6 NOV. 1972
ARCHIEf
-S---- fl.I I. I I I -
Dioluotneek van
ae-OnderfdIin1e.rckpsbouwkuflde
Technische Hogeschool, Deift
DATUM:
OC I M t Nl A TIoq7
lE lE lEill
lE 41--
FJj
FY fIl 46 3 Reprinted fromJOURNAL OF SIBU ZSEN KAI
(THE SOCIETY OF NAVAL ARCHITECTS OF WEST JAPAN)
N0. 41 March 1971
Lab.
y. Scheepsbouwkunde
Technische Hogeschool
Deift
)
D-CU M EN f ATOEI: Xól-C3
*JJfff
**(flfn4511fl
45j:J
ii M W 1' lE M 3Z, E M M lE Mi
Ill iL E Ml;
)\,*A Study on the Seakeeping Qualities of High Speed Single
Screw Container Ships in Head Waves
By Fukuzö TASAT
Matao TAKAGI
Masaaki GANNO
Hiroyuki ARAKAWA
and Masato KUR IHARA
Abstract
Model experiments and theoretical calculations were carried out to obtain data about the sealceeping qualities of high speed single screw container ships in headwaves, and to
make clear how much extent can a theory predict that,
'I'he models selected for the experiments were wooden models of length 4m with block coefficient CB 0. 56 and length beam ratio L B 6.8. one with small bulbous how and the other with normal how.
The effect of length beam ratio on the seakeeping qualitieswere also investigated. From the investigation, the following conclusions were obtained.
1) The linear theory based on the Strip Method can predict seakeeping qualities with
sufficient accuracy for practical use, except a few items such as vertical acceleration
at stern, and resistance increment in irregular waves.
2 ) When we compare ship motions of two ships having similar body plan. similar displace-ment, same speed and different LiB. the heaving and pitching amplitude and the vertical
acceleration of the large LIB ship are smaller than that of the small L B ship. 3 ) Impact pressure on bottom and probability of deck wetness of the normal how ship
are smaller than that of the bulbous how ship, hut there are little differences in ship
motions and resistance increment between both types of ships.
Investigation on the impact wave load is hoped to he continued to make clearer the
L!1. la)
iO)tc5l.
SR 1O8ja)f
;.1.1)lit(j :'---Ll,
5tLO
ì/tt'U4f, llï L
}ith'k L;.
3 " i
g,
-M. iÇ.-L;t:L;.
i J
O)
L;t
i
--cDtt'ftffi:
H-f
--) Lti, t1t9-.
IjJF5 L;7C0*.w it: )O),
ZC0
i I' LIBIli! (tI, /E*i,
r)
.ti. ICLtI,
2. .
JE. FI *;I)
--hi
')'-:3--)
(L9=175m, B=25.7m, D=15.3m.
=23,9701on, CBÛ. 56. ;( ÏJjj22. 5Ki)
.< )
(iHBY-4)
, normalbowG ()(fHN) O)
HB. HN,tç1\O) bow profile, stern profile Jz ti body plan
Fig. 2 1,
2 - 2
4m
1/43.75).(57j (Photo. i )0LhO) 2
5J'JI,LIBO) t
jO)t5 l
L/B=r8 øf'j
aY2 9 9¼ 9/5 9 F.P.Fig. 2-1.
a)Jf
B AP /4 /2 3/4Fig. 2-2.
a)f
- = 'AI ____ (0 UPR I 0( NT R 5/DE- .d
4
... 80 40 211 /.1 /20---IIL11-PERDEC
Fkill
8.
402
I I 0 80uuir___
40 o 46k41
Lt:0 *
Pl
Bd,,' (=2.83)
L1B =6.81,L=4mHB%L<
L, body plan5)%}HB2<B{1lL
4.5mlLtùOTYci57, )
Tai}
HB(8) -4- O)ff/LHB%L< Lt:0
JK14l:.
2 zjt
,Wi YflW%o{j
1/3tJ
J4jj62%7.
W. It.(iJ)l»
< r0JOYZ,
f-r1TH
L t:MB, HN1rj HB(8)
,JZ Table iE4ilt7,
*iB O))WVJl4. 1jt 5o
± 47Fig. 2-3.
E151JPhoto-1. {J
Table iLoad Condition Full Ballast
MN : HB HN
HB(8)
HB 1( )JL=L
lf(i B flik (F.P.)
df(0)
d,, (A. P.) da Trim40m
0. 5847m 0. 1952m 0. 2076m 02199m 0.618% ', ', ', '. ,, 'o 4.5 n 0. 5625m 0. 1869m 0. 1988m Q.2106m 0. 527% 4.0 m 0. 5847m 0. 1079m 0. 1389m 0.1698m 1.549% " " 3y
0. 2769m1 0. 2753m3 0. 2857m1 0. 1709m3 0. 1697m3 t1 ì C 0. 568 0. 565 0. 568 0. 524 0. 520 -11K C 0. 709 'o 0. 636 0. 633 Ca 0.959 'o o' 0.940 . j/L
(0
j)
2.00% 2.26% 2.00% 3. 00% 3. 31%(,5)
3.43% o' « 2.35% 2.58% 0. 2256 'o o' 0. 2536 L,/B 6.81 ', 8 6.81 "Bd,,,
2.83 'o 'o 4.23 'o48
k414Ej
MAU 5-70 5 0. 15m 1.0 0.70 0. 18 3.±i'i'
31
LH) (80m X 8m x3.5m) longcrested regular wave s
r irregular wave
(2)
Q) WI L7O
gIj( X/L=0.3-2.0, H/X=1/50
L.H/=1/40-.-1/30
iftuL
L. J1it9
i t-(
'f(Ik
fl
jJL power spectrum Fig. 3-i-1 l
IZ Sequence (fl1 Moskowitz-Pierson tJ" 11lt power spectrum
IJ'-i4-32 g-l-
'i'5
tllhj5 l(oìt
aY 7o1)
øaO)
J4i
g) ;5:
'i I. F)Jui (Statione)
« i )l. i ) HL F)ioi (Station 1/2 fl.I Sequence i 2 3Table2tlz5l,
t7'fl5
Table 2
*k!O
fl!j)y(i
HB }t
5!UIj5a) power spectrum O)-% Fig. Sequence 11113(mm) (sec) 3-1-2
l)O
ILL&®11
1.297 0.451-1
90.51-2
121.7 1.287 0.401-3
158.5 1.406 0.46a) 1') 7 I'
ITflc
HB2-1
97.0 1.445 0.46 tJ5L3f
2-2
144.1 1.481 0.472-3
152.8 1.501 0.47H113. T2JI.l1 JV)1
L,3-1
116.4 1.705 0.521-1
81.0 1.271 0.41l55':H,3.
ff11't:01-2
114.3 1.308 0.42-.5)a) servi speed
80% M.1-3
162.5 1.405 0.46C. R.. th% sea margin )22Kt
HN2-1
96.6 1.462 0.462-2
133. 2 1. 524 0. 47C00 (o)fla) Froude i F-0. 273).
2-3
173.0 1.599 0.53I5F,=0.225, 0.250, 0.275
F))3.X)k
MtfJI*
49I: F -
&
i)
)iuìiS f &
2
k) ji (F. P.) ls)j
relative bow motion (sensor R)I )
ilIlE
(shaft center Q) side line sensor C)/JKE
(F. P.
sensor D)-Ï<jJf Pt. P2. P3
3)
Station 8'/l:))
relative bow motionP) Station
q I Station 9
. 8½. 8. 7½, 7 Q)4f}
(center line )1lIJ)54J1Orn,n)r)
¡if D0/6 Q)&iQ(fiEÎ
sensor Q)ff-
Fig. 3-2--1trj
Fig. 3-2-2
4.
t*Q)
41
E--lj1jE- Table 3 l:1
Table 3g:i[: Jj
F : 7
.' :k:(
=2/x
f3(1) :F.P. (:jt)J-lM øWJ=kA
f(I):
Q) fe(1)j4=f(1)f8(l)
We : k2= (27r/T2)2g '2s:
N 4 O4 t(p:frj
.if
(Lj f filiR0:&EJJli
AFi.]iriìi
JjuA :
I:Ìji:i'
JjrfjqT/(pgH2B2/L)
Aij,
llflt(jjQ)
O.Q))l Table i lf 0z
¿Z
t:,
LQ)lf1/3-Iifij)1Z ¿LiI:,
Q)'-' N
i!(il
S(w)50
42
±±IG)
Fig. 4-2-1 -Eti O-x0y0z0 G-xbybzGJ-7
T
Wave I iEL,
bow down incident wave°
e = 0lOrdinary Strip Method (i)
(4)O)1fLI
JLO UTO. S.M.
t:,
lL;/j5L, )o):'fü5
L±?itt:0 t:tL
I:1buLL,
$T75
î:-4-.
f-
çp!fr-J-C
f- iÇ)
L;j5
w f power spectral densityO S()
tø S(a)/(1+2coV/g)
j3;lllLlzI0
7w10
:cl:I,
j)
f-I)5,
Y-s5,Ltt:0
7c
{1f
-5 <tIi"
f-j
< J8) ®Jfi-1j-t0fL;J-
t-fL
LI9
R= Ç RoS(o))do) 43 T'IJ)
_I---..
i-flRi]kI
t i- 0.1j),k1&m
f40
Lt:0Lt:5-, power spectral density
jOt
2/2t=31.4, 2ni2mt=O.785 zl41.t
ELC70
f- hunning window°ut:.
N=800 L, I-
2I)-'-
' i-mo. m2, m4J57jt:,5O)ofDV'
jL;r)-f
0-7.85tt:.
ú>7.85QíIi4
Src(w)Í.tO
O) power spectral density =0
4fl-: Lt:. m0, m2, m4 t57 t:5O)
Lt:0
ilF0=0.225 cOw7.5, F0.30O
=6.8 ¿Qff'VrOLIlR =7.85
Zb
V-Fig. 4-2l.
. flhl
-F6lM;L
.-
4 '-6
(:
IT4) Ø-1!I
t=0.
m=40 power spectral density¿v'5%*
:t-t.
tL 1i2ti1OYi2,w=15.7
ti=0.2
---l2 N=90--120
Q)lz 5
'-
k)of
jIjLjø
16F31] 1iK4l2rliU-zi5
Z5.
51
1S. ±1ti!
HB 1l:-
J-jo--f%-- Fig. 5-1-1---Fig. 5-1-4
Ç4O 2 Todd 6(1series Cß=0.60, 0.70 O5ttt')
¿. :f
iÈl2V'T,
5k.4{rj j1bI[L,t:c0 Fig. 5-1-5 Fig. 5-1-6,.
io)l2l,
HB, HN
IQjLcs7.
HB cJj
t HN
)tL*<,
HN
HB®fi
}{44O).5 tff
.ÏL4'O)
j'l2 1,
Li*6
Table 4 Table 4 FIB FIN!1i
51: Fip.5-1-7
Fig. 5-1-8 (i.O. S.M.
®
®
Ltc.5 U2, Jl9ij Lt Froude-Kriloff Force
4Cl),7)3
iJz7
I- 'H.
-:Lt±a®,
l;-r7®,
®-1®O)3 -Jt6 r-:-s1,
EL(), (4), ®,
tc, I- 'Lk,'r-5»
I: rG:í4.4 :ij-5 K
I5JLC.O
Fig. 5-1-9
, EX
ZA/CA,kA
IT ))J'0iZO.
I)
®IW) (
r4112) , Çji}5 -J'j&4)
jiF).iiJ L. Froude-Kriloff Jl2 ¿:-:; K
1.1 1.25 1.1 1.25 1.1 1.25 1.1 1. 25 Cal. (O. S. M.) 1.092 1. 246 0. 947 1.012 1.064 1.206 0.955 1.021Cal. (.jijj)
0. 944 1. 129 0. 733 0.811 1.046 1.267 0.710 0. 852 Exp. 1.06 1. 15 0.79 1. 02 0.92 1.04 0.81 1.01 z.1 OAIkA .! AB/L /J\
<, &
jjt"Jç
1IftJ Froude-Kriloff5* IÏ'Z
4.2lQ <t:)
ijjaftoJU/
Fig. 5-1-10 ljt
5)c2jI4icOT*
Ap/g, AsgtL,, lIJI iL
Fig. 5-1-11 Fig. 5-1-12I5O
LL Asg8
, 0.8</L<1.2cJ
I
X/L-.- 1.0 IJ\
Il
, AF
< .(
L. A8 :-
Ij"S'J\II5
('iJif.fl)
(so, g)rt .j
l7
Fig. 5-1-13 HB O) F.P.
1.1<X/L<1.5
I)ThFig. 5-1-14
IIt +1DjiO)it
'-î5
52
7TiZ
F.P.
:tsI
i painted load water lineO)4ifiî#) I.I)k f(l)
iliiLt:0
Fig. 5-2-1lo
i.0)1'JÑ'X' f(l) ¿' LI
y' ,f(l)
f(l) f(l)
, HPvFig. 5-2-1
y»l00
t: f(l) lO.2<F0<0.3
F, lIlliJ
Fu/I Loadf,ç!,
Pì}Kl/i-ÏÁit
}Q)}ti'ivtl:'<U7'a
llfDt:0
LlD
-
-oj
øix1 L71iiTI
Fig. 5-2-2 0) SHIP
free wave 'rí--
5 lF.P. ®irl Doublet
DoublettO
1.2 1.3 (4 1.5 I.E 1.7 1.8 '.9 2.0 2.1 V0o/oc) J
L t: cTotal i5j
Fig. 5-2-1.
J(iODii)
}i)
SHIPTota1
F0.0.275
SIL -0(47
J2Iit
'<,i0)j
2T/L -0/038 - -- SHIP DOUBLET
17i)Ll1-Ç.
TOTAL / V V.---./
I5 free wave
__
lIJi)FlDIW /<)U7QO)t5
.---\
\_//
/ lF.P. fl2'<
< 5 f/(L/2) 0.05 -0.05Fig. 5-2-2.
EW4k/j'ritU
3 .52/ I k j W; 41 F.P f0) J70)
J12J74.5
LZIf(l)
°F ¿75"T3 F.P. i: .5IjJ)
HN /lIIj /,0)-td
1kJlI'ift® 1 5fl]- Fig.
-53
5-2-3
X/L>1. O < o
fflo F5 'J
flflLt.
f1) ,
2)deck wetness NWJfj1 JE) }Q)±k1 dynamic swell-up
(thk(2))
t,
4fi(.
5l fe(i) 7'p i1i!&13t1(t.
Q)
fine Ft7 t:5,
EjiE)jift7 dynamic swell-up
I1f
.57)
Fig. 5-2-4l, IM'i5Q)
j-Vt
2(
5Zt5, HB Q))St
lVc.
'j LCV0
L L,)MkJJi'il 21Q))rvJlt7 .
rF®iUJttoi.l:. Ñj*fF,7
f(1)
co . )j4°D deck-wetness Q,t factor 5 3Fig. 5 t-1,
2,
3 (HB IJ'IQ) X L=l. 25, H/X=1/35.8. F=O. 275
1) FI1 I:Q)
F.P. .
Station Container )(Ji (Station 93/ 97Jj-
Lt:i3/4Kl'J\
-c)
2 F. P. Station 9'4 I) ff7J.FEJ2, duration
O. 1Q) sharp t
oy70 y,
container
I1CdC? 'kJEl
:fff Li
3 Fig. 5-3-3
:IjJjJ
A,A ((I
J!dQ)Jdl2cycle O)JLrI
JL( container Jff
I)I/ftJftj
(J't(J4Q)A, B, C, D
Q)iii(i'jLt:IlitE(1) L:t:Y
tfl F:-.Q) jf fi
ifiiJfr<.
.' JJ)I)fQ2)Jfij
t»Fig. 5-3-4 (, F5=O.275. x/L=1.25, HX
=1/35.8Q)E, 5OO-7/f
WLt:74
Lt»r, 1/25J 5Qz5-LtQ)
7o 1)iEi3/t»'t<
t:4l, F.P.
-ri0
(Fig. 5-3-4 QY)))2 1 i
A.Dtc,k, bow chock
-t:k
Fig. 5-3-4 Q) (p),ja,
Qi: deck
), Bore
jJ'Ll7
3)
deck I:.)Jt:'J(J
container iiíi.0
F.P.
jjl.ff(LfQ)(
1)OYt5),
t: Station 9'1FI, 2)
JyJ
-mi: z
r)
if)
JL )ÇJ?t 'Lt:
i)
- n a b . t
41
-5 Fig 5-3-5
KB-Fu/I Load
n=P (kIE) /,.gd1 (Full Load)
-2.O Fig. 5-3-5
(fJi
1.0 Q.x/L<1.5
H/'.>1/35
LOContainer Ji:'ÇiE)J(,
ftLO 9%
TEJj,
t-fflì±JJULC7uÜ, F.P.
°lf0)JYj[jk5
0.225 0250 0275-
0300Fig. 5-3-5. Ji
TiZ7. .1z5.4
5 7 o -'.Fig. 5-4-1 L1-0 [r D0/2
7'7IOIi7u
IÔD0/20,
(sensor Ctt:
o)
M L K Fig. 5-4-1H/x1/30-I.
L'
t-r7u0
5 .5(jJ)
ai-! Ií&L,LIt
Jl3), r+t4
IF3/»',
)ff)J
IjKE1)t7L
: ,' iii
0.225-0. 3000)L
[Ljfii0.¿--
-
fiUM4iv,
subcarriage c-< ) cojJz
O)(1
Fig. 5-5-1 HN O)J.LjJJLI k
r
-jjIL X/L
4IIC, F
"
.?LflJìOg1jii
L:
Fig. 5-5-2 HBFig. 5-5-3
MN O))JJ
nl jrII, Mao.io ?uHanaoka
27uO), )LIr8 *
inj¿LtY'7uo
HN MB O)*
jIL)Ç:IF<, X/L
L21.5O)IJ
HN K
ÇitW.fL, I]
LLJJJL
0)Z.1ILt70
O)Z).K
tjt
)®Y7 L.
JI:
jfJ(( K
LíK
'
15)l [ffîI :tLn K,
Lo*I/j
J'JÉ51,
I1J],ILltc0
O-'I'I
-1-lUz L L O)W'/.25, H/=//35.8
Impact Pressurefl
Ccnta,,,e,;ai *-s
55V.5 ®.
Iì:3j,btC-r,
'íL Lt
C
tLO
*11.l
li)41?iJ
5 5cJt-LJO) Original t,JJlC -tc7,
L E-'híi LLIJIP)
JLJTcO Original )'V1z
O)0,-1f141'1T lL%0
fl <,. incident wavet
7NLft
C®l k,OJ1c
t'J
<t5
C18), j
°)JfrtW{rift1fl" K
6.l:l'joft
6 1l:i,
Q) L FJint'I
Fig. 6-1-1-'-Fig. 6-1-5
}4tijLt, O. S.M.
Fig. 6-1-3
o iJiC1Vt 2'J V'0
itI:lJz
72 iP)jIgO)jyj\f
V'C Jt'tU"
Fig. 6-1-4 cDj h1in)(. x/L=L0
Fig. 6-1-5 O)hFJiiLT1inì
X/L= 1.0V', C L
C) C i,
O)j
J C,3ft)
C 11-4-JtLo
Fig. 6-1-6 Station8'Fig. 6-1-7r5 Fig. 6-1-8:Jz5,
L1JjnOjl Lz'4,
iJ\ V'062
Fig. 6-2-1O. 225F0. 275 -C
JiiTEiJC) Station7¼ C)ìÇF=0.300ij
Station 7[j: LCV',
L:tuij
)j
F50. 275
Station714''I4'
¿ Lt
50Fig. 6-2-2 L, F=0.275 C)-. ftÑlCJz
¿5ft L0
HB, HN
IJØÏ
maz ../L=1.25. H/1'30C)ft-tjj
3 2 o HN-Bo/IastDistribution of Maximum Impact Pressure at the Fore Bottom
= /25, H/ = '/30 Stonon 0.225 0.250 0.275 0300 Fo
Fig. 6-2-1.
0 9
5IC L1- 8/2
Experiment ( 8
n=II"
m3--1fl
- 72
7% i- ' 41
'--LOtj Fig. 6-2-3 CO
photo. 2 ¿ HB HBStation 7 0)Tf}JIJftJ
Station 9,8tlzOt7%l
itl( L
IIJtlfl ( .
Station 7¼0) F1,.=0. 275J)jI'. 'iijl HB 1O) n,0
t0)) (, HB 0)fjjt relative bow motion
HN (Fig.
6-l-8) .
ÍfliiI J
Station M½ . )
j)ycO1jfçf
HB i))j
HN . I) Full , 2HBO))j ,sax ¿}ç <
L'L. Station 7
/utL® Station
l0) Fig. 6-2-30) flmaz
L1tl
2752Ji1
63
7±
Fig. 6-3-17n -
Do CO,t,I2 H/x *J0, D0 H/X*ÔJ-cl. cL D0I5co(, jt-J-7
,Z0 lt.i:
F5=Q. 275 0)lI)poD D0ii
0)]
Ji,1hI1k IJD
'
rj'j}l
7- T'l;0)-fth
7-1
LTuZ
Fig. 7-1-1 ) Sequence 2-11'r7.
L57t,
' <7l-vt.
I' Lco 0)Jcl'.
-1iIJ
LL, 0)l0) F0 ®l2O4f/
HB
F F0)t2ZAl,3/H1,3
Lf:0)t Fig. 7-1-27 I(1Q) Cal. (Cal.)
lø spectrum
5t:7
0), Cal. (Exp.) i &lIìí
LU1'J
Jl:)0)trifl]rtîff.L,tc
Exp. ('{* L
Cal. (Cal.) ) j20%'j I
*tl:-)I)t2 eA,3Ík2Hl,3
It.Lt:0)
Fig. 7-1-3 .2ZAI,3 H 20A1/3 k2Hl/3 T2
l:ii(*Jl,k
K (-1 'Z)
tl0)
jì T2 ¼ < LIJ j .L,.C) mode
frequency 0)f '2 ./L
:
1ti. Sequence 1-1. Sequence 2-1 Sequence 3-1 i:ÌLc.
-E°*i X/L=0.70, 0.95. 1.50
iqI Fig. 7-1-4 .
' :ì 57
F,3 hJ)jLt 2AI,3/gh2H1/S
2As1131gk,3
Fig. 7-1-5 T2 jhl 2AFI,3/gk2H,3 u2Äs,3'gk2H113
®:ffØ-o
2A,.113/gk2f113 DV'-Cl, y
Cal. (Exp.) U 1iI Exp.
-.5 .
72
Fig. 7-2-1 (
F.P.
relative bow motion 2fFI,3Ii,,3 Exp. iCal. (Exp.)
ffl± L.5
Cal. (Cal.)t )
Fig.
7-2-2 l.
ci Sit
t1
II-Jt
lFiijì )7JSÍ'l
2,1,3/H113 Cal. (Exp.) Cal. (Cal.)
®1!EJI. Fig
5-1-13L k,k 5 l,
JlJL:k2)
relative how motion , _) JÇ5.5o
Fig. 7-2-2 0) N
F,, cO'lkL 'Z, c0)
iiÊii. F,, øi)ii,Jiíl
fe(i) <fe(i) LtTh' ,
)JFl.5
Fig. 7-2-3 I F,3=O. 275 cß
TliJ
H/3 I
¿JL0Y.5O
H1,3
Fig. 7-2-3 HB
JJ HN jî1
HB 0))
fe(i)ijK"UjF 't5
,)
Fig. 7-2-4 (&0) Sequence
rfi0D Exp. l.
<.
)(j1(2)0)(8. 1)yiO) mO,,,, m2,,,Cal. (Exp.) Exp. I
kIffÇ-Lt.5,,
Ffl2 dynamic
swell up
73
Fig.
7-3-1 (.
HB zO HN(cLUhJfliII))t(5J
J3: Lt.oy'
.5,
i)IiiJiI)1Ji}Jl)JDll. HB
HNFig. 7-3-2
IJEI0)
jJj[Q) F.{(0)-.5 iIiI.
0,l'
4lLt:0) Cal.
(Cal.)¿,
Cal. (Exp.)
I), IJlil( <
ìLZ.5O
t5,
IJ
0){i L/CI,
Lt:ø.
X/Lr=O.5 F0=O. 275Fig. 5-5-2 lxIL:0
X/L=O.5Fig. 7-3-2 0) Cal. (Exp.) J2L1'j, J:lLI'.5ol.
ii),
TJjl3.5.,1iEL t:i
iiiì-Ht
(.0Y?.7I5.5,,J±0)'ft'I.5 ,J,
i-50Sequence 3-1
t:,
Sequence 1-1 '12, 1IJil,rI10)fl
(ii0)i
Ljt. .)o)-Ifj1
Seq. 3-i Seq. 1-1
uIJ)jjt
(Seq. 3-1)
ft(jj<
(Seq. 1-1) .tj< (ktO
t'
1= )tffi3f
Ijti±G)
K,
®1i1.
Lta .
co8j»0)%
7=J{-
qjjj L-j4
.ZO)T7
),
Ill
itw K
ìtJÏ
ZIiiiQ)*L-F-ii?. Ifftl) ¿
. .LZ'7 oQ)i
7.4
i8)i
Sequence 3-I.
JrIl I
7 ItIatMIJ
Fig. 7-4-1 Fig. 7-4-2 ïcStation 8 7½
II(tJI.
Station 9. 8
i.
mx.a, ®tWJ (Fig. 7-4-3)
Ij,
F.P.)lj0)
Station 8iJIlj»iIJo)Ial..i-I
J StationS,
7t/2 0)
U', Fir EE5
Fig. 744 I, Pm /H,3Pmxfr
Pmax
8.
r:js--
LIBC)j
L/B=8
HB(3 :-i-,
Lo
0) hFJj
M'®t(O. S. M.)
o)J Fig. 8-1--Fig. 8-4X/L>1. O rfttJ ()'tJ
K, Todd series Cß=O.70.
LTn).
O.8<X/L<1. 25j
*I1'!íi x05
Full Load - Heave F =0.275
-
---Hß NS(S) (1/5.68/) (1/8.8.0) CotculatOn -Experiment o k i 41 . o LJ5 lO 1.5Fig. 8-5. L1°&I5L/BO)804
20I.
N-tr
L/B=6.81 HB((ç),
- Froude )I
(F0=O.275) o))
2:®Fig. 8-5. Fig. 8-6
L)O
XÍL.(1.1 HB(8)5kV0
X/L>'l.l
IT
)JI
HB(8))jJiIj\
UxtWI HB(8)
c;ij\Y';5,
-J HB(8)
AVO
.4'HBIJ (L=4m) ®F0=O.275o
1.0 0.5 Fu/I LoadHeave 0 2.0 4.0 60
Fig. 8-7.
0 2-Fig. 8-9.
LIB O)J
(-)
0.5 1.0 1.5 2.0 "L
Fig. 8-6.
L/B®!.
9. rjj 2i) O,'J\'1)L i
LlZFPQ)) 13
o1) J=ff
HB ))y!jAV0
ft' , L5p= 197m. -24. 000ton HB(8)ò,
22Kt®I!,
Fig. 8-7, Fig. R-8 O)M4/ijix,
Fu/I Load Pitch
V-I. 72 (rn/nor)
1.0
0.5
Fu/I Load
Vertical acceleration of Station fr2
98 98(8) (L/ß.8)8i) (L/8.8.0) it,uio/,on: -Fn.0 275 Fo0.250 riment: o He He(a) (L .6.8i) (/8-8.0) Fn.0275 F0n2259 Fn'0275 Fo-O 25G 0 2 4 6
- X (rn)
8Fig. 8-10.
lff L1JJu L/B 9. 1.0 0.5 Fu/I LoadPitch Fn 0.275/-
59 V0HB(8) 3}J (L=4.5m)
. c7) V0 (F0=O259)iB)2j)1ft
4Ltc» Fig. 8-7, Fig. 8-8
ib, HB(8)
F,,=O 250O)O)ii
plotO)I , Lp,= 175m, :i23, 900tonO.)HB
H8 H8r8 (L/ß.6.8/) (la-80) I/Cn CaicnIa ff.per:pnent o
Xe=-5X=43. 75(m)
hLl
HB(8) Ø)jj'J
< 5 ,Lp,, )t/: HB(8)
O) Froude(jy/j\/,i,,
L99t:JLrHB(8) HB O)1z
X/L 7O/J\ V'LF
t.* Fig. 8-9, Fig. 8-1O
#F:T)Jfljitø«JfL
. HB(8)}O)}j,J
2.0 4o 6.0 8.0
?S (0,)
Fig. 8-8.
&-t LIB
Fu/I Load
Ver fiaI acceleration of Station 91/2 Ha /1818) An /LZ8'68i1 I
V-I. 72(m/onC)
co: io no,, F,'.a275 Fi--0259
/0
60
m4í
45 HNl0
HB HN4) ®M)
HN
HB F..5 /J\'fi.
lth.
lo.iLL.
'/
i'l1Mhfik
Lt
¿òi4.
gli 1)iJ7 O.S.M.
*l&-t7
dampingI
R'
9)i:H
) ,jcojj,
G)J )5
)L
5tt1-1. .'o
7
JJ/2) dynamic swell up ikiUi'Ji L, x/L>1. O cI[f <
. ¿,
deck wetness Iii factorz7
1j ìJ.l
j4.fE)j,
i_Fp&h F.P.,
Station H/?,-1/35. 1.0<'./L<1.5
jjj,
'j
1/}/iKl.7ff?, 'P±. F.P.
-0.9{, Station 91,4 j0.5f
F. P. 9
H/1/30
o)k, t
- ffc1)1/2JJ
[it.
- 4L'O.
¿k
0.225F0.Z75
StationF=r0.303
Station7L7C'70
F,<0. 275 Station7y I4Il1l 41Ì ,9)
.50
61 ,
JJio) FF)Ju)
4,
),
< IJ4J1t-ft.
HIJ j- LIJt
)3JJflZJi*
31}ojL *(rj.
iiri4.-*5
7 7 ,F
c;o-i,{[1 ojjjj
LIB jI'j42
JT,
O) LTbu L/BHB(8) 7)iHB Jt)/J\0
flI1)f L,
Lu 2
O)4)fj,ìtr,
¿.
iri
hÑij0
/J\?I)i
bE lIN
j74Tj2, lIN
r]-HNLLh4$tft,
jtf inJZ 'in L tLJ
FHftIH E.3FO)
H
F®tt1flt4
¿dJi
Lt
CLFIL
H 1O8l '
14
{[11Z l" I45 3
idj.
-:
i12)
WrAjfJ: "I)"
'
L,
[1 TtI44IE 7)"J
}rj-" iii
ft([347 .' >'4
i L WVu44 7 . jjjiE : "Gravity Dynamometer Jz Surging I'r"
94-. flRTh292 )
w: : "JcO
fÙ<i-T'2t'f' i1MM'i'
'îi.i, uu44
7JJtjiiir: "
i:i98, Uu312jJ
: " r4®
jjjj
ZJjJI(14) "
101, flfl328)]
t
ju"
118 --, H7fj4011JJ
LJ : '4
(124) "
n3512)
Proceedings of the 11th T.T.T.C. Tokyo. Oct. 1966
1Ij1)4í :
"cJiIJ)j-JIrt"
ji1O3-, uRri33 7,)'Ji:
i.Ø_9Ijj-JV"
109 -,62
'1.:
:
il
¿-5<
flr" tí)t
120e, U4112)1
i60J
VoL 6 "Researches on seakeeping qualities of ships in Japan"6 *
j: "
tfJJIJoft: ¿
x: "
tl117iT..
lD1" U
fl4310frj,ri7XJ,
: "RU)l
p.69,125, ffl44
6J-J
T. H. Havelock : "The Drifting Force on a Ship among Waves" The Philosophical Magazine. Sir.
7, Vol. xxxiii. p.467 June 1942
00 u q' 'n k
2.0-I
Sequence 2 0.5- 3.0-Sequence 3Fig. 3-1l. 'liiøì
HBFul1coo Wave Spectra
400 ,-seguertce 3-1
¡I
4 8 10
a)(Voeu)
Fig. 3-1-2.
I-j_.fflj
S' Potentiometer for Surge N Counter of number of H: Potent,ometer for Heave rewe luttons
p: potent,ometer tor P,tch M D.C. Motor
P.. Pg. p, Pressure gage p: Relat,ve bow mot,On
A,. Ag: Accelerometer 0:0cc/C wetness T: Thrust dynamometer C Propeller emergence
o. rorgue dynamometer
Fig. 3-2-1.
t
iil'j f(I)
P,. PaPa Deck pressure gage on the center lIne
D Deck wetness sensor (spoce /0 en,)
R Re/a f,ve mot,on sensor of FA (aSltgt) A, 4cce/erometer
81/2 9 91/2 F.P Sec,',onFp
Sect,on P i Vs s.p
C Propeller emergence sensor
A, .Acce/erome fer
Fig. 3-2-2.
ft il/i 'cil)
0.5-
Sequence Iz. C. 0 0.5 12/f 6 o -60 Ea -/20 -/5° o 0.5 H B- Fu f / Heave Amplitude (Calculation) '.5
Fig. 5-1-l.
HB - Fu/I Phase angle E (Calculation) Nd-/u/I Phase OnIe E0 (Calcula t'sa) 0 1.0 1.5Fig. 5-1-2. j..flffjq:ftF
H B - Fu / f Pitch Amplitude (Calculation) Fig. 5-1 -3.ji,fl-:
0.225 F,, 1.0 0.250 Fo- 0.225
0.25 0 - 0.275 0.300 0 05 1.0 1.5 2.0Fig. 5-l-4.
o))t:
z0 1.0 0.5 Full Load-PitchFa275
0.5 0.5 0 0.5 1.0 1.5 2.0Fig. 5-1-7.
:'--
o 1.0 0.5Full Load -Heave
F=0.275
z.
0.5 1.0 1.5 2.0Fig. 5-l-5. ..J&5t4Í11uiQ!
H9-Ful I Pitch Amplitude (Calculation) F,, =0.275I
Calculo/OC Ecper,,,enf Ha HN O H/h l/sOjflz/.0 co/cu/a/on Experiment /18 HN o H/,.1/501Ae/o
63 //
Or,Qnol/
f. -
Coupled J -- Uncoupled Oynomc f ®---Uncoupled F ¿I/ /
Tr,n, / Coup/ed/
- - uncoupled DynamIc y / 81--Uncoupled F5 9' OrIginal - Copled -. - Uncoupled Oynam,c Q-.--Uncocp/ed F6. r,,m Sn,loge coupled -. - Uncoupled Dynam,c Uncoupled F. K. 0 0.5 1.0 1.5 2.0Fig. 5-l-8.
0.5 i.0 1.5 2.0 2.0 0.5 1.0 '.5 2.0 Fig. 5-1-6.'7'
H 8- Full z. g. Heave Amplitude (Calculo/ion) /.0 F. 0.2751,2 ._ 1.0 0.8 A' Jo 0.1 Fig. 8 6 4 2 1.2
?
081.- Ecpor,mnnr A00.225- 0.250 -t-'- 0.275 -.- 0.300 i-0 78'/o i/4Q V30 '/50 /4o /30
0.c2 0025 003 OdE 0c25 0b3
Fig. 5-1-9.
0.4Hß-Full
'0 Surge Amplitude T do/b F,0-0.225
021L°275
//
EAperimerit F,- 0.225
0.250 ' 0.275 - 0.300 -E.operimer, t/
//
/
/0/
A-,
I o-,
'5
0.5 1.0 1.5 2.0- YL
Fig. 5-1-10. HB- Fu/IVertical acceleration at Station 9J",'
Fr
- 0.225
0250/.-.---..
0.275¡----.
t---0.300
ICalculation -LExperiment --'7/ 0.5 ¡.0 '.5 2.0_À/L
5-1-11. H B - Fu I /Vertical acceleration at Station /2
,-r--"
- i r 0.5 ¡.0 ¡.5 2.0 fif j ,1iç k i 41 C 0.5 i.0 i 5 2.0Fig. 5-2-3. Tìi®
0 03 002 0-o' o 0.5 '.0 1.5 2.0 5 4 3 2 4 3 2 Fn 0.22 5 0.250 -'- - 0.275 - 0.300 LLCO3cu,a fiori Exper,men t'''
HB - FullRelative stern motion at AP (Calculo tian)
- 0.225
0.25 0 0 05 1.0 1.5-x
Fig. 5-1-14. HN -FullH/A. Deck wetness bounds
2.0 F0 t.,!, f.,!, 0 225 40000 2250t 5/ 214 62 203 73 /92
Fig. 5-1-12. *fl:
Jii.'1EJ.
i1i
Fig. 5-2-4.
-0250 0.05 1/20 00S8001,ctt (F,, .0275) -vot-y wl ----0.300 004 - 1/25 ii-O'y crica! point - /30 0.03 -002 -1/50 0 00/ H9-Full HB- Fu Il
Heave 'YL'/-50 Pitch Relative bow motion at FR
0 0.5 1.0 1.5 2.0
Fig. 5-1-13.
Full Load
H
A. Deck wetness bounds
0.05- Fn'O.275
HP-Ful/Lord F.-0275. 5yLI25. H4...1/35.8
-.lkh1ii >' 65
OecA pressure clifF, Stct,On 9I/2 and Container
Fig. 5-3-1.
*-a1E
Ship Motion (Heere. P,ch. Surg.)
Fig. 5-3-2.
HP-Ful/Load F0075 M-1.25. "/,//Z5.û n o.5 1.0 1.5-
2.0Fig. 5-4-1.
25 0 2.0 1. /.0 05HN-Fuif Load
Li T Thrust Increment Fig. 5--5-1. HS-Fu// Load Thrust Increment (Experiment) Fig. 5-5-2. {Ii1C Experiment ° Fn.0.225 ° 0.250-
0275 0.300'/\
0225 -"&" 0.250 -tI-- 0.275 --.- 0.300 X 20 by HAS/BOATS TheoryFig. 5-5-3.
H 0.05 0.04 0.03 002 0.0/A000/Or000n at station PIS (At. T(4cl.Snot,On&2(A.)
Fig. 5-3-3. 71Ti).
HB-Fu// Load
Propel/er Emergence («2 Os)
Fo C 20 -, o HN-Fu/l Load F5 O.2 75 or - Thrust i Cremes! - . - C Experiment -s
-
02250250 -. - 0.275 0300 Lco/custjo,, Observation Es-0275 Exposed O Cr, Ocal t('Not Exposed 0.5 1.0 2.5 /'s \ 2.0Ji; .,\
'I,,''\
I o 1.5 n 'g' 1.0- 05-l.a '.5 0.5 0.5 MB-Full Load F-0275 'YLl25.N&I/35.8/0 '-s 2.0
'y MAPI.10 Theory
ç, 66 l.0 0.5 0.5 O 05 z
J
P,tv .5 0.5 (.0 (.5Fig. 6-l-l. .I:ThO±O)J/(Ä
HB -Ballast Pitch 4mplitude 1.0- 0.225
0 0250 A '71 -.-.- 0.275 0.300-JI
0 0.5 /0Fig. 6-1-2.
Ba/lost-Heave, Pitch F. O.275 A A H5 --.--. 1*000 HN vis Expeomnnt Ca/Cui 0h00 .-... ... 0 0.225 A 0.250 X 0.275 0300 tErSer, met/f o 05 ¡.0 (5Fig. 6-1-4.
t k iif
41 t 2.0 r, s... 5 4- 3-2 Expevimettt I H/ rl/So 20 2.0 l0 r Bu 1/ 3 2Fig. 6-l-5. LJuicI
HP -BallastRelative motion at station &
L010010,,0,, /1/,, '/50
0 0.5 (.0 (.5 2.0
Fig. 6-l-6.
Ba 1/ast- Vertical acCelera fiOS
F,, 0.275 Station 9 VS . (A,) Station 1/2 (4) H/0V50
- - -0300.
1Q/00/0fj0fl 1Caper,ment o ¿IN LExperiment Cn1çIaf lot, .5 2.0 o A A 0.225 0250 0275 0.300 0 0,5 1.0 1.5 2 oFig. 6-l-7.
.h VtJíIì&t1iP4
Ballast- Relative motion at station 8 1/2 F0 r0275
0.5 1.0 1.5 2 o
Fig. 6-1-3.
_t'7Q)(o
HB -Pol/astVertical occe/erat/on at statiOn 9 1/2
05 1.0 '.5 2.0
N/L
Fig. 6-l-8.
PB -Ballast
40 1
Vertical acceleration at Station 1/2 F. 10 02250 oS a s 6 4 F 0225 0.250 - - 0.300 Lco,,0,,on
b O b 4 E o
Maximum Impact Pressure at the Fore Bottom Propel/en Emergence
1'/L=/.25, Fo0.275
Ballast Condition
k/L,25
'k'/30
4!ii
.'* }®(o1 a iliM/L$Lfc
:j--
670.020 0.025 0.030 0.035
0
/50 ¼o
H
- /
Fig. 6-2-2.
ï)i
t1L'r4 ¿ O)J{,Maximum Impact Ptessure at the Fore Bottom -V-0.225
Fig. 6-2-3.
-
0.225 Obsenvi,onot1jO, 0.250 Euposd 0.275 O:C,,tCo/ 0.300 XNOJEOPO$d-
F 0.275 004- I_._5Q.O \\ O.03- ±0 2 0.02 0.0/ 0 0.5 1.0 /L 2.0Fig. 6-3-1.
7 oFig. 7-l-l.
HB - Fu / /Heave Amplitude
(in irregular waves)
F0 =0.275
¡.2 ¡.3 1.4 '.5 CaI.(CaI.) CaI.(Exp.) Exp. 1.6 1.7-
(sec)Fig. 7-1-2.
I.V°)J ftiODtt
oDfloltH 8-Fu/I Pitch Spectra
2.,,
(4.0) 3!, /oon; 0.225 4.86 1.08 050 (Experiment) o,ssc 4.96 i 07 036Wove Sequence 2-i u275
0.300 498 4.75 /04 00 032 04/ Stotic'i 7'/288/29 0.5 HB
AUV
HN 0.250 0.2 75 0.300F
0.4 O -SJi)
E)i :&t'- 7a)ii
0.2 3 2 os ¡.0 0.8 - Sa i/ant b/N - So//ast io 6 s - 6./.me,;)
0.6 68 0.6 0.4 0.2
HB - Ful /
0 1.2 1.3 1.4 1.5 1.6 ¡.7 T2 (sec)Fig. 7-1-3. [-ot
/18- Fu/I Vertical acceleration (in ,rreçulor P/axes)Sft,or 9I/
'k
HB -Full
Vertical acceleration
(in Irregular waxes)
F,, =0.275
SlOt/OP 91/2
"J
Pitch
,4mplitude(in irregular waves)
F =0.275
3 2 o 5 .1 2 0.225 0,250 0.275 0.3.00 0225 0.250F,,
0275 Fig.7-14.
, Ij10-
Cal (Col) - -o-- Cal.(Exp) '-- Exp Sf01,00 '/2 5-1.5 (.6 70 /000/KBFul /
Relative bow motion at FR
(in irregular waves)
Frequency of Deck Wetness
(Calculation)
0.225 0.250 0.2 75 0.300 FnFig. 7 2 2.
F
00.275
.-0
-o-2 Cal. (CaL)- -o-- Cal.(Exp)
Exp. o I / I I I ¡.3/3
¡.4 ¡.5 1.6 ¡.77(sec)
Fig. 7-2-1.
0.3 Wave Sequence2-3
0300 No, (times/SeO) o.02
0.I H8 HN CaI.(Cal.) Ca/.(Exp).
o o F.? CO' (Co/I 0/ (fop) fop O £ o liT," 5101,00 '/2 s---*---3 2 o 5 4 3 2 o 1.3 1,4 /3 /4 1.5 I.e 1.7 r.,,seorì Fig. 7-1-5. .I:FIO)"
0.3
N.
(t,me 5/Sec)0.2
0.1
Frequency of Deck Wetness (Ca/c u/at,on) Wave Sequence 2
F '0.275
80 /00 /20-
/40 /60 /80 (mm)Fig. 7 2-4.
r
0.3 0.2 0. / 0.302
0.1 0.2 0. / is 0.0.1 0.03 0.02Full Load
Thrust increment (in irregular wave) ExperimentH8 F//
HNFi/
Thrust ,ncremetit Thrust increment
Sequence li 2I 3i Cei(chi,) csi (Sup) Sup Sequence /-I Sequence 2-I --e-. HAI
---- HO
i i 0.S25 0.250 0275 0300 0.225 0250 0.275 0.300Fig. 73-2.
:i 1 -j_4
jJIjJ
øpi.t'î
7 69Fig. 7-2-3.
I&(:
O){T
o0.225 0.250 0.275 0.300
Fe
HN - Fu/I
Frequency of Deck Wetness
Fig. 7-3 1.
(Ca/cu/a fian) Fe = 0.275 -rr
03 80 /00 /60 /80 (mm) /20 /400.6 0.5 0.4 0.3 0.2 0./ o
HB - Ballast
Experiment
Wave Sequence 3-1
Np Number of bow bof fam emergence Ne Number of encounter Station 9
/
/
j-Station 8- -.- -
'Stofioo 7'
0.225 0.250 ,"-Stat,on ei/2 1 ,,çStatiOn S 0.02- ,' .-. i'I'
./ \//
\
./
r-
' 0.0/- '/ ,Station
1,.
s, SequenceI-I i-2 i-3 2-i 2-2 2-3 3-!
o
li
1.2 i.3 4 1.5 i.6 T2 (sec) 0.4 0.3 0.2 0.1HE - Ballast
Experimenf
Pmo, Maximum impoci pressure
flPmoe/fd
(Full Load)0.275 0.300
Fig. 743.
ljLl
Jj5.LL/)
F0
Fig. 7-4-1.
Maximum impact pressure
Sequence
i-i
i-2 i-3 S-1 2-2 2-3 3-io i
1.2 i.3 i.4 1.5 (.6
T (sec)
Fig. 7-4-2.
ølfI
Fig. 7-4-4.
ij®Jjçj{jÇ)j)j ¿
zJ&J G)[3f,
Pea, Poao/7,,, fri*cm/cmo)
Station
/
/0
1/
i.
o 9 t. 0 8 I;' Sequence 3-1 -Station 71Y22.5 N - 2-.. '.
/_ /
2.0/.
/
..çstotiona/
/
/
on 9 1.5__5_--j5t0tion aP2
o -1.0 0.5 o 0.225 0.250 0.275 0.300- Fe
Ha - Bailas t(in irregular wo ve)
H 8-Ba/last
Experiment Experimen t
F,, 0.275 Fa-0.275
0.04
z. 0.5 1.0 0.5 Hß(8) - Ful / PItch Amplitude 05 /0
-
1.5Fig. 8-1. Ft:cob
Fig. 8-2.
71 2.0 F o 0.225 A . 0.250 X - - - 0.275 - - - 0300 LE,per,eeet H/1,l/50 I2 'r:±fl
fjJj,
ji'/f7
W31
V,
Fig. J -1 :}/COxz
R=+Rcos@ot+&,)
T=i+TCOs(c4t+T)
S=+Scos(i»t+s):
Z)J®L*)3
w
io 8 e 4 2 0 F,, o 0,225 0.250 - - - 0.275 . 0.300 N. l-CaiGuIo?,'On E4pioe,l H60i/50 i.5 2.0Fig. 8-3.
HB(8) Fu/IVertical acceleration at Station 1/2
Fo O - - 0.225 ° 0.250 5---'- 0275 0300.-°N L L001001000,,
'
Eopoe,,XP H4./50cî i
Il
ticz;
ff)itiui
Ji1oj't"l1ijJ.1rt è
.ÍÈ)j:
(Tff!Ui;z
è5<
c)) 'i't
LtCOLfi4J70
.5w.0iI-Lz; cD-,
Fig. J 1. ;:
HB(8) Full HB(8) Full
Heave Amplitude Vertical acceleration at Station 9 '/2
0 05 1.0 1.5 2.a
Fig. 8-4.
05 ¡.0 2.0 A, 19., io72
{D+TcoS(nt+)} X(1t)CoSO(+kCoS(wt+8R))
x(1)sinO
cos9ooi_Ç, S1flOO=OACoS(0)+) ¿
¡ 1)
o=T(1_)x (1t)R
13
±lQ)
Fig. 1-1
)ì-c.
x'z'F.0' : x' :t=P.'+FX'Cos(wt+F.V')
F0' : z' f[iJ F0' +0'cos(ot + Fz')x-z
X }iiJO1)J= E(+ Tcos(cùt+.) x (1t) -J-FZ'COs(Ûi+aFX')] xcos8
+ {O'+i'COS(Wi+aFO') xsiní9z )ji]coÌj= -W-[{D+ Tcos(wt+r)} X
(1t)F'F'cos(wt+ps')i X sinO
+ Pz' + F'co(at + Fz') } x cosO
(I 5)
W-J-4;t-L1x (1-t) P'
(1_2)
+Z'.eA.cos »t+8'0')cos(wt±a) =0
_TOF0_llgXFZ,.OAcos(ot+6pZ,)coS(o,t+as)
7: (1.6)
Wd2zj-
=FZ'cOS(ot+FZ')(1.8)
(17)
i' T
'R0
1Wdid
- °
1t
+_gjg
(I .9)
2(I .9)
jW7
X'. z'
JO)j4j
u', w'
iJZ
X (1
t)P'z'COs(ot+p'x')
Wdw'
do-- U'dÏ) = --
WcosO + F0' +F0'cos(wt + Fo')I .10)
- T
TjR0 W 1
dOT =
+-
l_g
XWdt
(1.5)
(17)
(1.9)
(I .10)
(I .12)
..
j®,
l-L R0, T0
(13)
U.-?:(1.4)
.ji)jj4jiW)ju
(I .4) 1Z'1
(J. 1)
(1.2)
i=
--Gø*I-ff
73I4
EQ[Jz.
JJaFXI}5t, (1.4)
(19)
íi®L-L I\. L
°[Ï)j
flJ1
11)1pi
5 ,L]J11i x )5J®
cos8 =loTXX2
z2
1=1/i_) +(-)
t:tL,
i:
thFIo) 4», i: ;jl
AB Rwdz
0®=w
(l-1)
wd2
R=1w
j(l-1o)}coso
(1.14) )(fl2
fX\f
XlIz\2
(x\2
.(x\2
1(z
COS1_))1+_
21¼!;) ti;) f =1-2\l-) -1¼i
(1.15)
R=
(XA)21(zÁ)2}Fig. J -2. Gravityn Dynamorneter
ioj
jioJ, Fig. I-2
5 gravity dynamometerV, gravity
dynamometer A
x®t(
jEft =O(I .13)
(114)
(I .15)
(' .16)
(I
.17) x :surging. z heaving tension O)XJ}-R
Clt
II)
Ijr)
L)103 J(11.1)
ICtW7
tzL.
R:
Ij4JijrI,
.R0*l1flhjr1JJIl,
S(ø):Ij-co--
)k(11i)
L-O
J<
to
,t4f]i1jl-00z
-54JIibFi Lí1
Drift force HavelockijnU,
k aB k2 aB2 kap
k2 ap2R= z1
- z2 O
- -(oj dt CO (Ûj dt at k1 aB2 k2 BI k1 dP2 k2ap
Z1 ¿ Z2 atat
02(11.2)
-O
lJ1]f i, 2--t-
i
2o»ozfl-
'jL,
o,2=gkj(i=i,2)z,O:
14'1{,
FL
k $l
41-i
e2
L2
1_L4J
.r'.F() . (2)2.
T2 ii2
-Cs. x(4)x
, cos(&g)
t:L.
A :trIi.
B: ()rj, L:
k= r,
x :,y=
2 p V3 V2B=
-7-:*),, (I 17)
iEhlilx
x'Mi)J[íijQ)j L(I .9)it< (I
-4)5
*4jt): L
fI]O))Jt
)Sub-carriage gravity dynamometer
{1l
(J-4)
,(1.9)
01(I .4)
(19)
¡EJ-
gB2/L
Lf1L(I4) coco
r
(J-9)
Q)fQ'
T2(I19)
y :
F,.:
i.
V1,Ca Blockcoefficient. d
)LLlÎL, X/L=1.O
l)j
(I .18)
(1.19)
ri;
7560:ritt)
5Z. (11.2) 05},it120)0)*112.T
a--4O R'
J
_tr::L
ji7
0 F0)-0 i
o, FiQ2 magnification factorzoB0osin(oI+ro-th+6o) (ß, ij{i)
o1
a,2Sfl (o + W2)T+a1 + a2ß1 + &2}sin{'
W27
_wlco2smnr&2T+a1_a2_'1 62} xsinj)1)2T}]
(ll 3)
tCtL, 81=0
WO)0
Tk <
tt)i-t. C
J3T-tflLft)colO(1)
t), (113)a2ai'=O, ß2'=ßl
sinr2h1T+a2_ß2+82_al} =sin{21T_ßl
+621 t),. t)
-kizik2z2ß'= _26iklBol2cOS
_62}sinßl x -sin4 (11. 4)t:tL,
= T(co 1-102)Z5
?, 62-0
- z0
ikB012sin$j0) 2Y70
, 0Th/ I)f
*0)
t)kL/t, (11 .4)0):):
f'*L (fl4)IJz5,
62trandom
'5I
TTJi)
<t0
L L,IJcoJ
82 t-rLt) random
cOs1-9-_62}=1 X-T
J/irI®J4t'L
t:0)Fig. fli -0
J(T
Lííijt
1-c,
L=5m, F=0.3
V '=2m/sec )tfirJj40m ¿:t;til.
T=2üsec IJ)0) °max=7 L,)V10,}IJt.5 t
-2.0
t,0.0
t
2.0 J JO
'
27E 37E4,t
57E 67E 77E8c
76
b
X=jjx2O=14
1), Fig. ITi /»
jj26%O)4 7
._4 )
2,
3{ThL
b ')2t,
Lz5
L. 5 t»
LIB )çoif O.S.M.
<gi]IL,
L)G) b )L.
5--ftJL,
ìtIh1E1I
Lt5, )-4
fiiJt
5zt, I-
'J L
'j
tft. '1-D F.P
7IFi)
) JJU L1iiJfiLIB A, -,
l'J '17 O)1ffi*1, O.S.M
<5 t
Iii®i 5:, O.S.M -,
.