• Nie Znaleziono Wyników

Self-compacting fibre reinforced concrete applied in thin plates

N/A
N/A
Protected

Academic year: 2021

Share "Self-compacting fibre reinforced concrete applied in thin plates"

Copied!
8
0
0

Pełen tekst

(1)

SELF-COMPACTING FIBRE REINFORCED CONCRETE APPLIED IN THIN

PLATES

S t e f f e n G r ü n e w a l c l * S Riyosuke S h i o n a g a ^ Joost C. W a l r a v e n ^

1 Section of Concrete structures, Delft University of Technology, THE NETHERLANDS. 2IHI Corporation, Research Laboratory, JAPAN.

*: corresponding author. S.Grunewaldfatudelft.nl

A B S T R A C T

Floor panels produced with traditionally vibrated concrete are relatively thicl< due to the need to reinforce concrete and consequently, heavy. Without the need to place rebars in panels and by applying self-compacting fibre reinforced concrete (SCFRC) the production process becomes more efficient. Fibres improve the performance of concrete by counteracting the crack-growth during loading. Their efficiency also depends on how they are distributed and oriented in a cementitious matrix.

This paper describes a study on the application of thin plates with self-compacting concrete with and without fibres for floors; other materials like steel or wood often are applied for this application. Six concrete panels (dimensions: 600-600-15 mm j were tested in this study; no rebars were placed in the elements. Self-compacting concrete was applied and the dosage of steel fibres was varied (0; 0,99 and 1,97 Vot.-%). The plates were tested by point-loading; the failure pattern depended on the fibre dosage.

K e y w o r d s : s e l f - c o m p a c t i n g c o n c r e t e ; thin p l a t e s ; f i b r e s ; fibre o r i e n t a t i o n

I N T R O D U C T I O N

(2)

s h e e t piles [1] o r f a c a d e e l e m e n t s [2]) can be d e s i g n e d , r e d u c e d c o n s t r u c t i o n h e i g h t s a n d e l i m i n a t i o n o f s u p p o r t s , n e w s t r u c t u r a l a n d d e s i g n p o s s i b i l i t i e s [ 3 ] , d e c r e a s e o f t r a n s p o r t , s t o r a g e a n d p l a c e m e n t c o s t s , i m p r o v e d d u r a b i l i t y a n d / o r d e c r e a s e d m a i n t e n a n c e c o s t s . W i t h o u t t h e n e e d t o v i b r a t e c o n c r e t e t h e w o r k i n g c i r c u m s t a n c e s a r e i m p r o v e d a n d c o n c r e t e is m o r e h o m o g e n o u s , w h i c h e n h a n c e s t h e q u a l i t y a n d t h e p e r f o r m a n c e . C o m p a r e d t o o t h e r b u i l d i n g m a t e r i a l s , c o n c r e t e is i n f l a m m a b l e a n d can b e c o m p o s e d t o resist e x t r e m e f i r e - l o a d i n g s . In t h i s p a p e r , t h e a p p l i c a t i o n o f SCFRC f o r t h e a p p l i c a t i o n o f p l a t e s in a d o u b l e - f l o o r s y s t e m is d i s c u s s e d . Reasons t o a p p l y SCFRC f o r t h i n p l a t e s are a n i m p r o v e d p r o d u c t i o n e f f i c i e n c y , a t h i n n e r a n d l i g h t e r s t r u c t u r e ( p l a t e , s u p p o r t a n d f o u n d a t i o n ) a n d h i g h c o n c e n t r a t e d f o r c e s c a n b e t r a n s f e r r e d w i t h a h i g h c o m p r e s s i v e s t r e n g t h m a t e r i a l . T h e p e r f o r m a n c e o f t h e p l a t e s w a s c o m p a r e d t o c a t e g o r i e s d e f i n e d by EN 1 2 8 2 5 [ 4 ] , w h i c h d e p e n d o n t h e m a x i m u m d e s i g n l o a d , t h e c h o s e n s a f e t y f a c t o r a n d t h e a l l o w a b l e d e f o r m a t i o n o f t h e p l a t e s . In case o f s t a t i c l o a d i n g o f f l o o r p l a t e s , EN 1 2 8 2 5 d e f i n e s six c a t e g o r i e s d e p e n d e n t o n t h e l o a d c a p a c i t y (Table 1). Static l o a d i n g a n d w h e n n e c e s s a r y , o t h e r l o a d cases have t o b e t a k e n i n t o a c c o u n t f o r t h e d e s i g n (i.e. d y n a m i c l o a d i n g , f i r e r e s i s t a n c e , n o i s e r e d u c t i o n , e l e c t r i c a l c o n d u c t i v i t y a n d / o r i s o l a t i o n c a p a c i t y ) . In t h i s f e a s i b i l i t y - s t u d y , o n l y q u a s i - s t a t i c l o a d i n g is c o n s i d e r e d .

Table 1. Element class depending on the load capacity

Class Max. load [KN]

1 >4 2 >6 3 >8 4 >9 5 >10 6 >12 T h e m a x i m u m d e s i g n l o a d also d e p e n d s o n t h e s a f e t y f a c t o r (EN 1 2 8 2 5 : 2,0 o r 3,0). A n a d d i t i o n a l r e q u i r e m e n t f o r p l a t e s is t h e m a x i m u m v e r t i c a l d e f l e c t i o n . T h r e e d e f l e c t i o n c a t e g o r i e s are d e f i n e d ( C a t e g o r y A b e i n g t h e class w i t h t h e l o w e s t a l l o w e d d e f l e c t i o n o f 2,5 m m ; Class B: 3,0 m m / C l a s s C: 4 , 0 m m ) . A f t e r a l o a d i n g p e r i o d o f 3 0 m i n u t e s at t h e m a x i m u m l o a d a n d a 5 m i n u t e s p e r i o d o f d e - l o a d i n g , t h e m a x i m u m a l l o w e d v e r t i c a l d e f l e c t i o n is 0,5 m m . A t h i n p l a t e s u p p o r t e d o n f o u r p o i n t s at its e d g e s can fail a t d i f f e r e n t l o c a t i o n s w h e n l o a d e d by a c o n c e n t r a t e d f o r c e . T h e d i m e n s i o n i n g o f t h e s u p p o r t s is c r i t i c a l f o r t h e d e s i g n o f l o a d - b e a r i n g f l o o r s t r u c t u r e s . A c c o r d i n g t o EN 1 2 8 2 5 , t h e p l a t e s h a v e t o be l o a d e d by a t e s t i n g m a c h i n e w i t h a s t e e l p r i s m h a v i n g a r e l a t i v e l y s m a l l c o n t a c t area (25-25 m m ^ ) . Failure can i n i t i a t e in t h e m i d d l e o f t h e w e a k e s t p l a t e - s i d e , in t h e m i d d l e o f t h e p l a t e , in o n e o f t h e d i a g o n a l s o r at e v e r y o t h e r p o i n t o f a m a t e r i a l t h a t has w e a k s p o t s .

(3)

E X P E R I M E N T A L S E T - U P T h e t h i c k n e s s o f t h e plates in t h i s s t u d y w a s f i x e d t o 15 m m . W i t h a p l a t e t h i c k n e s s o f 15 m m a n d r e b a r s h a v i n g a d i a m e t e r o f 4-5 m m o n l y a t h i n c o n c r e t e c o v e r ( + / - 5 m m ) can be r e a l i z e d . A d u r a b l e b u t m o r e e x p e n s i v e o p t i o n w o u l d be t o a p p l y c o a t e d o r s t a i n l e s s s t e e l r e b a r s . S e l f - c o m p a c t i n g c o n c r e t e w i t h a n d w i t h o u t s t e e l f i b r e s w a s a p p l i e d ; t h e f i b r e s c o n t r i b u t e t o a high f l e x u r a l c a p a c i t y w i t h o u t t h e n e e d t o place r e b a r s . Six t h i n p l a t e s ( d i m e n s i o n s : 6 0 0 - 6 0 0 - 1 5 m m ^ ) w e r e p r o d u c e d a n d w e r e t e s t e d in t h e S t e v i n - L a b o r a t o r y o f D e l f t U n i v e r s i t y o f T e c h n o l o g y . T h e d o s a g e o f s t e e l f i b r e s ( s t r a i g h t , Lf=13 m m , d f = 0 , 2 0 m m ) w a s v a r i e d ( 0 ; 0,99 a n d 1,97 V o l . - % ) ; t w o p l a t e s w e r e p r o d u c e d w i t h e a c h m i x t u r e . T a b l e 2 s h o w s t h e m i x t u r e c o m p o s i t i o n o f M i x t u r e s 1-3. S e l f - c o m p a c t i n g c o n c r e t e ( v o l u m e : 60 litres) w a s p r e p a r e d w i t h a f o r c e d - p a n t y p e m i x e r ( p r o d u c e r : Zyklos, m a x i m u m m i x i n g c a p a c i t y : 1 2 0 l i t r e s ) .

Table 2. Mixture composition of self-compacting concrete with and without steel fibres for thin plates

Component Producer Mix Mix2 Mix 3 [kg/mM [kg/m^] [kg/m^] CEM 152.5 R CEM Ill/A 52.5 Silica f u m e Sand (0.125-0.5) Sand (0.5-1.0)

Steel fibres (OL13/0.20) Superplasticizer, Glenium 5 1 Total w a t e r (incl. superplasticizer) w a t e r / c e m e n t - r a t i o Figure I ' s h o w s t h e s e t - u p o f t h e t e s t i n g m a c h i n e . A w e l d e d f r a m e w i t h f o u r a d j u s t a b l e c o l u m n s (area o f p l a t e s u p p o r t : 3 0 ' 3 0 m m ^ ) w a s a r r a n g e d in a q u a d r a t i c l a y o u t ( 6 0 0 ' 6 0 0 m m ^ ) . T h e f r a m e w a s s u f f i c i e n t l y s t i f f i n o r d e r t o p r e v e n t d e f o r m a t i o n s a n d t h e d i s p l a c e m e n t o f t h e s u p p o r t s . T h e t o p o f each c o l u m n c o n s i s t e d o f a s t e e l p l a t e ( 4 0 ' 4 0 - 1 5 m m ^ ) w e l d e d o n a M 2 4 - b o l t in o r d e r t o be a b l e t o a d j u s t t h e h e i g h t o f t h e s u p p o r t s . T h e s t e e l c o l u m n s s u p p o r t e d t h e c o n c r e t e p l a t e s o n f o u r e d g e s . T h e c o n t a c t area o f t h e l o a d i n g h e a d o f t h e t e s t i n g m a c h i n e a n d t h e p l a t e s h a d t h e d i m e n s i o n s o f 2 5 - 2 5 m m ^ T h e t e s t s w e r e c a r r i e d o u t l o a d - c o n t r o l l e d . A c c o r d i n g t o EN 1 2 8 2 5 , t h e l o a d - c o n t r o l l e d t e s t s o n p l a t e s h a v e t o b e c a r r i e d o u t a t a r a t e o f 1 2 0 N/s + / - 10 % u n t i l f a i l u r e o f a n y p a r t o f t h e p l a t e is o b s e r v e d . In t h i s f e a s i b i l i t y - s t u d y , t h e load w a s m a n u a l l y i n c r e a s e d in s t e p s w i t h a p n e u m a t i c p u m p ; t h e l o a d a n d t h e d e f l e c t i o n o f t h e p l a t e ( a t t h e l o a d i n g h e a d ) w a s c o n t i n u o u s l y r e c o r d e d d u r i n g t e s t i n g . ENCI 358 358 358 ENCI 555 555 555 BASF 6 1 6 1 6 1 river, round 574 562 549 river, round 574 562 549 Dramix 0 77,5 155 BASF 21,0 21,0 21,0 226 226 226 0.25 0.25 0.25

(4)

Figure 1. Ttie testing macliine with a thin plate placed on four supports; the loading head is placed between two supports at the edge of the plate

T h e c a s t i n g m e t h o d w a s c h o s e n t o o p t i m i z e t h e p e r f o r m a n c e o f t h e f i b r e s by a l i g n i n g t h e m in t h e d i r e c t i o n o f p r i n c i p a l stresses. T h e m o s t c r i t i c a l l o a d i n g p o i n t o f t h e p l a t e w a s a s s u m e d t o b e a t t h e e d g e in t h e m i d d l e o f t h e s p a n b e t w e e n t h e s u p p o r t s ; f i b r e s a l i g n e d p a r a l l e l t o t h e w a l l s o f t h e f o r m w o r k i m p r o v e t h e l o a d - b e a r i n g c a p a c i t y in t h i s l o a d i n g case. S e l f - l e v e l l i n g c o n c r e t e w a s f i l l e d in a b u c k e t a n d t h e f o r m w o r k w a s f i l l e d a c c o r d i n g t o t h e p r o c e d u r e i n d i c a t e d b y Figure 2. T h e f i b r e s o r i e n t e d d u e t o t h e f l o w t h r o u g h t h e b u c k e t a n d d u e t o t h e f r e e f l o w in t h e m o u l d p a r a l l e l t o t h e w a l l s o f t h e f o r m w o r k . T h e s l u m p f l o w w a s 7 9 9 m m ( w i t h o u t f i b r e s ) , 7 5 2 m m ( V p 7 7 , 5 k g / m ^ ) a n d 6 8 8 m m (Vf=155 k g / m ^ ) .

(5)

R E S U L T S A N D D I S C U S S I O N

T h e p l a t e s w e r e t e s t e d 5 6 d a y s a f t e r c a s t i n g . T a b l e 3 s h o w s t h e r e s u l t s o f c o m p r e s s i o n a n d s p l i t t i n g t e n s i l e t e s t s e x e c u t e d a t d i f f e r e n t c o n c r e t e ages; t h e r e s u l t s are single t e s t s o b t a i n e d w i t h c u b e s o f 1 0 0 m m .

Table 3. Compressive and spiitting tensiie strengtiis at different concrete ages and witfi different fibre contents

Fibre dosage 0 77,5 155

Concrete age [days] [l<g/mM [kg/mM [kg/m^]

Compressive strengtti [MPa] [iVIPa] [MPa]

14 days 129,1 140,1

28 days -

-

150,3

56 days 148,1 144,7 164,2

Spiittinq tensile strength [IVlPa] [MPa] [MPa]

56 days 12,6 16,4 17,4 T h e i n c r e a s e in c o m p r e s s i v e s t r e n g t h d u e t o t h e a d d i t i o n o f 1 5 5 k g / m ^ s t e e l f i b r e s 5 6 days a f t e r c a s t i n g w a s 1 6 , 1 M P a (10,9 %) c o m p a r e d t o t h e r e f e r e n c e m i x t u r e w i t h o u t f i b r e s ( 1 4 d a y s : 1 5 , 7 M P a ) . A t t h e h i g h e s t f i b r e d o s a g e t h e s p l i t t i n g t e n s i l e s t r e n g t h 5 6 d a y s a f t e r c a s t i n g w a s 1 7 , 4 M P a , w h i c h is a s t r e n g t h i n c r e a s e o f 3 8 % c o m p a r e d t o t h e r e f e r e n c e m i x t u r e w i t h o u t f i b r e s . Figure 3 p r e s e n t s t h e l o a d - d e f l e c t i o n r e s u l t s o f t h e six p l a t e s .

Figure 3. Load-deflection diagram: concentrated loading of thin plates

3,5

3,0

2,5

O

u-1,0

0,0

11 _

V u—iz-iTG

= T e s t 1 (No fibres)

Ik

— T e s t 2 (No fibres)

1

' 7 1 • •

/

i i —* '

10 15 20 25

30

(6)

t w o r e s u l t s ) w a s 3 9 3 % r e l a t i v e t o t h e m a x i m u m l o a d o b t a i n e d w i t h t h e r e f e r e n c e p l a t e s ( w i t h o u t f i b r e s ) w i t h 5 0 % o f t h e m a x i m u m f i b r e d o s a g e a n d 5 0 7 % w i t h 1 0 0 % o f t h e m a x i m u m f i b r e d o s a g e , r e s p e c t i v e l y . T h e i m p r o v e m e n t o f t h e m a x i m u m f l e x u r a l s t r e n g t h w i t h 7 7 , 5 k g / m ^ e x t r a f i b r e s w a s o n l y 2 9 % ( f i b r e c o n t e n t 1,97 V o l . - % c o m p a r e d t o 0,99 V o l . - % ) . T a b l e 4 s u m m a r i s e s r e s u l t s c o n c e r n i n g t h e m a x i m u m l o a d a n d t h e v e r t i c a l d e f o r m a t i o n at t h e m a x i m u m f l e x u r a l l o a d .

Table 4. Maximum load and vertical deformation at the maximum load

Plate Fibre Force Average Def. at

Nr. dosage [kN] max. max.

[Vol.-%] load load

[kN] [mm] 1 0 0,69 0,60 1,46 2 0 0,52 1,55 3 0,99 2,23 2,36 12,26 4 0,99 2,49 14,57 5 1,97 2,83 3,05 14,31 6 1,97 3,26 12,14 T h e h i g h e s t l o a d w a s o b t a i n e d in Test Nr. 6 ( 3 , 2 6 KN). T h e l o w e s t s t r e n g t h class a c c o r d i n g t o EN 1 2 8 2 5 (Table 1 : Class 1) r e q u i r e s a m i n i m u m l o a d o f 4 KN, w h i c h also i n c l u d e s a r e d u c t i o n o f t h e c h a r a c t e r i s t i c e x p e r i m e n t a l s t r e n g t h by a s a f e t y f a c t o r (2,0 o r 3,0 d e p e n d e n t o n t h e a p p l i c a t i o n ) . F u r t h e r m o r e , t h e m a x i m u m d e f l e c t i o n at th'e m a x i m u m l o a d is l i m i t e d . T h e m a x i m u m d e f l e c t i o n is a c r i t i c a l d e s i g n p a r a m e t e r f o r t h i n p l a t e s . T h e f l e x u r a l b e h a v i o u r o f Plates 5-6 is a l m o s t l i n e a r u p t o a v e r t i c a l d e f l e c t i o n o f 4 m m . A t a d e f l e c t i o n o f 4 m m (Class C), t h e e x p e r i m e n t a l l o a d o f Plate 6 w a s 2 , 0 3 KN ( o n l y 5 0 , 8 % o f t h e s t r e n g t h r e q u i r e d f o r Class 1 , T a b l e 1) w i t h o u t c o n s i d e r i n g s t a t i s t i c a l v a r i a t i o n a n d s a f e t y f a c t o r s (Table 5 ) . In s p i t e o f an i m p o r t a n t c o n t r i b u t i o n o f t h e s t e e l f i b r e s t o t h e f l e x u r a l p e r f o r m a n c e , t h e r e s u l t s i n d i c a t e t h a t t h i n p l a t e s r e q u i r e a h i g h e r s t r e n g t h a n d a s t i f f e r f l e x u r a l b e h a v i o u r in o r d e r t o f u l f i l t h e c r i t e r i a a c c o r d i n g t o EN 1 2 8 2 5 .

Table 5. Load of the 6 plates at a vertical deformation of 2,5, 3 and 4 mm, respectively

Deflection class A B C Load [KN] 2,5 mm 3 mm 4 mm Plate 1 0,49 - _ Plate 2 - - -Plate 3 1,29 1,48 1,72 Plate 4 1,42 1,63 1,90 Plate 5 1,06 1,29 1,63 Plate 6 1,25 1,52 2,03 T h e t h i c k n e s s o f t h e p l a t e s has t o b e i n c r e a s e d in o r d e r t o m e e t t h e r e q u i r e m e n t s -s t i f f n e -s -s . T h e -s t r e n g t h level can be i n c r e a -s e d by a d d i n g a d d i t i o n a l f i b r e -s a n d / o r r e b a

(7)

C o a t e d o r s t a i n l e s s s t e e l r e b a r s c o u l d b e a p p l i e d in case o f i n s u f f i c i e n t c o n c r e t e c o v e r a n d / o r t o o h i g h p r o d u c t i o n t o l e r a n c e s . Plates 1-2 f a i l e d b r i t t l e in b e n d i n g w i t h a single crack r u n n i n g t h r o u g h t h e m i d d l e o f t h e p l a t e b e t w e e n t h e s u p p o r t s (Figure 4 : Plate 1). T h e m a x i m u m l o a d o f Plate 2 w a s o n l y 0 , 5 2 K N .

Figure 4. Faiiure pattern of Piate 1 after tiie execution of the test

IT'

A"

I n \

Plates 3-6 l o c a l l y f a i l e d in t h e v i c i n i t y o f t h e l o a d i n g h e a d (Figure 5: Plate 3 (Vf=77,5 k g / m ^ ) ; Figure 6: Plate 6 V f = 1 5 5 k g / m ^ ) ) . In e a c h case, a s m a l l p a r t o f t h e p l a t e w a s p u s h e d d o w n by t h e l o a d i n g h e a d .

Figure 5. Horizontal view on Plate 3 Figure 6. Horizontal view on Plate 6 after the execution of the test after the execution of the test

T h e f a i l u r e p a t t e r n s o f Plates 4-5 w e r e s i m i l a r w i t h t h e f a i l u r e p a t t e r n s h o w n by Figure 5 (Plate 3 ) . T h e f a i l u r e p a t t e r n o f Plate 6 d i f f e r e d f r o m Tests 3 - 5 : a n a d d i t i o n a l c r a c k a p p e a r e d in t h e p u l l e d - o u t c o n c r e t e p a r t o f Plate 6 b e l o w t h e l o a d i n g p r i s m . T h e

(8)

m a x i m u m l o a d is t h e s u m o f t h e e l a s t i c d e f o r m a t i o n o f t h e p l a t e a n d a local d e f o r m a t i o n (by o p e n i n g o f cracks) c l o s e t o t h e l o a d i n g h e a d . C O N C L U S I O N S This p a p e r d e s c r i b e s t h e t e s t i n g o f t h i n p l a t e s p r o d u c e d w i t h s e l f - c o m p a c t i n g c o n c r e t e w i t h a n d w i t h o u t f i b r e s f o r t h e a p p l i c a t i o n ' p l a t e s in a d o u b l e - f l o o r s y s t e m ' . Based o n t h e e x p e r i m e n t a l s t u d y t h e f o l l o w i n g c o n c l u s i o n s can b e d r a w n : T h e f l e x u r a l p e r f o r m a n c e o f t h i n p l a t e s w a s s i g n i f i c a n t l y e n h a n c e d d u e t o t h e a d d i t i o n o f s t e e l f i b r e s . T h e m a x i m u m l o a d i n c r e a s e d by 3 9 3 % (Vf=77,5 k g / m ^ j c o m p a r e d t o p l a t e s t h a t c o n t a i n e d n o f i b r e s . By d o u b l i n g t h e f i b r e d o s a g e t h e m a x i m u m f l e x u r a l s t r e n g t h w a s i n c r e a s e d by a m o d e r a t e 2 9 % r e l a t i v e t o p l a t e s c o n t a i n i n g h a l f t h e f i b r e d o s a g e . T h e f a i l u r e p a t t e r n d e p e n d e d o n t h e c o n t e n t a n d t h e d i s t r i b u t i o n o f t h e f i b r e s . In o r d e r t o b e a p p l i e d as f l o o r p a n e l s a c c o r d i n g t o EN 1 2 8 2 5 t h e f l e x u r a l s t r e n g t h a n d f l e x u r a l s t i f f n e s s o f t h e p a n e l s h a v e t o be i n c r e a s e d . I n c r e a s i n g t h e t h i c k n e s s o f t h e p l a t e s ( a l t e r n a t i v e l y : r i b s c o u l d b e c o n s i d e r e d ) is n e c e s s a r y t o f u l f i l t h e c r i t e r i o n o n t h e m a x i m u m d e f l e c t i o n at t h e m a x i m u m l o a d . A C K N O W L E D G E M E N T S T h e s t u d y o n t h i n p l a t e s w i t h s e l f - c o m p a c t i n g f i b r e r e i n f o r c e d c o n c r e t e w a s c a r r i e d o u t in c o r p o r a t i o n w i t h F l o o r i n g BV (The N e t h e r l a n d s ) a n d B e k a e r t ( B e l g i u m ) . LIST O F R E F E R E N C E S

1. Grünewald, S., Performance-based design of self-compacting fibre reinforced concrete. PhD-thesis, Delft University of Technology, Department of Structural and Building Engineering, Delft University Press, 2004, ISBN: 9040724873.

2. Pereira, E.N.B., Barros, J.A.O. and Camoes, A., Steel fiber reinforced self-compacting concrete: Experimental research and numerical simulation, ASCE Journal of Structural Engineering, 134, 2008, pp. 1310-1321.

3. Maten, R. ter, Grünewald, S., Walraven, J.C: UHPFRC in large span shell structures, RILEM-fib-AFGC Int. Symposium on UHPFRC, UHPFRC 2013, Marseille, 2013 (to be published, October 2013).

Cytaty

Powiązane dokumenty

Dzień Guzika Dzień Misia Dzień Kredki Dzień Listonosza Dzień Poczty Dzień Uśmiechu Dzień Kropki Mieszkańcy Łąki Karty pracy o grillu Karty pracy o dynii Karty pracy o Polsce

Emocje osiągnięć wpływają na wykorzystanie zasobów poznawczych ucznia, jego motywację, wybór i skuteczność strategii uczenia się oraz umiejscowienie poczucia kontroli nad

Second, the orientation and the distribution of the fibres might be affected by the flow and the bond behaviour of steel fibres embedded in SCC might be different compared

From the temperature and maturity measurements it follows that mixture C has a faster hydration and relatively higher maturity at 7 hours, compared to the reference mixture.. At

Moje palce głodne skóra moja głodna Sól m nie opływa cienką strugą ognia Zawsze kochana gonić nieuchwytne m ówić o m iłościach które trwają zawsze. Mój

Pierwsze donie- sienia, że czynnikiem sprawczym kleszczowe- go zapalenia mózgu jest wirus (TBEV – tick- borne encephalitis virus ), pochodzą z 1937 r., z obserwacji prowadzonych

Wybudowano w Siedlcach nowy gmach Centrum Cha- rytatywno-Duszpasterskiego (2001 r. Kościół siedlecki przeżywał cele- brację Jubileuszowego Roku 2000 w wymiarze diecezjalnym

The book is divided into two sections named Portraits and Icons with the poems of respective titles “The Portrait of...” and „The Icon of...” except the last poem