• Nie Znaleziono Wyników

The function tangent and polynomials

N/A
N/A
Protected

Academic year: 2021

Share "The function tangent and polynomials"

Copied!
12
0
0

Pełen tekst

(1)

The function tangent and polynomials

Andrzej Nowicki Version atg-01. May 15, 2015

It is known (see for example [1], [4]) that the numbers tanπ8, tan8 , tan8 , tan8 are distinct roots of the equation x4− 6x2+ 1 = 0, and the numbers tanπ7, tan7 , . . . , tan7 are distinct roots of the equation x6− 21x4+ 35x2− 7 = 0.

This note contains some proofs of the above facts and their generalizations. Our note is based on [3], [2] and [5].

1 The polynomials f

n

(x) and g

n

(x)

If n is a nonnegative integer, then we denote by fn(x) and gn(x) the polynomials in one variable x defined by

(1 + ix)

n

= f

n

(x) + ig

n

(x)

.

The polynomials fn(x) and gn(x) belong to the polynomial ring Z[x], that is, they are polynomials with integer coefficients.

f0(x) = 1, f1(x) = 1,

f2(x) = −x2+ 1 = −(x − 1)(x + 1), f3(x) = −3x2 + 1,

f4(x) = x4− 6x2+ 1 = (x2 + 2x − 1)(x2− 2x − 1), f5(x) = 5x4− 10x2+ 1,

f6(x) = −x6+ 15x4− 15x2+ 1 = (x2 + 2x − 1)(x2− 2x − 1), f7(x) = −7x6 + 35x4− 21x2+ 1,

f8(x) = x8− 28x6+ 70x4− 28x2+ 1

= (x4− 4x3− 6x2+ 4x + 1)(x4+ 4x3− 6x2− 4x + 1), f9(x) = 9x8− 84x6+ 126x4− 36x2+ 1

= (3x2− 1)(3x6− 27x4+ 33x2− 1),

f10(x) = −x10(x) + 45x8− 210x6+ 210x4− 45x2+ 1

= −(x − 1)(x + 1)(x3− 4x3− 14x2− 4x + 1)(x4+ 4x3− 14x2+ 4x + 1), f11(x) = −11x10(x) + 165x8− 462x6+ 330x4− 55x2+ 1,

(2)

g1(x) = x, g2(x) = 2x,

g3(x) = −x3 + 3x = −x(x2− 3),

g4(x) = −4x3+ 4x = −4x(x − 1)(x + 1), g5(x) = x5 − 10x3+ 5x = x(x4− 10x2 + 5), g6(x) = 6x5− 20x3+ 6x = 2x(3x2− 1)(x2− 3),

g7(x) = −x7 + 21x5− 35x3+ 7x = −x(x6− 21x4+ 35x2− 7),

g8(x) = −8x7+ 56x5 − 56x3+ 8x = −8x(x − 1)(x + 1)(x2+ 2x − 1)(x2− 2x − 1), g9(x) = x9 − 36x7+ 126x5− 84x3+ 9x = x(x2− 3)(x6− 33x4+ 27x2− 3),

g10(x) = 10x9− 120x7+ 252x5 − 120x3+ 10x = 2x(5x4− 10x2+ 1)(x4− 10x2+ 5).

Each fn is an even polynomial, and each gn is an odd polynomial divisible by x.

Thus we have the equalities

fn(−x) = fn(x), gn(−x) = −gn(x).

Moreover,

deg f2s = 2s, deg f2s+1 = 2s, deg g2s = 2s − 1, deg g2s+1 = 2s + 1.

It is clear that we have the following equalities

(1 − ix)n = fn(x) − ign(x), fn(x) = (1+ix)n+(1−ix)2 n, gn(x) = (1+ix)n2i−(1−ix)n.

If h is a nonzero polynomial in a variable x, then let us denote by w(h) the initial coefficient of h. For example, if h = 5x3 − 4x + 7, then w(h) = 5. It is easy to prove:

Proposition 1.1. w (f2s) = (−1)s, w (f2s+1) = (−1)s(2s + 1), w (g2s) = (−1)s+12s, w (g2s+1) = (−1)s.

Since fn(x) + ign(x) = (1 + ix)n, we have

fn(x) + ign(x) = 1 + in1x1n2x2− in3x3+n4x4+ in5x5− · · · . In the case n = 4k we have

f4k(x) = x4k4k−24k x4k−2+4k−44k x4k−4− · · · −4k2x2+ 1, g4k(x) = −4k−14k x4k−1+4k−34k x4k−3− · · · −4k3x3 +4k1x.

(3)

Hence:

f4k(x) =

2k

X

j=0

(−1)j4k2jx2j, g4k(x) =

2k−1

X

j=0

(−1)j2j+14k x2j+1. By the same way we obtain the following 8 equalities:

f4k(x) = P2k

j=0

(−1)j4k2jx2j, g4k(x) = 2k−1P

j=0

(−1)j2j+14k x2j+1, f4k+1(x) = P2k

j=0

(−1)j4k+12j x2j, g4k+1(x) = P2k

j=0

(−1)j4k+12j+1x2j+1, f4k+2(x) = 2k+1P

j=0

(−1)j4k+22j x2j, g4k+2(x) = P2k

j=0

(−1)j4k+22j+1x2j+1, f4k+3(x) = 2k+1P

j=0

(−1)j4k+32j x2j, g4k+3(x) = 2k+1P

j=0

(−1)j4k+32j+1x2j+1. Thus, we have the following 4 equalities:

f

2s

(x) =

Ps

j=0

(−1)

j2s2j

x

2j

, g

2s

(x) =

s−1P

j=0

(−1)

j2j+12s 

x

2j+1

, f

2s+1

(x) =

Ps

j=0

(−1)

j2s+12j 

x

2j

, g

2s+1

(x) =

Ps

j=0

(−1)

j2s+12j+1

x

2j+1

,

.

The polynomials gn(x) are divisible by x. Let us introduce the notation:

hn(x) = gn(x) x ,

for all n. Observe that if n is odd, then the polynomials fn(x) and hn(x) are of the same degree n − 1.

Proposition 1.2. For every integer k > 0 we have the following two equalities:

x4kf4k+11x= h4k+1(x), x4k+2f4k+31x= −h4k+3(x).

Hence

x

2s

f

2s+1 1x

= (−1)

s

h

2s+1

(x).

. Proof. Assume that n = 4k + 1. Then we have:

x4kf4k+11x = x4k P2k

j=0

(−1)j4k+12j  x12j

= P2k

j=0

(−1)j4k+12j x4k−2j = x1 P2k

j=0

(−1)j4k+1−2j4k+1 x4k+1−2j

= 1x P2k

j=0

(−1)j4k+12j+1x2j+1 = 1xg4k+1(x)

= h4k+1(x).

(4)

Now let n = 4k + 3:

x4k+2f4k+3

1 x

 = x4k+22k+1P

j=0

(−1)j4k+32j  1x2j

= 2k+1P

j=0

(−1)j4k+32j x4k+2−2j = x12k+1P

j=0

(−1)j4k+3−2j4k+3 x4k+3−2j

= −1x2k+1P

j=0

(−1)j4k+32j+1x2j+1 = −1xg4k+3(x)

= −h4k+3(x).

This completes the proof. 

2 Divisibility properties of f

n

(x) and g

n

(x)

Proposition 2.1. For all nonnegative integers m, n we have the following two equali- ties:

f

n+m

(x) = f

n

(x)f

m

(x) − g

n

(x)g

m

(x) g

n+m

(x) = f

n

(x)g

m

(x) + f

m

(x)g

n

(x)

.

Proof.

fn+m(x) + ign+m(x) =



1 + ix

n+m

=



1 + ix

n

1 + ix

m

=



fn(x) + ign(x)



fm(x) + igm(x)



=



fn(x)fm(x) − gn(x)gm(x)



+ i



fn(x)gm(x) + fm(x)gn(x)



. This completes the proof. 

In particular, f2n(x) = fn(x)2− gn(x)2 and

g

2n

(x) = 2f

n

(x)g

n

(x)

.

Proposition 2.2 ([5], [2]). The polynomials fn(x), gn(x) are relatively prime in Q[x].

Proof. Since Z[i][x] is a unique factorization domain, it is enough to prove that the polynomials fn(x) and gn(x) are relatively prime in the domain Q(i)[x].

Let n be a fixed positive integer and suppose that these polynomials are not relatively prime. Then fn(x) and gn(x) are divisible by an irreducible polynomial h(x) ∈ Q(i)[x]. Obviously deg h(x) > 1. Then h(x) divides the polynomials (1 + ix)n and (1 − ix)n. As h(x) is irreducible, we deduce that the polynomials (1 + ix) and (1 − ix) are divisible by h(x). This implies that h(x) divides the number 2. But it is a contradiction, because deg h(x) > 0. 

(5)

Note next propositions concerning the divisibility of fn(x) and gn(x).

Proposition 2.3. If m | n, then gm(x) | gn(x) (divisibility in Z[x]).

Proof. We will prove by an induction that for every positive integer k, the poly- nomial gm divides the polynomial gkm. It is obvious in the case k = 1. Assume that k > 1 and gm divides gkm in Z[x]. Let gkm = u · gm with u ∈ Z[x]. Then by Proposition 2.1, we have

g(k+1)m = gkm+m = fkmgm+ fmgkm

= fkmgm+ fmugm =



fkm+ ufm



gm and so, gm divides g(k+1)m in Z[x]. 

We may prove also:

Proposition 2.4 ([2]). If m | n, then gn(x) = vm(x)gm(x), where vm(x) ∈ Z[x], and the polynomials vm(x) and gm(x) are relatively prime in Q[x].

Proof. Let n = dm, where d is a positive integer. If m = n, then vm(x) = 1 and we are done. Assume that m < n. Then d> 2 and we have

fn+ ign = (1 + ix)n = (1 + ix)dm = (fm+ igm)d

= fmd + idfmd−1gmd2fmd−2gm2 − id3fmd−3g3m+ · · · ,

and hence gn = dfmd−1gm + u · gm2, where u = u(x) is a polynomial belonging to Z[x].

Put

vm(x) = dfmd−1+ ugm.

Then gn(x) = vm(x)gm(x). Since gcd(fm, gm) = 1 (see Proposition 2.2), we have gcd(gm, vm) = gcdgm, dfmd−1+ ugm= gcdgm, dfmd−1= 1.

Therefore, the polynomials gm(x) and vm(x) are relatively prime in Q[x]. 

Observe that the polynomials f3 = −3x2 + 1, f5 = 5x4 − 10x2 + 1 and f7 =

−7x6+ 35x4− 21x2+ 1 are irreducible in Q[x] (and also in Z[x]). Now we will prove that the same is true for all the polynomials fp, where p is an odd prime number. Let us recall that hn(x) = gnx(x).

Proposition 2.5. If p > 3 is a prime number, then the polynomials fp(x) and hp(x) are irreducible in Z[x].

Proof.

fp(x) + igp(x) = (1 + ix)p

= 1 +p1ix −p2x2− ip3x3+ · · · ±p−1p xp−1∓ ixp.

(6)

This implies that fp(x) = 1 −p2x2 +p4x4 + · · · ±p−1p xp−1 and gp(x) = x · hp(x), where

hp(x) =p1p3x2+ · · · ∓p−2p xp−3± xp−1.

As all the numbers p1, p2, . . . , p−1p  are divisible by p, we deduce by Eisenstein’s theorem that the polynomials fp(x) and hp(x) are irreducible in Z[x]. 

Proposition 2.6 ([5]). If n, k are nonnegative integers, then:

(1) fn | g2kn; (2) fn | f(2k+1)n;

(3) the polynomials fkn and gn are relatively prime;

(4) gcd (gkn+r, gn) = gcd (gr, gn) for integers r > 0.

Proof. (1). Since g2n = 2fngn, we have fn| g2n. But g2n | g2kn(see Proposition 2.3).

Hence, fn| g2kn.

(2). It is obvious for k = 0. Let k > 0 and assume that fn| f(2k+1)n. Since f(2k+3)n = f(2k+1)n+2n= f(2k+1)nf2n− g(2k+1)ng2n

and fn| g2n, we have fn | f(2k+3)n.

(3). It is obvious for k = 0, because f0 = 1. If k = 1, then it follows from Proposi- tion 2.2. Let k > 1 and assume that gcd (fkn, gn) = 1. Then we have: gcdf(k+1)n, gn= gcd (fkn+n, gn) = gcd (fknfn− gkngn, gn) = gcd (fknfn, gn) = gcd (fkn, gn) = 1.

(4). We use the previous properties:

gcd (gkn+r, gn) = gcd (fkngr+ gknfr, gn) = gcd (fkngr, gn) . But gcd (fkn, gn) = 1, so gcd (gkn+r, gn) = gcd (gr, gn).

Now, by Proposition 2.6 and the Euclid algorithm, we have:

Theorem 2.7. If n, m are positive integers, then

gcd (g

m

, g

n

) = g

gcd(m,n) .

3 Zeros of the polynomials f

n

(x) and g

n

(x)

Let n> 1 be a fixed integer. Consider the numbers of the form

t

j

= tan n

!

,

where {0, 1, 2, . . . , n − 1} and n 6= 2j.

If n jest odd, then we have n distinct real numbers t0 = 0, t1, . . . , tn−1. If n = 2m is even, then we have n − 1 distinct real numbers

t0 = 0, t1, . . . , tm−2, tm−1, tm+1, tm+2, . . . , tn−1.

(7)

Theorem 3.1. All zeros of each polynomial gn(x) are real numbers.

More precisely, if n is odd, then all the real numbers t0, t1, . . . , tn−1 are distinct zeros of gn. If n = 2m is even then all the real numbers t0, t1, . . . , tm−1, tm+1, tm+2, . . . , tn−1 are distinct zeros of gn.

Proof. Assume that j ∈ {0, 1, . . . , n − 1}, n 6= 2j. Then we have:

fn(tj) + ign(tj) = (1 + itj)n=1 + i tannn =



1 + isin

n

cosn

n

= cosn−ncosn + i sinnn

= (−1)jcosn−n and this implies that gn(tj) = 0. 

Theorem 3.2. All zeros of each polynomial fn(x) are real numbers.

Proof. It follows from Theorem 3.1 and the equality g2n= 2fngn.  As a consequence of the above theorems we obtain

Proposition 3.3. For every n > 1, the polynomials fn(x) and gn(x) are square-free.

The next proposition is also a consequence of the above theorems.

Proposition 3.4. If q 6= 12 is a rational number, then the number tan (qπ) is algebraic.

Proof. Put r = tan(qπ). Then ±r = tannjπ, where j, n are nonnegative integers with n > 1 and j < n, and of course n 6= 2j. We know, by Theorem 3.1, that ±r is a zero of the polynomial gn(x). All the coefficients of gn(x) are integers, so ±r is algebraic, and so r is algebraic. 

Theorem 3.5. If q is a rational number, then all the numbers sin(qπ), cos(qπ), tan (qπ), cot(qπ) (except when undefined) are algebraic.

Proof. It is a consequence of Proposition 3.4 and the following known equalities:

sin α = 2t

1 + t2, cos α = 1 − t2

1 + t2, cot α = 1 tan α, where t = tanα2. 

Theorem 3.6. If q is a rational number, then all the numbers sin(qo), cos(qo), tan (qo), cot(qo) are algebraic.

Proof. Since the angle 180o (180 degrees) equals π radians, we have qo = 180q π.

Therefore, this theorem is a consequence of the previous theorem. 

(8)

4 Equalities with tangents

Look again at Theorems 3.1, 3.2 and the initial coefficients described in Proposition 1.1.

Observe that as a consequence of the above facts we obtain the following equalities.

Proposition 4.1.

f

2m

(x) = (−1)

m 2mQ

k=1



x − tan

(2k−1)π4m



, f

2m+1

(x) = (−1)

m

(2m + 1)

Q

k∈A



x − tan

(2k+1)π4m+2



,

where m> 1 and A = {0, 1, 2, . . . , 2m} r {m}.

Proposition 4.2.

g

2m+1

(x) = (−1)

m

x

2mQ

k=1



x − tan

2m+1 

, g

2m

(x) = (−1)

m+1

2mx

Q

k∈A



x − tan

2m

π



,

where m> 1 and A = {0, 1, 2, . . . , 2m − 1} r {m}.

Since tan (π − α) = −tan (α), we may rewrite the above two propositions in the following way.

Proposition 4.3.

f

2m

(x) = (−1)

m mQ

k=1



x

2

− tan

2

(

(2k−1)π4m

)



f

2m+1

(x) = (−1)

m

(2m + 1)

m−1Q

k=0



x

2

− tan

2

(

(2k+1)π4m+2

)



g

2m

(x) = (−1)

m+1

2mx

m−1Q

k=1



x

2

− tan

2

(

2m

)



g

2m+1

(x) = (−1)

m

x

mQ

k=1



x

2

− tan

2

(

2m+1

)



.

Let us recall (see Proposition 1.2) that x2mf2m+1

1 x



= (−1)mh2m+1(x).

where h2m+1(x) = g2m+1x (x). The zeros of the polynomial h2m+1(x) are real numbers of the form tan2m+1 , where k = 1, . . . , 2m. Thus, we have:

(9)

Proposition 4.4. The zeros of the polynomial f2m+1(x) are real numbers of the form cot

2m + 1, k = 1, 2, . . . , 2m.

Thus, we have the equalities

f

2m+1

(x) = u

m 2mQ

k=1



x − cot

2m+1 

= u

m mQ

k=1



x

2

− cot

22m+1 

,

where um = (−1)m(2m + 1).

Recall that hn(x) = gnx(x). Look again at the polynomial hn(x) in the case n = 4k+1:

h4k+1(x) =

2k

X

j=0

(−1)j4k+12j+1x2j =

2k

Y

j=1

x2− tan2(4k+1 ).

Comparing the constant terms, we obtain the equality 4k+11  = Q2k

j=1

tan2(4k+1 ). Com- paring the coefficients of x4k−2, we obtain the equality 4k+12 = P2k

j=1

tan2(4k+1 ). Hence, we have the following two identities:

2k

Y

j=1

tan

 4k + 1



=

4k + 1,

2k

X

j=1

tan2

 4k + 1



= 2k(4k + 1).

Using the same in the case n = 4k + 3, we obtain:

2k+1

Y

j=1

tan

 4k + 3



=

4k + 3,

2k+1

X

j=1

tan2

 4k + 3



= (2k + 1)(4k + 3).

Assume now that n is even. For n = 4k we have:

h4k(x) = −4k

2k−1

Y

j=1

x2− tan2(4k)=

2k−1

X

j=0

(−1)j2j+14k x2j,

Comparing the constant terms, we obtain the equality 4k1 = 4k2k−1Q

j=1

tan2(4k). Com- paring the coefficients of x4k−4, we obtain the equality 4k3 = 4k2k−1P

j=1

tan2(4k). Hence, we have the following two identities:

2k−1

Y

j=1

tan

 4k



= 1,

2k−1

X

j=1

tan2

 4k



= 1

3(2k − 1)(4k − 1).

Using the same in the case n = 4k + 2, we obtain:

2k

Y

j=1

tan

 4k + 2



= 1,

2k

X

j=1

tan2

 4k + 2



= 1

32k(4k + 1).

Therefore, we proved the following proposition.

(10)

Proposition 4.5.

m−1 Q

j=1

tan

2m

= 1,

m−1P

j=1

tan

22m

=

13

(m − 1)(2m − 1),

m Q

j=1

tan

2m+1 

=

2m + 1,

Pm

j=1

tan

22m+1 

= m(2m + 1).

.

By the same method, using Proposition 4.4, we obtain the following equality with cotangents.

Proposition 4.6 ([1] 123).

m X

j=1

cot

2

2m + 1 = m(2m − 1)

3

.

5 Examples and applications

5.1. Multiples of π5 = 36o. (1) tanπ5 · tan 5 =

5.

(2) tan2π5+ tan25 = 10.

(3) cot2π5+ cot25 = 2.

(4) tanπ5 =

q

5 − 2√

5, tan5 =

q

5 + 2 5.

(5) The numbers tanπ5, tan5 , tan5 , tan5 are zeros of the polynomial h5(x) = x4− 10x2+ 5.

(6) The numbers cotπ5, cot5 , cot5 , cot5 są are zeros of the polynomial f5(x) = x4− 10x2+ 1.

5.2. Multiplies of π7.

(1) tanπ7 · tan 7 · tan 7 = 7.

(2) tan2π7+ tan27 + tan27 = 21.

(3) cot2π7+ cot27 + cot27 = 5.

(4) The numbers tanπ7, tan7 , . . . , tan7 are zeros of the polynomial h7(x) = x6− 21x4+ 35x2− 7.

(5) The numbers cotπ7, cot7 , . . . , cot7 are zeros of the polynomial f7(x) = −7x6+ 35x4− 21x2+ 1.

(11)

5.3. Multiplies of π8 = 22, 5o. (1) tanπ8 · tan 8 · tan 8 = 1.

(2) tan2π8+ tan28 + tan28 = 7.

(3) tanπ8 =

q

3 − 2√

2, tan8 = 1, tan8 =

q

3 + 2 2.

(4) The numbers tanπ8, tan8 , tan8 , tan8 are zeros of the polynomial f4(x) = x4− 6x2+ 1.

5.4. Multiplies of π9 = 20o.

(1) tanπ9 · tan 9 · tan 9 · tan 9 = 3.

(2) tan2π9+ tan29 + tan29 + tan29 = 36.

(3) cot2π9+ cot29 + cot29 + cot29 = 283.

(4) The numbers tanπ9, tan9 , . . . , tan9 are zeros of the polynomial h9(x) = x8− 36x6+ 126x4− 84x2 + 9 = (x2− 3)(x6− 33x4+ 27x2− 3) (5) The numbers cotπ9, cot9 , . . . , cot9 are zeros of the polynomial

f9(x) = 9x8− 84x6+ 126x4− 36x2+ 1 = (3x2− 1)(3x6− 27x4+ 33x2− 1).

5.5. Multiplies of 10π = 18o.

(1) tan10π · tan 10 · tan 10 · tan10 = 1.

(2) tan210π+ tan210+ tan210+ tan210= 12.

(3) tan10π =q5−2

5

5 , tan10 =q5+2

5 5 .

(4) All numbers of the form tan10, where j ∈ {1, 2, 3, 4, 6, 7, 8, 9}, are zeros of the polynomial

h10(x) = 10x8− 120x6+ 252x4− 120x2+ 10 = 2(5x4− 10x2+ 1)(x4− 10x2+ 5).

(5) The numbers tan10π, tan10, tan10, tan10 are zeros of the polynomial f5(x) = 5x4− 10x2+ 1.

(12)

Literatura

[1] T. Andreescu, Z. Feng, 103 Trigonometry Problems. From the training of the USA IMO team, Birkh¨auser, Boston - Basel - Berlin, 2005.

[2] X. Lin, Infinitely many primes in the arithmetic progression kn − 1, The American Mathematical Monthly, 122(1)(2015), 48-50.

[3] T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

[4] A. Nowicki, Real Numbers and Functions (in Polish), Podróże po Imperium Liczb, part 10, Second Edition, OWSIiZ, Toruń, Olsztyn, 2013.

[5] A. Nowicki, S. Spodzieja, Polynomial imaginary decomposition for finite extensions of fields of characteristic zero, Bull. Pol. Sci. Acad., 51(2)(2003), 157-168.

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toruń, Poland, (e-mail: anow@mat.uni.torun.pl).

Cytaty

Powiązane dokumenty

3.9 Różne fakty i zadania o liczbach względnie

Jeśli m &gt; 2 jest liczbą naturalną, to każda liczba naturalna n, większa od 2m + 2, jest sumą dwóch liczb naturalnych względnie pierwszych i większych od m.. Każda

Przypomnijmy również, że jeśli wśród wyrazów ciągu A k (n) istnieje taka liczba, która jest względnie pierwsza z każdą z pozostałych liczb tego ciągu, to mówimy, że A k

Każda liczba wymierna, która jest elementem całkowitym nad Z, jest liczbą całkowitą (patrz 8.6.2)... Niech p będzie ustaloną liczbą pierwszą oraz n ustaloną

Wykazać, że wszystkie wyrazy tego ciągu są liczbami

Nowicki, Liczby Kwadratowe, Podróże po Imperium Liczb, cz.3, Wydawnictwo OWSIiZ, Toruń, Olsztyn. Nowicki, Silnie i Symbole Newtona, Podróże po Imperium Liczb, cz.11, Wydawnictwo

Ponieważ badana liczba powstała z cyfr kolejnych liczb naturalnych, w jej rozwinięciu dziesiętnym występuje nieskończenie wiele bloków składających się z 2s jedynek.. W

Jeśli X jest przestrzenią Tichonowa zawierającą co najmniej dwa punkty, to w pier- ścieniu C(X) istnieje niestała funkcja odwracalna.. Funkcja ta nie jest więc