectively.Intheinitialtotaloxidationperiod, approximately40%and30%C3H8conversionwereachievedat580

and540◦C,respectively.TheincrementalC3H8conversioninphase

IIandIIIwassensitivetothetemperature,whichshiftedtohigher pulse numberswith decreasingtemperature and its maximum C3H8 conversiondecreasedfrom65to30%,whenthe

tempera-turedecreasedfrom580to540◦C.ComparedtoC3H6conversion

at540◦C,asindicateddottedgraylineinFig.6,C3H8waslessactive

andtookaroundtwotimesmorepulsesthanthatofC3H6toreach

thefinalstate.AsshowninTable2,theamountofdeposited car-bonduringC3H8at540◦Cwasaroundthreetimeslessthanthat

forC3H6atthesametemperature.

3.5. InsituRamanexperimentofC3H6flowoverceria

InsituRamanwasusedtoanalysethedepositedcarbonformed overceriaduringC3H6flowat580◦C.DbandandGbandsofcarbon

wereobservedduringtheC3H6flowasshowninFig.7.TheGband

correspondedtographiticin-planevibrationswithE2gsymmetry.

Dbandgenerallywasassignedtothepresenceofdefectsinand disorderofcarbon.

3.6. Re-oxidationofreducedceriabyNO

In order toinvestigatethe effectof thereduction degreeas wellastheamountofdepositedcarbonontheNOreductioninto (di)nitrogen(N2)over(pre-reduced)La–Zrdopedceria,NOwas

usedinthere-oxidationofCO,H2 (notshown),C3H8,andC3H6

pre-reducedLa–Zrdopedceria,asillustratedinFig.8at540◦C. For the CO (andH2)pre-treated samples, a full NO

conver-sionwasobtainedtillpulsenumber 2340.Thetotal amountof NOconvertedwasaround6.8×1018molecules.Forthepropane

pre-treated ceria,complete NOconversionmaintained approxi-matelytillpulsenumber1200.ThetotalamountofNOconverted wasaround2.9×1019molecules.FortheC

3H6 pre-treatedceria

sample,however,NOshowedfullconversionuptopulsenumber 5600,followedbyaconversiondecline to76%atpulsenumber 9000.Subsequently,theNOconversionfortheC3H6increasedto

fullconversiontillpulsenumber40,000.NOlostitsactivityafter pulsenumber97,300.ThetotalamountofNObeingconvertedwas around7.6×1019molecules.

(7)

130 Y.Wang,M.Makkee/AppliedCatalysisB:Environmental223(2018)125–133

Fig.8.NOreductionoverCOandhydrocarbonspre-reducedceriaat540◦C.

4. Discussion

4.1. ReductionofceriabyCOandH2

TheCOpulseexperimentsoverZr–Ladopedceriaresultedin anoverallcatalystreductionofaroundonaverageone hypothet-icalreducedcerialayerinthe400–580◦C temperaturewindow (Table2),indicatingthatacompletesurfacelayerofZr–Ladoped ceriacanbereducedbyCO.Theextractionofoneoxygenresulted inthereductionoftwoCe4+ionsintotwoCe3+ions.Theoxidation

ofCOtoCO2canbedescribedas:

CO+2Ce4++O2−→ CO2+2Ce3++䊏 (䊏oxygenvacancy) (5)

TheCO2productionwasduetotheoxidationofCObyoxygen

species(originating)fromthecerialatticesincetherewasno gas-phaseO2 presentduringtheCOpulseexperiment.ThefullCO2

conversiondroppedatthepointcorrespondingto0.5 hypotheti-calreducedcerialayers(Fig.1B),whichindicatedthattheoxygen speciesgeneratedfromsurfacelatticeoxygenhadahighactivity fortheCOoxidationintoCO2.TheobserveddeclineinCO

activ-itybetween0.5and1hypotheticalreducedcerialayers(Fig.1B) impliedthatonlysurfaceoxygenparticipatedintheCOoxidation. Significantparticipationof thedisproportionationofCO into carbonandCO2(2CO→C+CO2)canbeexcluded,becausehardly

anydepositedcarbonwasobservedandcouldbequantifiedforthe calculatedcarbonmassbalance(Fig.1A).Thetotalreductiondegree ofceriabyCOwasnotsignificantlyaffectedbytemperaturesinthe rangeof400–580◦C.ThereactivityofCO,however,declinedasthe temperatedecreased,sincemoreCOpulseswereneededinorder toobtainthesamereductiondegreeatlowtemperatures,i.e.400◦C (i.e.580◦C)(notshown).

The limitation for the reduction of only one hypothetical reducedcerialayerbyCOcannotbeattributedtotheoxygen dif-fusion sincethereduction degreeof ceriawasnot significantly influencedbyatemperaturebetween400and580◦C.Theroleof ceriainthereductionofCO2toCOhadbeenwidelystudiedinthe

fieldofsolarcells[12–14].CO2canalsore-oxidisereducedceria,

therebyformingCO.ThecoexistenceofCOandCO2 inthe0.5–1

hypotheticalreducedcerialayerrangesuggestedthepresenceof anequilibriumbetweenCO,CO2,Ce3+,andCe4+,whichmaylimit

theobtainabledegreeofreductionforceriaduringCOpulse exper-iments(Fig.1B).

FortheH2pulseexperiments,ahighH2activitywasobserved

fromthestart oftheexperiment (Fig.2)inthe absenceofany waterdesorption.Thisindicatedthatwateroritsprecursorspecies wereinitiallystoredonthecatalyst’ssurface.H2activitydropped

Scheme1.C3H6activationstepsfortheformationofCO2andH2O.

immediatelyaftertheinitialpulsesuntilhardlyanyconversionwas observedwhenonehypotheticalreducedcerialayerwasreached. SimilartotheCOpulseexperiments,whentheceriasurfacebecame reduced,thereducedceriatendedtousewateroranintermediate tore-oxidiseitself[15].ThecoexistenceofH2 andH2Oduringa

wholeH2pulseexperimentsuggestedthepresenceofan

equilib-riumbetweenH2,H2O,Ce3+,andCe4+,whichmaylimitadeeper

reductionofceriabyH2.

4.2. Reductionbyhydrocarbons

4.2.1. ReductionbyC3H6

ThereductionofZr–LadopedceriabyC3H6 ledtoanoverall

2.7hypotheticalreducedcerialayersat580◦C(Table2).UnlikeCO andH2pre-treatment,theC3H6interactionwiththecatalystcanbe

characterisedbytwotypesofreactions:completeC3H6oxidation

andsubsequentlyC3H6cracking/partialoxidation(Fig.3).

Theinitialhighconversiontototaloxidationproducts(phase I):CO2andH2O,wasmostprobablyduetothehighconcentration

ofactivesurfaceoxygenspecies,whichwereformedthroughan oxygenactivationchainasgiveninEq.(6)[16–18]:

O2(ad)+e − ←−O2− +e − ←−O22−↔2O−+2e − ←− 2Olattice2− (6)

TheseactivesurfaceoxygenspeciesreactedwithC3H6resulting

mainlyintheformationofH2OandCO2asdescribedinScheme1.

TheadsorbedC3H6wasactivatedbytheactiveoxygenspeciesfrom

oxygenactivationchain(Eq.(6)),formingtheC3H5•andH•.Then

H•willreactwithactiveoxygenspecies,forming•OH.AnotherH• willbefurtherabstractedfromC3H5•andtoformH2Ofrom•OH.

Theremainedhydrocarbonfragment(CxHy)willreactwithactive

oxygenspecies,formingoxygen-containinghydrocarbon interme-diate(CxHyO),andfinallyoxidationofsomepartofCxHyOtoCO2,

theremainedCxHyOwillbedepositedas“coke”asillustratedin

Scheme1.

C3H6conversiondropped(phaseII),accompaniedbyadecline

intotaloxidationproductsandthestartofC3H6cracking/partial

oxidation reaction. Thefall of C3H6 conversion duringphase II

waslikelycausedbylessavailabilityoftheactivesurfaceoxygen specieswhichwerelargelyconsumedduringphaseI.Asdescribed inScheme2,theadsorbedC3H6willbeactivatedbytheactive

oxy-genspecies,formingtheC3H5•andH•.ThisH•willreactwithactive

oxygenspecies,forming•OH.AnotherHwillbefurtherabstracted fromC3H5•.However,onthereducedcatalystsurface(lessactive

surfaceoxygen), Hsurface speciespreferredtorecombine with eachothertoformH2.Theremainedhydrocarbonfragment(CxHy)

willreactwithactiveoxygenspecies,formingoxygen-containing hydrocarbonintermediate(CxHyO),andsomepartofCxHyOwillbe

(8)

Scheme2.C3H6activationstepsfortheformationofCOandH2.

Scheme2wasalsoappliedtotheC3H6 crackingreactionduring

thephaseIII.C3H6 conversionincreasedduringphaseIII

accom-paniedbyanincreasedH2andCOformation,indicatingthemain

cracking/partialoxidation/dehydrogenationweretakingplace. TheCOformationarrivedatamaximumformationrateat1.5 hypotheticalreducedcerialayers,while CO2 and H2Owerenot

observedaround1hypotheticalreducedcerialayer.This obser-vationindicatedthattheformationofCOconsumedoxygenfrom thebulkofceria,resultinginadeeperdegreeofcatalystreduction byC3H6,ascomparedtoCOandH2treatment.TheCOformation

declinedatthepointof1.5hypotheticalreducedcerialayersand ceasedat2.7hypotheticalreducedcerialayers.Thiswillindicate thatthedepositedcarbonoxidation toCOstartedtobelimited whenthecatalystreducedto1.5hypotheticalreducedcerialayers. Thiscanbeexplainedbythescarcenessofsurfaceactiveoxygen specieseitherduetoslowbulkoxygendiffusionortheactivation ofbulkoxygentoactiveoxygenspecies.TheformationofCOcaused theadditionalextractionofoxygenfromceriabulk,i.e.degreeof reductionofthebulkceriaupto2.7hypotheticalreducedceria layers(phaseV).

TheincreaseofC3H6conversionduringphaseIIIwasalsolikely

duetotheregenerationofactiveoxygenspeciesfromactivation oxygenfrombulk diffusion tosurface,which led toCO forma-tionincreasingandlesscarbondepositionascomparedtophase II,basedonthecarbonmassbalancecalculations.TheCO forma-tion,however,declinedfrom1.5hypotheticalreducedcerialayers, where still a full C3H6 conversion and persistent H2 formation

wereobserved(phaseIV).ThefullC3H6conversion(C3H6cracking)

duringphaseIVcannotbeascribedtotheincreasedactive oxy-genspeciesavailability.Otherwise,theCOformationratewould increaseaswell.Anothertypeofspeciesstartedtoplayarolein C3H6cracking/partialoxidation(deeperdehydrogenation).

Thetotalamountofcarbondepositiontillthepointof1.5 hypo-theticalreducedcerialayerswasaround2×1018carbonatoms.

Assumingthatthecarbonstructure willbegraphene-like struc-ture,thecoverageofZr–Ladopedceriabycarboncorrespondedto roughly4%oftheavailablesurfacearea.Carbonaceousdeposited (coke)thatformedonthemetaloxides canberegardedasthe realcatalystsitefor(oxidative)dehydrogenation.Theformationof depositedcarbonwasobservedfromtheinsituRaman(Fig.7).The catalyticsiteonthecokewillbethequinone/hydroquinonegroup onthesurfaceofthecoke[19–22],asevidencetheformationofD bandandGbandinFig.7.ThefullC3H6conversionwithpersistent

H2formationwillbeattributedtothedepositedcarbonandwill

playaroleinthedeeperC3H6dehydrogenation.Theoxygen

trans-portfromceriabulkwillbecomethecatalyticallyactivesiteonthe coke(CxHyO),andCOwasformedbytheoxidationofcoke(CxHyO).

Whenthenumberofavailablelatticeoxygendeclined,theCO

for-mationdeclinedaswell.ThedeeperdehydrogenationofC3H6will

leadtomoreandmoredepositedcarbon.

Tillphase V, C3H6 lostits reactivitycompletely,whereas H2

formationdeclinedaswellfrom2.2hypotheticalreducedceria lay-ers,indicatingthedeeperdehydrogenationreactionlargelyslowed down.COwashardlyobservedtheend,whileC3H6conversionand

H2formationwerepersistentalthoughatalowerlevel.

Sincethecokewithquinonegroupcouldberegardedasthe catalyticsitefortheC3H6dehydrogenation,thedisappearanceof

thisgroupmightexplainthefinalC3H6deactivation.Theoxygen

transportfromceriabulkandspilloverthedepositedcarbonwill beterminated.TheformationofCxHyOwaslargelylimitedwhen

thecatalystwasreducedtoaround2.2hypotheticalreducedlayers. TheoxidationofCxHyOtoCOwaspersistentalthoughatalowlevel.

Carbondeposited willoftenberegarded asone ofthe lead-ingcausesforthedeactivationinhydrocarbonreactions[23].The amountof deposited carbon onthecatalyst surface during the C3H6pulseswasaround3.1×1019carbonatoms,whichaccounted

forabout2.9wt%/gCat.Assumingthatthecarbonstructurewillbe

graphene-likestructureandceriasurfacewillbeflat,thecoverage ofZr–Ladopedceriabycarbonwillcorrespondtoroughly60%of theavailablesurfacearea.Therewouldbestillabout40%ofthe sur-faceareaavailable.Thesurfaceoftheceriawithorwithoutcarbon depositswillbeanetworkofpores.Theblockingoftheporesin combinationwithaslow-downoftheoxygenspillovermechanism fromthebulktothesurfaceandoverthedepositedcarbonwillbe themainreasonsforthefinallostintheC3H6conversionactivities.

Similar C3H6 reactivity profiles were also observed at

500–580◦Ctemperaturewindow.ThemaximumobservedC3H6

conversionduringthecrackingreactionperiod(phaseIII)shifted tohigherpulsenumbersinthe580–500◦Ctemperaturerange,as shownin Fig.4.Thisobservationindicated thatmoretime was neededfortheenhancedC3H6reactivityinphaseIIIwhenthe

tem-peraturedecreased.Suchphenomenonalsopointedoutthatthe reactivityofC3H6duringphaseIIIwaslikelycontrolledbythe

avail-abilityofactiveoxygenspeciesonthesurfaceregeneratedbybulk oxygendiffusion,whichwasaffectedbytemperature.At400◦C, onlycompleteoxidationtoCO2andH2Owasobserved(nocarbon

deposition)andcouldbecalculatedfromthecarbonmassbalance. ThetotalamountofreducibleoxygenduringC3H6oxidationwas

significantlyinfluencedbythetemperature,asshowninTable2. ThenumberofoxygenatomsextractedintheC3H6pulse

exper-imentsdeclinedfrom1.5×1019to0.9×1019,i.e.from2.7to1.7

hypotheticalreducedcerialayerswhenthetemperaturedecreased from580to500◦C.Thetotalamountofdepositedcarbonduring theC3H6 pulseexperiment at 580◦C is twicethat ofthe pulse

experiment at 500◦C. At 400◦C, carbon was hardly deposited, andnocracking/partialoxidation/dehydrogenationactivitieswere observed.

4.2.2. ReductionofceriabyC3H8

C3H8(Fig.5),showedthesametrendasC3H6,althoughC3H8

conversionwaslowerthanthatofC3H6duringphaseIandIV.This

indicatedthatthereactionmechanismsweresimilarforboth satu-rateandunsaturatedhydrocarbons.C Hbondcleavagewaseasier fortheunsaturatedC3H6ascomparedtothesaturatedC3H8dueto

eithertheinteractionwiththesurfacethroughhydrogenbonding orVanderWaalsforcesforC3H8andmorestrongelectron-rich␲

orbitalinteractionsonLewisacidsitesforC3H6 [24].Thelower

reactivity, that C3H8 displayed toward oxygenspecies, didnot

affectthetotalamountofoxygenextractedduringthewholeC3H8

pulseexperiment.It,however,affectedstronglyontheamountof carbon depositedonthesurfaceand thetimeframetoachieve thesamedegreeofceriareduction.Sincethecarbondeposition tookpredominantlyplaceduringphaseIV,thelowerC3H8

(9)

132 Y.Wang,M.Makkee/AppliedCatalysisB:Environmental223(2018)125–133

pre-treatmentat580◦C,theamountofcarbondepositedforthe C3H6pre-treatmentwastwiceofthatforC3H8,asshowninTable2.

TheC Hbondcleavagewasregardedasthefirststepinthe activationofsaturatedhydrocarbons(C3H8).Duetotheinitialhigh

concentrationofsurfaceactiveoxygenspeciesinphaseII,complete oxidationwasobservedwiththeformationofbothH2OandCO2,

similarasillustratedinScheme1.TheconversionofC3H8decreased

duringphaseIIwasduetothedepletionofactiveoxygenspecies onthesurface.AgradualincreaseintheamountoftheC3H6

dehy-drogenationproduct(Fig.5)wasobservedfromphaseIII,where theC3H8conversionwasenhanced.SimilarlytoC3H6pulse

exper-iments(Fig.3),theC3H8reactivity(Fig.5)increasedduringphase

IIIwasduetothereformationofsurfaceactiveoxygenspeciesby thediffusionofoxygenfromthebulkoftheceria.Dehydrogenation ofC3H8toC3H6wasobservedfrominitialofphaseIIIanddeclined

fromtheendofphaseIII.C3H6evolutioncompletelyvanishedfrom

phaseIV.ThedehydrogenationselectivityofC3H8toC3H6inphase

IIIcanbeexplainedbyaparticulartypeofreformedactiveoxygen species,e.g.O−.C3H6formationdeclinedaround1.3hypothetical

reducedlayers,indicatingthattheseoxygenspecies,e.g.O−[25], waslesspresentfrom1.3hypotheticalreducedlayers.

IdenticallytotheC3H6pulseexperiment,theformationofCO

duringC3H8 pulse experiment consumed oxygenfrom catalyst

bulk,i.e.deeperreductionofbulk.Depositedcarbonstartedtoplay aroleinC3H8dehydrogenationduringphaseIV,whereC3H8

con-versionwasaround60%.

The maximum C3H8 conversion during C3H8 the

crack-ing//partialoxidation/dehydrogenationreactions(phaseIII)shifted toahigherpulsenumberwhenthetemperaturewaschangedfrom 580to540◦C,asshowninFig.6.Similarlytotheobservationinthe C3H6pulseexperiments,thereactivityofC3H6duringphaseIIIwas

controlledbytheavailabilityofactiveoxygenspeciesonthe sur-faceregeneratedbybulkoxygendiffusion,whichwastemperature dependent.TheobservedC3H8lostinactivitycanbeexplainedwith

thesamereasoningasdiscussedaboveforC3H6.

ThetotalamountofreducibleoxygenduringC3H8oxidationwas

significantlyinfluencedbythetemperature,asshowninTable2. ThenumberofoxygenatomsextractedintheC3H8pulse

exper-imentsdeclinedfrom1.5×1019to0.9×1019,i.e.from2.7to1.7

hypotheticalreducedcerialayersasthetemperaturewaslowered from580to540◦C.

4.3. Re-oxidationofreducedceriawithNO

The pre-treatment of ceria by CO, H2, C3H8, and C3H6 at

540◦C ledtoadegreeofcatalyst reductioncorrespondingto1, 1,1.7,and1.8hypotheticalreducedcerialayers,respectively.The pre-treatmentwithC3H6 andC3H8 additionallyresultedin the

depositionof3.3×1019and1.1×1019carbonatoms,respectively.

ThedifferencesobservedinthereductionofNOintoN2 over

ceriabyusingeitherCO,C3H8orC3H6pulsesat540◦Cwasshown

inFig.8.COandH2pre-treatmentsshowedonlyashorttime

inter-val,where NOwasreducedintoN2.Thereduction ofNOtoN2

startedwithoxygenfromNOfillinganoxygendefectsite,followed byN Obondscissionandtherecombination,aftersurface diffu-sionandmigrationofNspeciesintodinitrogen(N2)[9,10].Whenall

theoxygendefectswererefilled,theNOreductionwasended.Both C3H6andC3H8pre-treatedreducedceriawereabletoconvert

con-siderablemoreNOintoN2(muchlongertimeinterval)ascompared

toCOandH2pre-reductions.Thepre-treatmentofC3H6andC3H8

resultedinadeepercatalystreductionandmoredepositedcarbon. Thesecarbondepositsactedasbufferedreductant:theoxidationof depositedcarbonbyactiveoxygenspeciesfromcerialattice recre-atedtheoxygendefectsitesthatcanbeagainusedforadditional NOconversion.C3H6pre-treatmentexhibitedalongerperiodof

NOreductiontoN2ascomparedtoC3H8pre-treatment:C3H6

pre-treatmentledtoapproximately3timesmoredepositedcarbonas comparedtoC3H8.

TheCOandH2pre-treatmentsresultedonlyinthereductionof

surfaceoxygenandhardlyanyornodepositedcarbon.Therefore, COandH2pre-treatmentscannotcompetewithahydrocarbon

pre-treatment.Depositedcarbon,actingasareductantbuffer,extended theperiodinwhichNOcanbereducedintoN2.C3H6willbe

pre-ferredoverC3H8duetoitshigherreactivityandincreasedtendency

toformcarbondeposits.

5. Conclusion

1)ThereductiondegreeofceriaobtainedbyC3H6andC3H8

reduc-tion,correspondedtoupto2.7hypotheticalreducedcerialayers. AscomparedtoH2 andCO,theobtainable reductiondegrees

forthesehydrocarbonswerearound3timeshigherat580◦C (Table2).Pre-treatmentbyC3H6duetoitshigherreactivitywill

bepreferredoverthatofC3H8.

2)Hydrocarbon pre-treatment led to carbon deposits on the reducedceriasurface.Notthedepositedcarbon,butthe deple-tionandavailabilityofsurfaceactiveoxygenspecieswerethe maincausesforthedeactivationofhydrocarboncracking/partial oxidation/dehydrogenation.These carbondepositswill, how-ever,actasareductantreservoir,leadingtoahighernumber ofNOconvertedmolecules(selectivere-oxidationofreduced ceria)intonitrogen[9].

3)Thedeeperdegree ofreduction of Zr–La dopedceriaduring reduction by hydrocarbons will be due to the oxidation of deposited (hydro)carbon intermediated by additional lattice oxygenonthereducedceriatoCO.ForH2andCOpre-treatment,

theapparentexistenceofH2,H2O,Ce3+andCe4+(orCO,CO2,

Ce3+andCe4+)equilibriumwilllimittheceriareductionofto

onlyonemonolayer.

Forpracticalapplicationofceria-basedcatalystsinDi-Air sys-tem,itmightbebeneficialtoaddpromoters(forexamplenoble metals)thatallowthesecatalyststoconverthydrocarbons intro-ducedbyhighfrequentfuelinjectionsatlowertemperatures.

Acknowledgement

The authors acknowledge financial support from the China ScholarshipCouncil(CSC).

References

[1]AirqualityinEurope–2015report.http://www.eea.europa.eu/publications/ air-quality-in-europe-2015#tab-data-references.

[2]Real-Worldexhaustemissionsfrommoderndieselcars.http://www.theicct. org/real-world-exhaust-emissions-modern-diesel-cars.

[3]CommissionwelcomesMemberStates’agreementonrobusttestingofair pollutionemissionsbycars. http://europa.eu/rapid/press-release-IP-15-5945-en.htm.

[4]Y.Bisaiji,K.Yoshida,M.Inoue,K.Umemoto,T.Fukuma,SAEInt.J.FuelsLub.5 (2012)380.

[5]M.Inoue,Y.Bisaiji,K.Yoshida,N.Takagi,T.Fukuma,Top.Catal.(2013)1. [6]H.C.Yao,Y.F.Y.Yao,J.Catal.86(1984)254.

[7]C.E.Hori,H.Permana,K.S.Ng,A.Brenner,K.More,K.M.Rahmoeller,D.Belton, Appl.Catal.B16(1998)105.

[8]L.Katta,P.Sudarsanam,G.Thrimurthulu,B.M.Reddy,Appl.Catal.B101 (2010)101.

[9]Y.Wang,J.PosthumadeBoer,F.Kapteijn,M.Makkee,ChemCatChem8(2016) 102.

[10]Y.Wang,J.P.deBoer,F.Kapteijn,M.Makkee,Top.Catal.59(2016)854. [11]J.Gleaves,J.Ebner,T.Kuechler,Catal.Rev.Sci.Eng.30(1988)49.

[12]T.Staudt,Y.Lykhach,N.Tsud,T.Skala,K.Prince,V.Matolín,J.Libuda,J.Catal. 275(2010)181.

[13]K.Otsuka,Y.Wang,E.Sunada,I.Yamanaka,J.Catal.175(1998)152. [14]G.Centi,S.Perathoner,ChemSusChem3(2010)195.

[15]C.Padeste,N.Cant,D.Trimm,Catal.Lett.18(1993)305. [16]B.Murugan,A.V.Ramaswamy,J.Am.Chem.Soc.129(2007)3062.

(10)

[17]M.S.Palmer,M.Neurock,M.M.Olken,J.Am.Chem.Soc.124(2002)8452. [18]Y.-X.Zhao,X.-N.Wu,J.-B.Ma,S.-G.He,X.-L.Ding,Phys.Chem.Chem.Phys.13

(2011)1925.

[19]G.Emig,H.Hofmann,J.Catal.84(1983)15.

[20]L.E.Cadus,O.F.Gorriz,J.B.Rivarola,Ind.Eng.Chem.Res.29(1990)1143. [21]M.Pereira,J.Orfao,J.Figueiredo,Appl.Catal.A184(1999)153.

[22]C.Nederlof,F.Kapteijn,M.Makkee,Appl.Catal.A417–418(2012)163. [23]P.Albers,J.Pietsch,S.F.Parker,J.Mol.Catal.A:Chem.173(2001)275. [24]M.Zboray,A.T.Bell,E.Iglesia,J.Phys.Chem.C113(2009)12380. [25]C.Li,Q.Xin,X.-x.Guo,Catal.Lett.12(1992)297.

Cytaty

Powiązane dokumenty

Niekiedy sam Wydział Zagraniczny MSzW rezerwował i kupował bilety, czasami wy­ dawał dokument uprawniający stypendystę lub instytucję przyjmującą do tych zakupów (w

Jak dotkliwy jest brak wydania zupełnego „Pism zebra­ nych“ Norwida, oraz jego bibljografji, dowodzi fakt zapomi­ nania nietylko artykułów o Norwidzie, lecz

Venir a la clarté sans force et sans adresse Et n’ayant fait longtems que dormir et manger Souffrir mille riguers d’un secours étranger Pour quitter

2) Między dokumentami wiedeńskiemi nie znalazła się opinja Bernharda.. napisał obszerny referat, na którego podstawie postawił wniosek „transeat“, względnie „erga

Już samo suche zestawienie bibljograficzne tytułów jakżeż wiele mówi o niestrudzonej pracy edytorskiej, która wszakże nie zamknęła się w granicach

The results show that: (1) a strong spatial correlation exists between industrial wastewater discharge, industrial sulfur dioxide, and dust emissions in the Central Plains

Wszystkie te zmiany przynoszą praw ie całkowity przew rót w produk­ cji żelaza. Zdecydowaną przewagę zdobywa żelazo produkowane przy po­ mocy węgla

In turn, CH 4 pyrolysis was found to be a dominant reaction responsible for carbon accumulation on the anode side, but both carbon activity coefficient and carbon balance