• Nie Znaleziono Wyników

A study on the seakeeping qualities of high speed single screw container ships in head waves

N/A
N/A
Protected

Academic year: 2021

Share "A study on the seakeeping qualities of high speed single screw container ships in head waves"

Copied!
33
0
0

Pełen tekst

(1)

6 NOV. 1972

ARCHIEf

-S---- fl.I I. I I I -

Dioluotneek van

ae-OnderfdIin1e.rckpsbouwkuflde

Technische Hogeschool, Deift

DATUM:

OC I M t Nl A TI

oq7

lE lE lE

ill

lE 41

--

FJ

j

FY fIl 46 3 Reprinted from

JOURNAL OF SIBU ZSEN KAI

(THE SOCIETY OF NAVAL ARCHITECTS OF WEST JAPAN)

N0. 41 March 1971

Lab.

y. Scheepsbouwkunde

Technische Hogeschool

Deift

)

D-CU M EN f ATOE

I: Xól-C3

(2)

*JJfff

**

(flfn4511fl

45

j:J

ii M W 1' lE M 3Z, E M M lE M

i

Ill iL E M

l;

)\,*

A Study on the Seakeeping Qualities of High Speed Single

Screw Container Ships in Head Waves

By Fukuzö TASAT

Matao TAKAGI

Masaaki GANNO

Hiroyuki ARAKAWA

and Masato KUR IHARA

Abstract

Model experiments and theoretical calculations were carried out to obtain data about the sealceeping qualities of high speed single screw container ships in headwaves, and to

make clear how much extent can a theory predict that,

'I'he models selected for the experiments were wooden models of length 4m with block coefficient CB 0. 56 and length beam ratio L B 6.8. one with small bulbous how and the other with normal how.

The effect of length beam ratio on the seakeeping qualitieswere also investigated. From the investigation, the following conclusions were obtained.

1) The linear theory based on the Strip Method can predict seakeeping qualities with

sufficient accuracy for practical use, except a few items such as vertical acceleration

at stern, and resistance increment in irregular waves.

2 ) When we compare ship motions of two ships having similar body plan. similar displace-ment, same speed and different LiB. the heaving and pitching amplitude and the vertical

acceleration of the large LIB ship are smaller than that of the small L B ship. 3 ) Impact pressure on bottom and probability of deck wetness of the normal how ship

are smaller than that of the bulbous how ship, hut there are little differences in ship

motions and resistance increment between both types of ships.

Investigation on the impact wave load is hoped to he continued to make clearer the

(3)

L!1. la)

iO)tc5l.

SR 1O8ja)f

;.1.1)

lit(j :'---Ll,

5tLO

ì/tt'U4f, llï L

}ith'k L;.

3 " i

g,

-M. iÇ.-L;t:L;.

i J

O)

L;t

i

--cDtt'ftffi:

H-f

--) Lti, t1t9-.

IjJF5 L;7C0

*.w it: )O),

ZC0

i I' LIB

Ili! (tI, /E*i,

r)

.ti. IC

LtI,

2. .

JE. FI *;I)

--hi

')'-:3--)

(L9=175m, B=25.7m, D=15.3m.

=

23,9701on, CBÛ. 56. ;( ÏJjj22. 5Ki)

.< )

(i

HBY-4)

, normal

bowG ()(fHN) O)

HB. HN,tç1\O) bow profile, stern profile Jz ti body plan

Fig. 2 1,

2 - 2

4m

1/43.75)

.(57j (Photo. i )0LhO) 2

5J'JI,

LIBO) t

jO)t5 l

L/B=r

8 øf'j

aY2 9 9¼ 9/5 9 F.P.

Fig. 2-1.

a)Jf

B AP /4 /2 3/4

Fig. 2-2.

a)f

- = 'AI ____ (0 UPR I 0( NT R 5/DE

- .d

4

... 80 40 211 /.1 /20

---IIL11-PERDEC

Fkill

8.

40

2

I I 0 80

uuir___

40 o 46

k41

(4)

Lt:0 *

Pl

Bd,,' (=2.83)

L1B =6.81,

L=4mHB%L<

L, body plan5)%}HB2<B{1lL

4.5ml

LtùOTYci57, )

Tai}

HB(8) -4- O)

ff/LHB%L< Lt:0

JK14l:.

2 z

jt

,

Wi YflW%o{j

1/3

tJ

J4jj62%7.

W

. It.(iJ)l»

< r

0JOYZ,

f-r1TH

L t:

MB, HN1rj HB(8)

,JZ Table i

E4ilt7,

*iB O))WVJl4. 1jt 5o

± 47

Fig. 2-3.

E151J

Photo-1. {J

Table i

Load Condition Full Ballast

MN : HB HN

HB(8)

HB 1( )J

L=L

lf(i B fl

ik (F.P.)

df

(0)

d,, (A. P.) da Trim

40m

0. 5847m 0. 1952m 0. 2076m 02199m 0.618% ', ', ', '. ,, 'o 4.5 n 0. 5625m 0. 1869m 0. 1988m Q.2106m 0. 527% 4.0 m 0. 5847m 0. 1079m 0. 1389m 0.1698m 1.549% " " 3

y

0. 2769m1 0. 2753m3 0. 2857m1 0. 1709m3 0. 1697m3 t1 ì C 0. 568 0. 565 0. 568 0. 524 0. 520 -11K C 0. 709 'o 0. 636 0. 633 Ca 0.959 'o o' 0.940 . j

/L

(0

j)

2.00% 2.26% 2.00% 3. 00% 3. 31%

(,5)

3.43% o' « 2.35% 2.58% 0. 2256 'o o' 0. 2536 L,/B 6.81 ', 8 6.81 "

Bd,,,

2.83 'o 'o 4.23 'o

(5)

48

k414Ej

MAU 5-70 5 0. 15m 1.0 0.70 0. 18 3.

±i'i'

31

LH) (80m X 8m x3.5m) longcrested regular wave s

r irregular wave

(2)

Q) WI L7O

gIj( X/L=0.3-2.0, H/X=1/50

L.

H/=1/40-.-1/30

iftuL

L. J1it9

i t-(

'f(Ik

fl

jJ

L power spectrum Fig. 3-i-1 l

IZ Sequence (fl1 Moskowitz-Pierson tJ" 11lt power spectrum

IJ'-i4-32 g-l-

'i

'5

tllhj5 l(oìt

aY 7o

1)

øaO)

J4i

g) ;5:

'i I. F)Jui (Station

e)

« i )l. i ) HL F)ioi (Station 1/2 fl.I Sequence i 2 3

Table2tlz5l,

t7'fl5

Table 2

*k!O

fl!j)y(

i

HB }t

5

!UIj5a) power spectrum O)-% Fig. Sequence 11113(mm) (sec) 3-1-2

l)O

ILL&®11

1.297 0.45

1-1

90.5

1-2

121.7 1.287 0.40

1-3

158.5 1.406 0.46

a) 1') 7 I'

ITflc

HB

2-1

97.0 1.445 0.46 tJ5

L3f

2-2

144.1 1.481 0.47

2-3

152.8 1.501 0.47

H113. T2JI.l1 JV)1

L,

3-1

116.4 1.705 0.52

1-1

81.0 1.271 0.41

l55':H,3.

ff11't:0

1-2

114.3 1.308 0.42

-.5)a) servi speed

80% M.

1-3

162.5 1.405 0.46

C. R.. th% sea margin )22Kt

HN

2-1

96.6 1.462 0.46

2-2

133. 2 1. 524 0. 47

C00 (o)fla) Froude i F-0. 273).

2-3

173.0 1.599 0.53

I5F,=0.225, 0.250, 0.275

(6)

F))3.X)k

MtfJI*

49

I: F -

&

i)

)iuì

iS f &

2

k) ji (F. P.) ls)j

relative bow motion (sensor R)

I )

ilIlE

(shaft center Q) side line sensor C)

/JKE

(F. P.

sensor D)

-Ï<jJf Pt. P2. P3

3)

Station 8'/l:))

relative bow motion

P) Station

q I Station 9

. 8½. 8. 7½, 7 Q)4f}

(center line )1lIJ)54J1Orn,n)

r)

¡if D0/6 Q)&iQ(fiEÎ

sensor Q)ff-

Fig. 3-2--1

trj

Fig. 3-2-2

4.

t*Q)

41

E

--lj1jE- Table 3 l:1

Table 3

g:i[: Jj

F : 7

.' :

k:(

=2/x

f3(1) :F.P. (:jt)J-lM øWJ=kA

f(I):

Q) fe(1)

j4=f(1)f8(l)

We : k2= (27r/T2)2g '2

s:

N 4 O4 t(

p:frj

.

if

(Lj f fili

R0:&EJJli

AF

i.]iriìi

Jju

A :

I:

Ìji:i'

JjrfjqT/(pgH2B2/L)

A

ij,

llflt(jjQ)

O.

Q))l Table i lf 0z

¿Z

t:,

LQ)

lf1/3-Iifij)1Z ¿LiI:,

Q)'-' N

i!(il

S(w)

(7)

50

42

±±IG)

Fig. 4-2-1 -Eti O-x0y0z0 G-xbybz

GJ-7

T

Wave I iE

L,

bow down incident wave

°

e = 0l

Ordinary Strip Method (i)

(4)O)1fLI

JLO UTO. S.M.

t:,

lL;/j5

L, )o):'fü5

L±?itt:0 t:tL

I:1buLL,

$T75

î:-4-.

f-

çp!fr-J-C

f- iÇ)

L;

j5

w f power spectral density

O S()

tø S(a)/(1+2coV/g)

j3;l

llLlzI0

7w

10

:cl:I,

j)

f-

I)5,

Y-s5,

Ltt:0

7c

{1f

-5 <

tIi"

f-

j

< J8) ®Jfi-1

j-t0fL;J-

t-fL

LI9

R= Ç RoS(o))do) 4

3 T'IJ)

_I---..

i-

flRi]kI

t i- 0.1j),

k1&m

f40

Lt:0

Lt:5-, power spectral density

jOt

2/2t=31.4, 2ni2mt=O.785 zl41.t

ELC70

f- hunning window°

ut:.

N=800 L, I-

2I)-'-

' i-mo. m2, m4J57jt:,5O)ofDV'

jL;r)-f

0-7.85tt:.

ú>7.85QíIi4

Src(w)

Í.tO

O) power spectral density =0

4fl-: Lt:. m0, m2, m4 t57 t:5O)

Lt:0

il

F0=0.225 cOw7.5, F0.30O

=6.8 ¿Qff'VrO

LIlR =7.85

Zb

V-Fig. 4-2l.

(8)

. flhl

-F6lM;L

.-

4 '-6

(:

IT4) Ø-1!I

t=0.

m=40 power spectral density

¿v'5%*

:t-t.

tL 1i2ti1OYi2,

w=15.7

ti=0.2

---l2 N=90--120

Q)lz 5

'-

k)of

jIjLjø

16F31] 1iK4

l2rliU-zi5

Z

5.

51

1S. ±1ti!

HB 1l:-

J-jo--f%-- Fig. 5-1-1---Fig. 5-1-4

Ç4O 2 Todd 6(1

series Cß=0.60, 0.70 O5ttt')

¿. :f

iÈl2V'T,

5k.4{rj j1bI[L,t:c0 Fig. 5-1-5 Fig. 5-1-6

,.

io)l2l,

HB, HN

I

QjLcs7.

HB cJj

t HN

)tL*<,

HN

HB

®fi

}{44O).5 tff

.

ÏL4'O)

j'l2 1,

Li*6

Table 4 Table 4 FIB FIN

!1i

51

: Fip.5-1-7

Fig. 5-1-8 (i.

O. S.M.

®

®

Ltc.5 U2, Jl9ij Lt Froude-Kriloff Force

4Cl),

7)3

iJz7

I- 'H.

-:Lt±a®,

l;-r7®,

®-1®O)3 -Jt6 r-:-s1,

EL(), (4), ®,

tc, I- 'Lk,

'r-5»

I: rG:í4.4 :ij-5 K

I5JLC.O

Fig. 5-1-9

, EX

ZA/CA,

kA

IT ))J'0iZO.

I)

®IW) (

r4112) , Ç

ji}5 -J'j&4)

jiF).iiJ L. Froude-Kriloff Jl2 ¿:-:; K

1.1 1.25 1.1 1.25 1.1 1.25 1.1 1. 25 Cal. (O. S. M.) 1.092 1. 246 0. 947 1.012 1.064 1.206 0.955 1.021

Cal. (.jijj)

0. 944 1. 129 0. 733 0.811 1.046 1.267 0.710 0. 852 Exp. 1.06 1. 15 0.79 1. 02 0.92 1.04 0.81 1.01 z.1 OAIkA .! A

(9)

B/L /J\

<, &

jjt"Jç

1IftJ Froude-Kriloff

5* IÏ'Z

4.2lQ <t:)

ijjaftoJU/

Fig. 5-1-10 ljt

5)c2jI4icOT*

Ap/g, AsgtL,, lIJI iL

Fig. 5-1-11 Fig. 5-1-12

I5O

LL Asg8

, 0.8</L<1.2cJ

I

X/L-.- 1.0 IJ\

Il

, AF

< .(

L. A8 :-

Ij"S'J\II5

('iJif.fl)

(so, g)

rt .j

l7

Fig. 5-1-13 HB O) F.P.

1.1<X/L<1.5

I)Th

Fig. 5-1-14

IIt +1DjiO)it

'-î5

52

7TiZ

F.P.

:tsI

i painted load water line

O)4ifiî#) I.I)k f(l)

ilii

Lt:0

Fig. 5-2-1

lo

i.0)1'JÑ'X' f(l) ¿' LI

y' ,

f(l)

f(l) f(l)

, HPv

Fig. 5-2-1

y»l00

t: f(l) lO.2<F0<0.3

F, lIlliJ

Fu/I Loadf,ç!,

Pì}Kl/i-ÏÁit

}Q)}ti'ivtl:'<U7'a

llfDt:0

LlD

-

-oj

øix1 L71iiTI

Fig. 5-2-2 0) SHIP

free wave 'rí--

5 l

F.P. ®irl Doublet

Doublet

tO

1.2 1.3 (4 1.5 I.E 1.7 1.8 '.9 2.0 2.1 V0o/oc) J

L t: cTotal i5j

Fig. 5-2-1.

J(iODii)

}i)

SHIP

Tota1

F0.0.275

SIL -0(47

J2Iit

'<,i0)j

2T/L -0/038 - -- SHIP DOUBLET

17i)Ll1-Ç.

TOTAL / V V.---.

/

I

5 free wave

__

lIJi)FlDIW /<)U7QO)t5

.---

\

\_//

/ l

F.P. fl2'<

< 5 f/(L/2) 0.05 -0.05

Fig. 5-2-2.

EW4k/j'ritU

3 .52/ I k j W; 41 F.P f0) J

70)

J12J74.5

LZI

f(l)

°F ¿75"T3 F.P. i: .5I

jJ)

HN /lIIj /,0)-td

1kJlI'ift® 1 5fl]- Fig.

(10)

-53

5-2-3

X/L>1. O < o

fflo F5 'J

flflLt.

f1) ,

2)

deck wetness NWJfj1 JE) }Q)±k1 dynamic swell-up

(thk(2))

t,

4fi(.

5l fe(i) 7'p i1i!

&13t1(t.

Q)

fine Ft7 t:5,

E

jiE)jift7 dynamic swell-up

I1f

.

57)

Fig. 5-2-4l, IM'i5Q)

j-Vt

2(

5Zt5, HB Q))St

lVc.

'j LCV0

L L,

)MkJJi'il 21Q))rvJlt7 .

rF

®iUJttoi.l:. Ñj*fF,7

f(1)

co . )j4°D deck-wetness Q,t factor 5 3

Fig. 5 t-1,

2,

3 (

HB IJ'IQ) X L=l. 25, H/X=1/35.8. F=O. 275

1) FI1 I:Q)

F.P. .

Station Container )(Ji (Station 93/ 9

7Jj-

L

t:i3/4Kl'J\

-c)

2 F. P. Station 9'4 I) ff7J.FEJ2, duration

O. 1Q) sharp t

oy70 y,

container

I1CdC? 'kJEl

:fff Li

3 Fig. 5-3-3

:IjJjJ

A,

A ((I

J!dQ)Jdl

2cycle O)JLrI

JL( container Jff

I)I/ftJftj

(J't(J4Q)A, B, C, D

Q)iii(

i'jLt:IlitE(1) L:t:Y

tfl F:-.Q) jf fi

ifiiJfr<.

.' JJ)

I)fQ2)Jfij

Fig. 5-3-4 (, F5=O.275. x/L=1.25, HX

=1/35.8

Q)E, 5OO-7/f

WLt:74

Lt»r, 1/25J 5Qz5-LtQ)

7o 1)

iEi3/t»'t<

t:4l, F.P.

-ri0

(Fig. 5-3-4 QY)))

2 1 i

A.Dtc,k, bow chock

-t:k

Fig. 5-3-4 Q) (p),

ja,

Qi: deck

), Bore

jJ'Ll7

3)

deck I:.)Jt:'J(J

container iiíi.0

F.P.

jjl.ff(LfQ)(

1)

OYt5),

t: Station 9'1FI, 2)

JyJ

-mi: z

r)

if)

JL )ÇJ?t '

Lt:

i)

- n a b . t

(11)

41

-5 Fig 5-3-5

KB-Fu/I Load

n=P (kIE) /,.gd1 (Full Load)

-2.O Fig. 5-3-5

(fJi

1.0 Q

.x/L<1.5

H/'.>1/35

LO

Container Ji:'ÇiE)J(,

ftLO 9%

TEJj,

t-fflì±JJULC7uÜ, F.P.

°

lf0)JYj[jk5

0.225 0250 0275

-

0300

Fig. 5-3-5. Ji

TiZ7. .1z

5.4

5 7 o -'.

Fig. 5-4-1 L1-0 [r D0/2

7'7IOIi7u

D0/20,

(sensor C

tt:

o)

M L K Fig. 5-4-1

H/x1/30-I.

L'

t-r7u0

5 .5

(jJ)

ai-! I

í&L,LIt

Jl3), r+t4

IF3/»',

)ff)J

IjKE

1)t7L

: ,

' iii

0.225-0. 300

0)L

[Ljfii0.

¿--

-

fiUM

4iv,

subcarriage c-< ) coj

Jz

O)(1

Fig. 5-5-1 HN O)J.LjJJLI k

r

-jjIL X/L

4IIC, F

"

.?

LflJìOg1jii

L:

Fig. 5-5-2 HB

Fig. 5-5-3

MN O))JJ

nl jrII, Mao.io ?u

Hanaoka

27uO), )LIr8 *

inj

¿LtY'7uo

HN MB O)*

jIL)Ç:IF<, X/L

L21.5O)IJ

HN K

ÇitW.fL, I]

L

LJJJL

0)Z.

1ILt70

O)Z).K

tjt

)®Y7 L.

JI:

jfJ(( K

LíK

'

15)l [ffî

I :tLn K,

Lo*I/j

J'JÉ51,

I1J]

,ILltc0

O

-'I'I

-1-lUz L L O)W

'/.25, H/=//35.8

Impact Pressure

fl

Ccnta,,,e,

(12)

;ai *-s

55

V.5 ®.

Iì:3j,btC-r,

'íL Lt

C

tLO

*11.l

li)

41?iJ

5 5c

Jt-LJO) Original t,JJlC -tc7,

L E-'híi L

LIJIP)

JLJTcO Original )'V1z

O)0,

-1f141'1T lL%0

fl <,. incident wave

t

7

NLft

C®l k,OJ1c

t'J

<t5

C

18), j

°)JfrtW{rift1fl" K

6.

l:l'joft

6 1

l:i,

Q) L FJin

t'I

Fig. 6-1-1

-'-Fig. 6-1-5

}4tijLt, O. S.M.

Fig. 6-1-3

o iJi

C1Vt 2'J V'0

itI:lJz

72 iP)j

IgO)jyj\f

V'C Jt'tU"

Fig. 6-1-4 cDj h1in)(. x/L=L0

Fig. 6-1-5 O)

hFJiiLT1inì

X/L= 1.0

V', C L

C) C i,

O)j

J C,

3ft)

C 11-4-

JtLo

Fig. 6-1-6 Station8'

Fig. 6-1-7r5 Fig. 6-1-8:Jz5,

L1JjnOjl Lz'4,

iJ\ V'0

62

Fig. 6-2-1

O. 225F0. 275 -C

JiiTEiJC) Station7¼ C)ìÇ

F=0.300ij

Station 7

[j: LCV',

L:tuij

)j

F50. 275

Station714

''I4'

¿ Lt

50

Fig. 6-2-2 L, F=0.275 C)-. ftÑlCJz

¿5

ft L0

HB, HN

IJØÏ

maz .

./L=1.25. H/1'30C)ft-tjj

3 2 o HN-Bo/Iast

Distribution of Maximum Impact Pressure at the Fore Bottom

= /25, H/ = '/30 Stonon 0.225 0.250 0.275 0300 Fo

Fig. 6-2-1.

0 9

5IC L1

- 8/2

Experiment ( 8

n=II"

m3--1fl

- 72

7

(13)

% i- ' 41

'--LOtj Fig. 6-2-3 CO

photo. 2 ¿ HB HB

Station 7 0)Tf}JIJftJ

Station 9,

8tlzOt7%l

itl( L

I

IJtlfl ( .

Station 7¼0) F1,.=0. 275

J)jI'. 'iijl HB 1O) n,0

t

0)) (, HB 0)fjjt relative bow motion

HN (Fig.

6-l-8) .

ÍfliiI J

Station M½ . )

j)ycO1jfçf

HB i))j

HN . I) Full , 2

HBO))j ,sax ¿}ç <

L'L. Station 7

/u

tL® Station

l0) Fig. 6-2-30) flmaz

L1tl

2752Ji1

63

Fig. 6-3-1

7n -

Do CO,t,I2 H/x *J0, D0 H/X

*ÔJ-cl. cL D0I5co(, jt-J-7

,Z0 l

t.i:

F5=Q. 275 0)lI)poD D0

ii

0)]

Ji,1hI1k IJD

'

rj'j}l

7- T'l;0)-fth

7-1

LTuZ

Fig. 7-1-1 ) Sequence 2-1

1'r7.

L57t,

' <

7l-vt.

I' L

co 0)Jcl'.

-1iIJ

LL, 0)l0) F0 ®l2O4f/

HB

F F0)t2ZAl,3/H1,3

Lf:0)t Fig. 7-1-27 I(1Q) Cal. (Cal.)

l

ø spectrum

5t:7

0), Cal. (Exp.) i &l

Iìí

LU1'J

Jl:)0)trifl]rtîff.L,tc

Exp. ('{* L

Cal. (Cal.) ) j20%'j I

*tl:-)I)t2 eA,3Ík2Hl,3

It.Lt:0)

Fig. 7-1-3 .

2ZAI,3 H 20A1/3 k2Hl/3 T2

l:ii(*Jl,k

K (-1 'Z)

tl0)

jì T2 ¼ < LIJ j .L,.C) mode

frequency 0)f '2 ./L

:

1ti. Sequence 1-1. Sequence 2-1 Sequence 3-1 i:ÌLc.

-E°*i X/L

=0.70, 0.95. 1.50

iqI Fig. 7-1-4 .

(14)

' :ì 57

F,3 hJ)jLt 2AI,3/gh2H1/S

2As1131gk,3

Fig. 7-1-5 T2 jhl 2AFI,3/gk2H,3 u2Äs,3'gk2H113

®:ffØ-o

2A,.113/gk2f113 DV'-Cl, y

Cal. (Exp.) U 1iI Exp.

-.5 .

72

Fig. 7-2-1 (

F.P.

relative bow motion 2fFI,3Ii,,3 Exp. i

Cal. (Exp.)

ffl± L.5

Cal. (Cal.)

t )

Fig.

7-2-2 l.

ci Sit

t1

II-J

t

lFiijì )

7JSÍ'l

2,1,3/H113 Cal. (Exp.) Cal. (Cal.)

®1!EJI. Fig

5-1-13

L k,k 5 l,

JlJL:k2)

relative how motion , _) JÇ

5.5o

Fig. 7-2-2 0) N

F,, cO'lkL 'Z, c0)

iiÊii. F,, øi)ii,Jiíl

fe(i) <

fe(i) LtTh' ,

)JFl.5

Fig. 7-2-3 I F,3=O. 275 cß

TliJ

H/3 I

¿JL0Y.5O

H1,3

Fig. 7-2-3 HB

JJ HN jî1

HB 0))

fe(i)

ijK"UjF 't5

,)

Fig. 7-2-4 (&0) Sequence

rfi0D Exp. l.

<.

)(j1(2)0)(8. 1)yiO) mO,,,, m2,,,

Cal. (Exp.) Exp. I

kIffÇ-Lt.5,,

Ffl2 dynamic

swell up

73

Fig.

7-3-1 (.

HB zO HN(c

LUhJfliII))t(5J

J3: Lt.

oy'

.5,

i)IiiJiI)1Ji}Jl)JDll. HB

HN

Fig. 7-3-2

IJEI0)

jJj[Q) F.

{(0)-.5 iIiI.

0,l'

4lLt:0) Cal.

(Cal.)

¿,

Cal. (Exp.)

I), IJlil( <

ìLZ.5O

t5,

IJ

0){i L/CI,

Lt:ø.

X/Lr=O.5 F0=O. 275

Fig. 5-5-2 lxIL:0

X/L=O.5

Fig. 7-3-2 0) Cal. (Exp.) J2L1'j, J:lLI'.5ol.

ii),

TJjl3.5.,1iEL t:i

iiiì-Ht

(.0Y?.7I5.5,,

J±0)'ft'I.5 ,J,

i-50

Sequence 3-1

t:,

Sequence 1-1 '

12, 1IJil,rI10)fl

(ii0)i

(15)

Ljt. .)o)-Ifj1

Seq. 3-i Seq. 1-1

uIJ)jjt

(Seq. 3-1)

ft(jj<

(Seq. 1-1) .

tj< (ktO

t'

1= )t

ffi3f

Ijti±G)

K,

®1i1.

Lta .

co8j

»0)%

7=

J{-

qjjj L-

j4

.

ZO)T7

),

I

ll

itw K

ìtJÏ

ZIiiiQ)*L-F-ii?. Ifftl) ¿

. .

LZ'7 oQ)i

7.4

i8)i

Sequence 3-I.

JrIl I

7 I

tIatMIJ

Fig. 7-4-1 Fig. 7-4-2 ïc

Station 8 7½

II(tJI.

Station 9. 8

i.

mx.a, ®tWJ (Fig. 7-4-3)

Ij,

F.P.

)lj0)

Station 8

iJIlj»iIJo)Ial..i-I

J StationS,

7t/2 0)

U', Fir EE5

Fig. 744 I, Pm /H,3Pmxfr

Pmax

8.

r:js--

LIB

C)j

L/B=8

HB(3 :-i-,

Lo

0) hFJj

M'®t(O. S. M.)

o)J Fig. 8-1--Fig. 8-4

X/L>1. O rfttJ ()'tJ

K, Todd series Cß=O.70

.

LTn).

O.8<X/L<1. 25

j

*I1'!íi x

05

Full Load - Heave F =0.275

-

---Hß NS(S) (1/5.68/) (1/8.8.0) CotculatOn -Experiment o k i 41 . o LJ5 lO 1.5

Fig. 8-5. L1°&I5L/BO)804

20

I.

N-

tr

L/B=6.81 HB

((ç),

- Froude )I

(F0=O.275) o))

2:®Fig. 8-5. Fig. 8-6

L)O

XÍL.(1.1 HB(8)

5kV0

X/L>'l.l

IT

)JI

HB(8)

)jJiIj\

Ux

tWI HB(8)

c;ij\Y';5,

-J HB(8)

AVO

.4'HBIJ (L=4m) ®F0=O.275o

(16)

1.0 0.5 Fu/I LoadHeave 0 2.0 4.0 60

Fig. 8-7.

0 2

-Fig. 8-9.

LIB O)J

(-)

0.5 1.0 1.5 2.0 "L

Fig. 8-6.

L/B®!.

9. rjj 2i) O,

'J\'1)L i

LlZFPQ)

) 13

o

1) J=ff

HB ))y!jAV0

ft' , L5p= 197m. -24. 000ton HB(8)

ò,

22Kt

®I!,

Fig. 8-7, Fig. R-8 O)M4/ijix,

Fu/I Load Pitch

V-I. 72 (rn/nor)

1.0

0.5

Fu/I Load

Vertical acceleration of Station fr2

98 98(8) (L/ß.8)8i) (L/8.8.0) it,uio/,on: -Fn.0 275 Fo0.250 riment: o He He(a) (L .6.8i) (/8-8.0) Fn.0275 F0n2259 Fn'0275 Fo-O 25G 0 2 4 6

- X (rn)

8

Fig. 8-10.

lff L1JJu L/B 9. 1.0 0.5 Fu/I LoadPitch Fn 0.275

/-

59 V0

HB(8) 3}J (L=4.5m)

. c7) V0 (F0=O259)

iB)2j)1ft

4Ltc» Fig. 8-7, Fig. 8-8

ib, HB(8)

F,,=O 250

O)O)ii

plot

O)I , Lp,= 175m, :i23, 900tonO.)HB

H8 H8r8 (L/ß.6.8/) (la-80) I/Cn CaicnIa ff.per:pnent o

Xe=-5X=43. 75(m)

hLl

HB(8) Ø)jj'J

< 5 ,

Lp,, )t/: HB(8)

O) Froude

(jy/j\/,i,,

L99

t:JLrHB(8) HB O)1z

X/L 7O/J\ V'

LF

t.* Fig. 8-9, Fig. 8-1O

#F:T)Jfljitø«JfL

. HB(8)

}O)}j,J

2.0 4o 6.0 8.0

?S (0,)

Fig. 8-8.

&-t LIB

Fu/I Load

Ver fiaI acceleration of Station 91/2 Ha /1818) An /LZ8'68i1 I

V-I. 72(m/onC)

co: io no,, F,'.a275 Fi--0259

/0

(17)

60

m4í

45 HNl0

HB HN

4) ®M)

HN

HB F.

.5 /J\'fi.

lth.

lo.

iLL.

'/

i'l1Mhfik

Lt

¿òi4.

gli 1)

iJ7 O.S.M.

*

l&-t7

damping

I

R'

9)

i:H

) ,

jcojj,

G)J )

5

)L

5tt1-1. .

'o

7

JJ/2) dynamic swell up ik

iUi'Ji L, x/L>1. O cI[f <

. ¿,

deck wetness Iii factor

z7

1j ìJ.l

j4.fE)j,

i

_Fp&h F.P.,

Station H/?,

-1/35. 1.0<'./L<1.5

jjj,

'

j

1/}/iKl.7ff?, 'P±. F.P.

-0.9{, Station 91,4 j0.5f

F. P. 9

H/1/30

o)k, t

- ff

c1)1/2JJ

[it.

- 4L'O

.

¿k

0.225F0.Z75

Station

F=r0.303

Station7

L7C'70

F,<0. 275 Station7y I4I

l1l 41Ì ,9)

.50

(18)

61 ,

JJio) FF)Ju)

4,

),

< IJ

4J1t-ft.

HIJ j- L

IJt

)3JJflZ

Ji*

31}oj

L *(rj.

ii

ri4.-*5

7 7 ,

F

c;o-i,

{[1 ojjjj

LIB jI'j42

JT,

O) LTbu L/B

HB(8) 7)iHB Jt)/J\0

flI1)f L,

Lu 2

O)4)fj,

ìtr,

¿.

iri

hÑij0

/J\?I)i

bE lIN

j74Tj2, lIN

r]-HN

LLh4$tft,

jtf in

JZ 'in L tLJ

FHftIH E.

3FO)

H

F®tt1flt4

¿dJi

Lt

CLFIL

H 1O8l '

14

{[11Z l" I45 3

idj.

-:

i12)

WrAjfJ: "I)"

'

L,

[1 TtI44IE 7)

"J

}rj-" iii

ft([347 .' >'4

i L WVu44 7 . jjjiE : "Gravity Dynamometer Jz Surging I

'r"

94-. flRTh292 )

w: : "JcO

fÙ<i-T'2t'f' i1MM'i

'

'îi

.i, uu44

7JJ

tjiiir: "

i:

i98, Uu312jJ

: " r4®

jjjj

ZJjJI

(14) "

101, flfl328)]

t

ju"

118 --, H7fj

4011JJ

LJ : '4

(124) "

n3512)

Proceedings of the 11th T.T.T.C. Tokyo. Oct. 1966

1Ij1)4í :

"cJiIJ)j-JIrt"

ji1O3-, uRri33 7,)

'Ji:

i.Ø_9Ijj-JV"

109 -,

(19)

62

'1.:

:

il

¿-5<

flr" tí)t

120e, U4112)1

i60J

VoL 6 "Researches on seakeeping qualities of ships in Japan"

6 *

j: "

tfJJIJoft: ¿

x: "

tl117iT..

lD1" U

fl4310frj,

ri7XJ,

: "RU

)l

p.69,

125, ffl44

6J-J

T. H. Havelock : "The Drifting Force on a Ship among Waves" The Philosophical Magazine. Sir.

7, Vol. xxxiii. p.467 June 1942

00 u q' 'n k

2.0-I

Sequence 2 0.5- 3.0-Sequence 3

Fig. 3-1l. 'liiøì

HBFul1

coo Wave Spectra

400 ,-seguertce 3-1

¡I

4 8 10

a)(Voeu)

Fig. 3-1-2.

I-

j_.fflj

S' Potentiometer for Surge N Counter of number of H: Potent,ometer for Heave rewe luttons

p: potent,ometer tor P,tch M D.C. Motor

P.. Pg. p, Pressure gage p: Relat,ve bow mot,On

A,. Ag: Accelerometer 0:0cc/C wetness T: Thrust dynamometer C Propeller emergence

o. rorgue dynamometer

Fig. 3-2-1.

t

iil'j f

(I)

P,. PaPa Deck pressure gage on the center lIne

D Deck wetness sensor (spoce /0 en,)

R Re/a f,ve mot,on sensor of FA (aSltgt) A, 4cce/erometer

81/2 9 91/2 F.P Sec,',onFp

Sect,on P i Vs s.p

C Propeller emergence sensor

A, .Acce/erome fer

Fig. 3-2-2.

ft il/i '

cil)

0.5-

Sequence I

(20)

z. C. 0 0.5 12/f 6 o -60 Ea -/20 -/5° o 0.5 H B- Fu f / Heave Amplitude (Calculation) '.5

Fig. 5-1-l.

HB - Fu/I Phase angle E (Calculation) Nd-/u/I Phase OnIe E0 (Calcula t'sa) 0 1.0 1.5

Fig. 5-1-2. j..flffjq:ftF

H B - Fu / f Pitch Amplitude (Calculation) Fig. 5-1 -3.

ji,fl-:

0.225 F,, 1.0 0.250 Fo

- 0.225

0.25 0 - 0.275 0.300 0 05 1.0 1.5 2.0

Fig. 5-l-4.

o))t:

z0 1.0 0.5 Full Load-Pitch

Fa275

0.5 0.5 0 0.5 1.0 1.5 2.0

Fig. 5-1-7.

:'--

o 1.0 0.5

Full Load -Heave

F=0.275

z.

0.5 1.0 1.5 2.0

Fig. 5-l-5. ..J&5t4Í11uiQ!

H9-Ful I Pitch Amplitude (Calculation) F,, =0.275

I

Calculo/OC Ecper,,,enf Ha HN O H/h l/sOjflz/.0 co/cu/a/on Experiment /18 HN o H/,.1/50

1Ae/o

63 /

/

Or,Qnol

/

f

. -

Coupled J -- Uncoupled Oynomc f ®---Uncoupled F ¿I

/ /

Tr,n, / Coup/ed

/

- - uncoupled DynamIc y / 81--Uncoupled F5 9' OrIginal - Copled -. - Uncoupled Oynam,c Q-.--Uncocp/ed F6. r,,m Sn,loge coupled -. - Uncoupled Dynam,c Uncoupled F. K. 0 0.5 1.0 1.5 2.0

Fig. 5-l-8.

0.5 i.0 1.5 2.0 2.0 0.5 1.0 '.5 2.0 Fig. 5-1-6.

'7'

H 8- Full z. g. Heave Amplitude (Calculo/ion) /.0 F. 0.275

(21)

1,2 ._ 1.0 0.8 A' Jo 0.1 Fig. 8 6 4 2 1.2

?

081.- Ecpor,mnnr A00.225- 0.250 -t-'- 0.275 -.- 0.300 i-0 78

'/o i/4Q V30 '/50 /4o /30

0.c2 0025 003 OdE 0c25 0b3

Fig. 5-1-9.

0.4

Hß-Full

'0 Surge Amplitude T do/b F,

0-0.225

02

1L°275

//

EAperimerit F,

- 0.225

0.250 ' 0.275 - 0.300 -E.operimer, t

/

/

/

/

/0

/

A

-,

I o

-,

'5

0.5 1.0 1.5 2.0

- YL

Fig. 5-1-10. HB- Fu/I

Vertical acceleration at Station 9J",'

Fr

- 0.225

0250

/.-.---..

0.275

¡----.

t

---0.300

ICalculation -LExperiment --'7/ 0.5 ¡.0 '.5 2.0

_À/L

5-1-11. H B - Fu I /

Vertical acceleration at Station /2

,-r--"

- i r 0.5 ¡.0 ¡.5 2.0 fif j ,1iç k i 41 C 0.5 i.0 i 5 2.0

Fig. 5-2-3. Tìi®

0 03 002 0-o' o 0.5 '.0 1.5 2.0 5 4 3 2 4 3 2 Fn 0.22 5 0.250 -'- - 0.275 - 0.300 LLCO3cu,a fiori Exper,men t

'''

HB - Full

Relative stern motion at AP (Calculo tian)

- 0.225

0.25 0 0 05 1.0 1.5

-x

Fig. 5-1-14. HN -Full

H/A. Deck wetness bounds

2.0 F0 t.,!, f.,!, 0 225 40000 2250t 5/ 214 62 203 73 /92

Fig. 5-1-12. *fl:

Jii.'

1EJ.

i1i

Fig. 5-2-4.

-0250 0.05 1/20 00S8001,ctt (F,, .0275) -vot-y wl ----0.300 004 - 1/25 ii-O'y crica! point - /30 0.03 -002 -1/50 0 00/ H9-Full HB- Fu Il

Heave 'YL'/-50 Pitch Relative bow motion at FR

0 0.5 1.0 1.5 2.0

Fig. 5-1-13.

Full Load

H

A. Deck wetness bounds

0.05- Fn'O.275

(22)

HP-Ful/Lord F.-0275. 5yLI25. H4...1/35.8

-.lkh1ii >' 65

OecA pressure clifF, Stct,On 9I/2 and Container

Fig. 5-3-1.

*-a1E

Ship Motion (Heere. P,ch. Surg.)

Fig. 5-3-2.

HP-Ful/Load F0075 M-1.25. "/,//Z5.û n o.5 1.0 1.5

-

2.0

Fig. 5-4-1.

25 0 2.0 1. /.0 05

HN-Fuif Load

Li T Thrust Increment Fig. 5--5-1. HS-Fu// Load Thrust Increment (Experiment) Fig. 5-5-2. {Ii1C Experiment ° Fn.0.225 ° 0.250

-

0275 0.300

'/\

0225 -"&" 0.250 -tI-- 0.275 --.- 0.300 X 20 by HAS/BOATS Theory

Fig. 5-5-3.

H 0.05 0.04 0.03 002 0.0/

A000/Or000n at station PIS (At. T(4cl.Snot,On&2(A.)

Fig. 5-3-3. 71Ti).

HB-Fu// Load

Propel/er Emergence («2 Os)

Fo C 20 -, o HN-Fu/l Load F5 O.2 75 or - Thrust i Cremes! - . - C Experiment -s

-

02250250 -. - 0.275 0300 Lco/custjo,, Observation Es-0275 Exposed O Cr, Ocal t('Not Exposed 0.5 1.0 2.5 /'s \ 2.0

Ji; .,\

'I,,

''\

I o 1.5 n 'g' 1.0- 05-l.a '.5 0.5 0.5 MB-Full Load F-0275 'YLl25.N&I/35.8

/0 '-s 2.0

'y MAPI.10 Theory

(23)

ç, 66 l.0 0.5 0.5 O 05 z

J

P,tv .5 0.5 (.0 (.5

Fig. 6-l-l. .I:ThO±O)J/(Ä

HB -Ballast Pitch 4mplitude 1.0

- 0.225

0 0250 A '71 -.-.- 0.275 0.300

-JI

0 0.5 /0

Fig. 6-1-2.

Ba/lost-Heave, Pitch F. O.275 A A H5 --.--. 1*000 HN vis Expeomnnt Ca/Cui 0h00 .-... ... 0 0.225 A 0.250 X 0.275 0300 tErSer, met/f o 05 ¡.0 (5

Fig. 6-1-4.

t k iif

41 t 2.0 r, s... 5 4- 3-2 Expevimettt I H/ rl/So 20 2.0 l0 r Bu 1/ 3 2

Fig. 6-l-5. LJuicI

HP -Ballast

Relative motion at station &

L010010,,0,, /1/,, '/50

0 0.5 (.0 (.5 2.0

Fig. 6-l-6.

Ba 1/ast- Vertical acCelera fiOS

F,, 0.275 Station 9 VS . (A,) Station 1/2 (4) H/0V50

- - -0300.

1Q/00/0fj0fl 1Caper,ment o ¿IN LExperiment Cn1çIaf lot, .5 2.0 o A A 0.225 0250 0275 0.300 0 0,5 1.0 1.5 2 o

Fig. 6-l-7.

.h VtJíIì

&t1iP4

Ballast- Relative motion at station 8 1/2 F0 r0275

0.5 1.0 1.5 2 o

Fig. 6-1-3.

_t'7Q)(o

HB -Pol/ast

Vertical occe/erat/on at statiOn 9 1/2

05 1.0 '.5 2.0

N/L

Fig. 6-l-8.

PB -Ballast

40 1

Vertical acceleration at Station 1/2 F. 10 02250 oS a s 6 4 F 0225 0.250 - - 0.300 Lco,,0,,on

(24)

b O b 4 E o

Maximum Impact Pressure at the Fore Bottom Propel/en Emergence

1'/L=/.25, Fo0.275

Ballast Condition

k/L,25

'k'/30

4!ii

.'* }®(o1 a iliM/L$Lfc

:j--

67

0.020 0.025 0.030 0.035

0

/50 ¼o

H

- /

Fig. 6-2-2.

ï)i

t1L'r4 ¿ O)J{,

Maximum Impact Ptessure at the Fore Bottom -V-0.225

Fig. 6-2-3.

-

0.225 Obsenvi,onot1jO, 0.250 Euposd 0.275 O:C,,tCo/ 0.300 XNOJEOPO$d

-

F 0.275 004- I_._5Q.O \\ O.03- ±0 2 0.02 0.0/ 0 0.5 1.0 /L 2.0

Fig. 6-3-1.

7 o

Fig. 7-l-l.

HB - Fu / /

Heave Amplitude

(in irregular waves)

F0 =0.275

¡.2 ¡.3 1.4 '.5 CaI.(CaI.) CaI.(Exp.) Exp. 1.6 1.7

-

(sec)

Fig. 7-1-2.

I.

V°)J ftiODtt

oDflolt

H 8-Fu/I Pitch Spectra

2.,,

(4.0) 3!, /oon; 0.225 4.86 1.08 050 (Experiment) o,ssc 4.96 i 07 036

Wove Sequence 2-i u275

0.300 498 4.75 /04 00 032 04/ Stotic'i 7'/288/29 0.5 HB

AUV

HN 0.250 0.2 75 0.300

F

0.4 O -S

Ji)

E)i :&t'- 7a)ii

0.2 3 2 os ¡.0 0.8 - Sa i/ant b/N - So//ast io 6 s - 6./.me,;)

(25)

0.6 68 0.6 0.4 0.2

HB - Ful /

0 1.2 1.3 1.4 1.5 1.6 ¡.7 T2 (sec)

Fig. 7-1-3. [-ot

/18- Fu/I Vertical acceleration (in ,rreçulor P/axes)

Sft,or 9I/

'k

HB -Full

Vertical acceleration

(in Irregular waxes)

F,, =0.275

SlOt/OP 91/2

"J

Pitch

,4mplitude

(in irregular waves)

F =0.275

3 2 o 5 .1 2 0.225 0,250 0.275 0.3.00 0225 0.250

F,,

0275 Fig.

7-14.

, Ij10

-

Cal (Col) - -o-- Cal.(Exp) '-- Exp Sf01,00 '/2 5-1.5 (.6 70 /000/

KBFul /

Relative bow motion at FR

(in irregular waves)

Frequency of Deck Wetness

(Calculation)

0.225 0.250 0.2 75 0.300 Fn

Fig. 7 2 2.

F

00.275

.-0

-o-2 Cal. (CaL)

- -o-- Cal.(Exp)

Exp. o I / I I I ¡.3

/3

¡.4 ¡.5 1.6 ¡.7

7(sec)

Fig. 7-2-1.

0.3 Wave Sequence

2-3

0300 No, (times/SeO) o.

02

0.I H8 HN CaI.(Cal.) Ca/.(Exp)

.

o o F.? CO' (Co/I 0/ (fop) fop O £ o liT," 5101,00 '/2 s---*---3 2 o 5 4 3 2 o 1.3 1,4 /3 /4 1.5 I.e 1.7 r.,,seorì Fig. 7-1-5. .

I:FIO)"

(26)

0.3

N.

(t,me 5/Sec)

0.2

0.1

Frequency of Deck Wetness (Ca/c u/at,on) Wave Sequence 2

F '0.275

80 /00 /20

-

/40 /60 /80 (mm)

Fig. 7 2-4.

r

0.3 0.2 0. / 0.3

02

0.1 0.2 0. / is 0.0.1 0.03 0.02

Full Load

Thrust increment (in irregular wave) Experiment

H8 F//

HN

Fi/

Thrust ,ncremetit Thrust increment

Sequence li 2I 3i Cei(chi,) csi (Sup) Sup Sequence /-I Sequence 2-I --e-. HAI

---- HO

i i 0.S25 0.250 0275 0300 0.225 0250 0.275 0.300

Fig. 73-2.

:i 1 -

j_4

jJIjJ

øpi.t'î

7 69

Fig. 7-2-3.

I&(:

O){T

o

0.225 0.250 0.275 0.300

Fe

HN - Fu/I

Frequency of Deck Wetness

Fig. 7-3 1.

(Ca/cu/a fian) Fe = 0.275 -r

r

03 80 /00 /60 /80 (mm) /20 /40

(27)

0.6 0.5 0.4 0.3 0.2 0./ o

HB - Ballast

Experiment

Wave Sequence 3-1

Np Number of bow bof fam emergence Ne Number of encounter Station 9

/

/

j-Station 8

- -.- -

'Stofioo 7'

0.225 0.250 ,"-Stat,on ei/2 1 ,,çStatiOn S 0.02- ,' .-. i'

I'

./ \//

\

./

r-

' 0.0/- '

/ ,Station

1,.

s, Sequence

I-I i-2 i-3 2-i 2-2 2-3 3-!

o

li

1.2 i.3 4 1.5 i.6 T2 (sec) 0.4 0.3 0.2 0.1

HE - Ballast

Experimenf

Pmo, Maximum impoci pressure

flPmoe/fd

(Full Load)

0.275 0.300

Fig. 743.

ljLl

Jj5.LL/)

F0

Fig. 7-4-1.

Maximum impact pressure

Sequence

i-i

i-2 i-3 S-1 2-2 2-3 3-i

o i

1.2 i.3 i.4 1.5 (.6

T (sec)

Fig. 7-4-2.

ølfI

Fig. 7-4-4.

ij®Jjçj{jÇ)j)j ¿

zJ&J G)[3f,

Pea, Poao/7,,, fri*cm/cmo)

Station

/

/0

1/

i.

o 9 t. 0 8 I;' Sequence 3-1 -Station 71Y2

2.5 N - 2-.. '.

/_ /

2.0

/.

/

..çstotiona

/

/

/

on 9 1.5

__5_--j5t0tion aP2

o -1.0 0.5 o 0.225 0.250 0.275 0.300

- Fe

Ha - Bailas t

(in irregular wo ve)

H 8-Ba/last

Experiment Experimen t

F,, 0.275 Fa-0.275

0.04

(28)

z. 0.5 1.0 0.5 Hß(8) - Ful / PItch Amplitude 05 /0

-

1.5

Fig. 8-1. Ft:cob

Fig. 8-2.

71 2.0 F o 0.225 A . 0.250 X - - - 0.275 - - - 0300 LE,per,eeet H/1,l/50 I

2 'r:±fl

fjJj,

ji'/f7

W31

V,

Fig. J -1 :}/COxz

R=+Rcos@ot+&,)

T=i+TCOs(c4t+T)

S=+Scos(i»t+s):

Z)J®L*)3

w

io 8 e 4 2 0 F,, o 0,225 0.250 - - - 0.275 . 0.300 N. l-CaiGuIo?,'On E4pioe,l H60i/50 i.5 2.0

Fig. 8-3.

HB(8) Fu/I

Vertical acceleration at Station 1/2

Fo O - - 0.225 ° 0.250 5---'- 0275 0300.-°N L L001001000,,

'

Eopoe,,XP H4./50

cî i

Il

tic

z;

ff)itiui

Ji1oj't"l1ijJ.1rt è

.

ÍÈ)j:

(

Tff!Ui;z

è5<

c)) 'i't

LtCO

Lfi4J70

.5

w.0iI-Lz; cD-,

Fig. J 1. ;:

HB(8) Full HB(8) Full

Heave Amplitude Vertical acceleration at Station 9 '/2

0 05 1.0 1.5 2.a

Fig. 8-4.

05 ¡.0 2.0 A, 19., io

(29)

72

{D+TcoS(nt+)} X(1t)CoSO(+kCoS(wt+8R))

x(1)sinO

cos9ooi_Ç, S1flOO=OACoS(0)+) ¿

¡ 1)

o=T(1_)x (1t)R

13

±lQ)

Fig. 1-1

)ì-c.

x'z'

F.0' : x' :t=P.'+FX'Cos(wt+F.V')

F0' : z' f[iJ F0' +0'cos(ot + Fz')

x-z

X }iiJO1)J= E(+ Tcos(cùt+.) x (1t) -J-FZ'COs(Ûi+aFX')] xcos8

+ {O'+i'COS(Wi+aFO') xsiní9

z )ji]coÌj= -W-[{D+ Tcos(wt+r)} X

(1t)F'F'cos(wt+ps')i X sinO

+ Pz' + F'co(at + Fz') } x cosO

(I 5)

W-J-4;t-L

1x (1-t) P'

(1_2)

+Z'.eA.cos »t+8'0')cos(wt±a) =0

_TOF0_llgXFZ,.OAcos(ot+6pZ,)coS(o,t+as)

7: (1.6)

Wd2z

j-

=FZ'cOS(ot+FZ')

(1.8)

(17)

i' T

'R0

1

Wdid

- °

1t

+_gjg

(I .9)

2

(I .9)

jW7

X'. z'

JO)j4j

u', w'

iJZ

X (1

t)P'z'COs(ot+p'x')

Wdw'

do

-- U'dÏ) = --

WcosO + F0' +F0'cos(wt + Fo')

I .10)

- T

TjR0 W 1

dO

T =

+-

l_g

XWdt

(1.5)

(17)

(1.9)

(I .10)

(I .12)

..

j®,

l-L R0, T0

(13)

U.-?:

(1.4)

.

ji)jj4jiW)ju

(I .4) 1Z'1

(J. 1)

(1.2)

(30)

i=

--Gø*I-ff

73

I4

EQ[Jz.

JJaFXI}5t, (1.4)

(19)

íi®L-L I

\. L

°[Ï)j

flJ1

11)1

pi

5 ,

L]J11i x )5J®

cos8 =loTX

X2

z2

1=1/i_) +(-)

t:tL,

i:

thFIo) 4», i: ;jl

AB R

wdz

0®=w

(l-1)

wd2

R=1w

j(l-1o)}coso

(1.14) )

(fl2

f

X\f

X

lIz\2

(x\2

.

(x\2

1(z

COS1_))1+_

21¼!;) ti;) f =1-2\l-) -1¼i

(1.15)

R=

(XA)21(zÁ)2}

Fig. J -2. Gravityn Dynamorneter

ioj

jioJ, Fig. I-2

5 gravity dynamometer

V, gravity

dynamometer A

x®t(

jEft =O

(I .13)

(114)

(I .15)

(' .16)

(I

.17) x :surging. z heaving tension O)X

J}-R

(31)

Clt

II)

Ijr)

L)103 J

(11.1)

ICtW7

tzL.

R:

Ij4JijrI,

.R0

*l1flhjr1JJIl,

S(ø)

:Ij-co--

)k

(11i)

L-O

J<

to

,

t4f]i1jl-00z

-5

4JIibFi Lí1

Drift force Havelock

ijnU,

k aB k2 aB2 k

ap

k2 ap2

R= z1

- z2 O

-

-(oj dt CO (Ûj dt at k1 aB2 k2 BI k1 dP2 k2

ap

Z1 ¿ Z2 at

at

02

(11.2)

-O

lJ1]f i, 2--t-

i

2o»ozfl-

'jL,

o,2=gkj(i=i,2)

z,O:

14'1{,

FL

k $l

41

-i

e2

L2

1_L4J

.r'.F() . (2)2.

T2 ii2

-Cs. x

(4)x

, cos(&g)

t:L.

A :

trIi.

B: ()rj, L:

k= r,

x :

,y=

2 p V3 V2

B=

-7-:*),, (I 17)

iEhlilx

x'Mi)J[íijQ)j L

(I .9)it< (I

-4)5

*4jt): L

f

I]O))Jt

)

Sub-carriage gravity dynamometer

{1l

(J-4)

,

(1.9)

01

(I .4)

(19)

¡EJ-

gB2/L

Lf1L(I4) coco

r

(J-9)

Q)fQ'

T2

(I19)

y :

F,.:

i.

V1,

Ca Blockcoefficient. d

)LLlÎL, X/L=1.O

l)j

(I .18)

(1.19)

(32)

ri;

75

60:ritt)

5Z. (11.2) 05},it120)0)*112.T

a--4O R'

J

_tr::L

ji7

0 F0)-0 i

o, FiQ2 magnification factor

zoB0osin(oI+ro-th+6o) (ß, ij{i)

o

1

a,2Sfl (o + W2)T+a1 + a2ß1 + &2}sin{'

W27

_wlco2smnr&2T+a1_a2_'1 62} xsinj)1)2T}]

(ll 3)

tCtL, 81=0

WO)0

Tk <

tt)i-t. C

J

3T-tflLft)colO(1)

t), (113)

a2ai'=O, ß2'=ßl

sinr2h1T+a2_ß2+82_al} =sin{21T_ßl

+621 t),

. t)

-kizik2z2ß'= _26iklBol2cOS

_62}sinßl x -sin4 (11. 4)

t:tL,

= T(co 1-102)

Z5

?, 62-0

- z0

ikB012sin$j

0) 2Y70

, 0Th/ I)

f

*0)

t)kL/t, (11 .4)0):):

f'*L (fl4)IJz5,

62trandom

'

5I

TTJi)

<t0

L L,

IJcoJ

82 t-rLt) random

cOs1-9-_62}=1 X

-T

J/irI®J4t'L

t:0)

Fig. fli -0

J(T

Lííijt

1-c,

L=5m, F=0.3

V '=2m/sec )tfirJj

40m ¿:t;til.

T=2üsec IJ)0) °max=7 L,

)V10,}IJt.5 t

-2.0

t,

0.0

t

2.0 J J

O

'

27E 37E

4,t

57E 67E 77E

8c

(33)

76

b

X=jjx2O=14

1), Fig. ITi /»

jj26%O)4 7

.

_4 )

2,

3

{ThL

b ')2t,

Lz5

L. 5 t»

LIB )çoif O.S.M.

<

gi]IL,

L

)G) b )L.

5--ftJL,

ìtIh1E1I

Lt5, )-4

fiiJt

5zt, I-

'J L

'j

tft. '1-D F.P

7IFi)

) JJU L1iiJfi

LIB A, -,

l

'J '17 O)1ffi*1, O.S.M

<5 t

Iii®i 5:, O.S.M -,

.

JiIG)_

V' 5 t:ò5,

Q1o)Jz -5

L/B®'j

V'M75t <5

Cytaty

Powiązane dokumenty

kilku chwilach rozmowy, zacząłem z podziwieniem przytomnych śpie­ wać w głos odwieczną jakąś piosneczkę. Zaledwie z tej strasznej omyłki wyszedłem, nim jeszcze

L’isola di Hong Kong, il Giappone, le isole Hawaii furono alcune delle fer‑ mate più importanti durante il viaggio della giornalista fiorentina svolto nel 1960 e descritto ne Il

We measure about 0.5% of the elements of the full transmission matrix of strongly scattering GaP nanowire mats and by inspecting the shape of the normalized singular value histogram,

Podstawowym celem prowadzonych symulacji migracji radionuklidów w środowisku geologicznym w rejonie przypowierzchniowych składowisk promieniotwórczych odpadów nisko- i

Można zatem zadać sobie pytanie, czy podwójne stworzenie w jakikołwiek sposób pomogło Fiłonowi w wyjaśnieniu zagadki powstania zła i świata zmy­ słowego. Drugie

Najrzadziej wydawane modele periodyków koncentrują się wokół kultury (popularnonaukowe czasopismo regionalistyczne), rolnictwa i leśnictwa (czasopismo popularnonaukowe)

[r]

O ryginalne środki w yrazu dla tem a tu chłopskiego znalazł „poeta Po- nid zia” w gwarze, w konw encji zbiorowego i indyw idualnego bo hatera chłopskiego