• Nie Znaleziono Wyników

Further model tests on four-bladed controllable pitch propellers

N/A
N/A
Protected

Academic year: 2021

Share "Further model tests on four-bladed controllable pitch propellers"

Copied!
20
0
0

Pełen tekst

(1)

AtCrhc

Lb.

y.

Tech-d

cd1oo

D&íi

PAPERS

OF

SHIP RESEARCH INSTITUTE

Further Model lests on Four-Bladed Controllable-Pitch Propellers

By

Atsuo YAZAKI and Nobuo SUGAI

August 1966

Ship Research Institute

Tokyo, Japan

(2)

Further Model Tests on Four-Bladed

Controllable-Pitch Propellers

By

Atsuo YAZAKI and Nobuo SUGAI

Summary

This paper presents the results of the tank tests of a systematic series of

Modified AU-type four-bladed controllable-pitch propeller models, the

expanded-area ratio of which is 0.70.

The design and calculation diagrams of the series

are given.

The same type of controllable-pitch propeller model with expanded-area

ratio of 0.55 and with non-uniform radial pitch distribution is also tested.

Introduction

One of the authors reported the results of the tank tests on the

four-bladed controllable-pitch propellers with the expanded-area ratio of

0.40 and 0.55 in the Papers of Ship Research Institute.1

Further to the work, the authors conducted a systematic testing

work with the same type of controllable-pitch propeller models with

expanded area ratio of 0.70 in the Mejiro No. 2 Experiment Tank. The

propeller model, with expanded area ratio of 0.55 and non-uniform radial

pitch distribution was also tested.

In this paper, the authors present the results of the open water

tests and some design diagrams.

Model Propellers and Open Water Tests

Model propellers used here are made of alminium alloy and they

have the diameter of 0.25 m.

Their principal particulars are given in

Table 1.

As are shown in Table 1. they have two groups of the area ratio

0.70 and 0.55.

The radial pitch distribution of the wide blade area

group is uniform, but that of the narrow blade area group is non-uniform.

The authors call the former AU-CP 4-70 and the latter AU-CP 4-55

(non-uniform).

Model propellers shown in

Fig. i are built up with four blades

and a hub to change the setting angle of the blades.

The blades are

(3)

2

aft sides of the hub.

Therefore, it is possible to adjust the blades to a

given setting position by rotating the blades to the ahead

or astern

direction and fixing them by the set-screws.

Open water tests were carried out in the No. 2 Experiment Tank

according to the ordinary practice.

To obtain the net thrust, the correction for the resistance of the

screw hub was made at various speed of advance for the measured

thrust.

The Reynolds number Rn of the tests is shown in Table 1.

The tests were conducted at various angular blades settings, that

is, the blades were rotated by 5 degree intervals to increase or decrease

the pitch.

Tests Results

The results of the tests for each propeller are shown in Figs. 2 to

5 in the form of J-K7, KQ,

O

diagrams.

In these figures, 0 denotes the adjusted angle of the blades from

the initial setting, therefore "0=0° " means the initial setting

condi-tion of the blades of each propeller.

Positive sign of the advance constant J and the thrust coefficient

K7 corresponds to the propeller in ahead running and negative sign to

the propeller in astern running.

Negative value of the torque coefficient

KQ shows that the propeller is rotated by the current.

When the effective pitch

is adjusted to nearly zero, curves of KQ

show the singular characteristics.

And, in curves of K7. remarkable

discontinuity comes out at a certain fixed speed.

Under this speed of

advance, the waves induced are in front of the propeller, but when

speed of advance becomes higher than this speed, the waves are left

behind the propeller, so remarkable discontinuity in curves of K7 will

be found at this particular speed.

Values of K7, K( and i read from these figures are tabulated in

Tables 2 to 5.

Design Diagrams

Fig. 6 shows the B-ô type design diagram for the propeller with

the expanded area ratio of 0.70, AU-CP 4-70.

The metric units are

used, and the density of sea water is assumed as 104.51 kg sec2/m4.

It is possible to determine such a principal dimensions as diameter

and pitch ratio of the four-bladed controllable-pitch propellers, applying

this diagram and similar diagrams for AU-CP 4-40 and ATJ-CP 4-55 at

the initial stage of design.

(4)

3

Another types of diagrams which are convenient for calculating the

performances of the propellers when their blades setting angles are

adjusted are shown in Figs. 7 to lo.

Symbols in these figures are as follows;

T; thrust in metric tons, P; delivered horse power in PS.

D; diameter in meter, V; speed of advance in knots.

Nc; N/lOU and N is number of revolutions of the propeller per

minute.

Effect of Pitch Distribution

Fig. 11 shows the radial pitch distribution of M.P. No. 1575.

Comparing Figs. 5 and 10 with Figs. 1.6 and 1.14 in the previous

paper' we find the effect of the pitch distribution on the performance

for the controllable-pitch propeller.

Acknowledgements

The authors wish to acknowledge the valuable co-operation and

as-sistance of the late Mr. Einosuke Kuramochi and the staff of our Institute

who assisted to carry out the experiments and the calculations.

We also

wish to acknowledge the Yokohama Ship Yard, Mitsubishi Heavy Industry

Co. Ltd., as most of the work reported here were carried out under

the co-operative research project with that Company.

Reference

(1) A Yazaki, Model tests on four-bladed controllable-pitch propellers. Papers of Ship

(5)

4

Table 1.

Principal Particulars of Model Propellers

Model Propeller No.

1572

1573

1574

1575

Diameter (m), D

0.250

0.250

Boss Ratio, d/D

0.30

0.30

Pitch [Initial) (m), H

0.250

0.200

0.150

0.200

Pitch Ratio [Initial),

HID

1.00

0.80

0.60

0.80

Exp. Area Ratio, AE

0.70

0.55

Blade Thickness Ratio,

t0/D

0.050

0.050

Mean Blade Width Ratio,

BID

0.392

0.308

Max. Blade Width Ratio,

Bm,ID

0.464

0.364

Form of Blade Section

Aerofoil (MAU)

MAU

NunTher of Blades, Z

4

4

Angle of Rake

o

O

Revolution (r.p.$) at tests, n

12.0

12.0

Temp. of Water (°C), r

8.0 22.0

8.2-17.0

Reynolds Number, R=nD2/

5.44x105.-7.85x105

5.47>< 10

6.94 x 10

(6)

IZLLrONd'MI

(ZLT

°M

d]AI)

oo

puo

ò)J

'f

.3

PL LOI-

09

QL SL

LOI-

POS- LO LP

IS-

SL-

00

LP

0*5"

O'OS- 55 SQ LS

-

-

PS SOP- PLI- IS SL

90-

01

00

QQ

090-

581-

II

25 SO

-

SL

-

SL P21 LS 1. L LO OL

92

SL

-

Ql

-

LO Ql O-

P-

L'LI ¿Ql QL 01. SL QL

09

LI

SO l'I LS 09 L 5 OLI ¿'5 05 LS 05 65 01

00

L SL

LI

L OS QL O 1%)

0I0

015 1%)

OI0

,,0lS

,-0l'

OZI 9

'9

i

')I

ll

C

QL-

.09-

e

60 ¿5 L GLI LOI PLO VOS ¿Ql

07

20 IS OPI OLI

060-

Z IL

¿L-

01-

¿99 S'SS 01.2 202 55 ¿II OLI OLI S'LO S'PS 66 SPI ¿I PO LOI I'LL ISO LOP POI

ILl

OLI

LII

S'O

-

P IP SL-

II

-

L'IS L'SS OBI SOL 01. LB S'SS L'LO 005 SQL OSI 002

CII

I

O)

SOL VOL SL SII LI

It

OSO 059 PSL 520 OLI OSI PLO L'LO OIS SSO ZOO 052 001

05

l'SI-

Ql 90 LL_

5-

'LS S'LI OLI OSI 99 06 PIS S'LI LLL SIP 91.1 203 S'LO S'LQ LOL OLI SOL LLL

oo

09

l'LO LOO QL SOI QL PP L'SS L'OS 032 SQL LII SOI L'OS LOS OSP 000 522 POL I'LL 610 525 15e L LSO

09

91, L'CL- QQ I

-

PLO SLÇ LOI SOI 55 06 L'LO L'BL SSO SOL

LII

¿SI L'IL SOS SOL SSS

IlL

SOL 656 205 609 01. 09 QL 0L S'LO SOP PL SS SL IL 050 SLL P91 SOL

LII

SQl 055 SOL ¿50 ILL

IlL

POL LOO S'OO lOO PLO LQL ILL PLO LLOI SOP

09

cc

I'll-

L'LI IL LS LI

-

LI BOL L'IL SII OLI

Pl

LS L'LL L'IL LOO 902 091 P91 L'SP LOO OLP SLO OSO OSO L'LO L'SO SIL LIA. OSO LOO L'LO 1Q11 POS

oc

950 ¿00 51 05 LO SL O'SO LOO OLI

LII

SII SOI ¿SO S'IO ISO 900 SOL SLL L'LO S'SO ISO LOL OIL SOL LOO SOS ILO L'SO SOLI SPL LO SQL LOO lOI LII SL PS LOP I'LL 151 OSI OLI OLI L'IL OiL 900 SSO 000 ILL l'IO QQS ISO LOO ¿SS 910 00 09 S'SO L'LO SII SOI Oli OZI L'SO LOO SOL ILL OSI ¿DL OL I'Ll 01.0 ISO LBL ZIO 600 919 000 O'LI SSS OIS 09 LI S'SI

ILI¡

¿LI L'LI 000 QLL S'LI lIP LOO OLI OIS LOO S'S PLOI 055 01 O OPI OSI O LLL LOO 0 OSP 010 0 SOL OSP O

OLI

ESO o I%I ,,OIS

.01'

I%I .,0I5 ,,LI S I%I .,OI S

.Dll

I%I .,OIS ,,OI5 19.1

.01'

01'

L'I

,,OIS .,OI5 ..OI' IO I 'A °ZI

'9

OLI

°i

99

09 O0 09 09 Ol 0 °Z0

r

.01-

.01-

.0-

.0

.

.01

(7)

6

Table 3.

KT, KQ and

o (M.P. No. 1573)

e

IS'

IO'

S'

0

-0'

-lO'

3 Ko Ko

lo

Kr Ko

I,

Ko Ko

'

'

Kr

l

Ko K

'

610 IO' X IO" (%I

010"'IO''

(%10I0"XIO"

91 8 IO"

'IO'

91 011O"

'IO"

I%J

9 O"

IO"

0 580 1104 0 478 726 O 363 446 0 256 250 0 lOI 35 IO 052 043 8.4 445 661

52

329 411 12,7 323 231 14 35 24 17.0 519 977 8,0 406 025 20.5 291 370 25.0 97 203 293 104 lO 30.1 402 907 214 387 065 30.9 248 325

345

49 75 41.4 70 91 36,8 30 323 296 42.4 126 35 46,0 51 81 33.3 40 440 829 335 341 496

407

202 275 44,8 08 37 00.2 31 60 290

45

317 461 40.6 178 249 51.3 68

IlS

53.0 9 55 11.7 50 593 744

4W

293 426 499 lOS 225 546 67 101 52.4

- 5

41 -291

55

267 392 542 32 199 08.3 45 63 47.8

-39

27

60

342 006 49,7 242 377 546 lOS 172 60.6 22 63 33,4 65 12

65

316 614 53.2 216 322 61.0 86 146 61.0

- 4

44

-82

70 424 977 483 250 570 96.6 191 286 653 63 118 59.0 75 263 525 99.0 164 049 60.1 39 91 50.5

80

371 666 54,8 237 491 61.5 38 212 68.8 4 64 27.1 85 210 434 65,5

III

173

685

- IS

55

-4.1

90 SIS 753 80.5 184 488 87,7 80 134 63.9

-57

5 lOO 292 695 43,5 157 342 69.4 60 93 54.8 105 285 638 680 30 300 698 34 49 29,3 105 258 562 67.8 103 249 692 9 7 569 IO 208 525 693 "75 200 85.7 115 179 469 69,9 46 ISO 962 155 ISO 412 89.3 17 99 310 25 122 355 86.5

- IS

4'

ISO 94 295 65,9 135 65 235

ß5

140 39 ITS 49.7 145 IS

III

25.4 ISO

-e

-15

-20

-25

.1 Ko K,

I,

Ko Ko

1,

Ko Ko

I,

010"

.10"

.10"

191

olO"

.10''

0191

olO"

.10'

191

-60

112 46 -22.3

-55

91 50 19,9

-50

72 52

-109

-45

94 34

- 7.!

-40

70 61 75,2 38 98

-432

-35

54 57 -52.3 24 57 217

-50

40 04 -35.3 IS 58 10,2

-25

29 SI -22,8 4 60

- 2,7

-20

20 50 129

-

4

II

1,8 5 16 48

- 8.0

-

6 63 50

-I 0

12 43

- 3.9

- II

64 09

00

IO 48

-

.8

- 14

65 .7

0

69 76 0 9 44 0

- 18

66 0 6 50 LO

- IO

68 - 2.1 IO 53 7! 1.2 2 52 0.8

- 24

70

- 9,5

43 68 1.5

-

4 52

-

I.e

- 48

72

-054

20

32 84 1.6

- 14

53

- 8.4

- 58

74

-24.9

28 70 1,4

- 26

53 197

- 73

78 -38.2

30

3 04 0.2

- 85

92 -31,1

- 90

79 -98.5

- IS

46

- I,?

-60

92 -64.3

-IlS

SO

40

- 35

41 - 4.1

- 79

46 -141 60

- 55

33 12,0

00

- 76

25 -34,8

(8)

Table 4.

KT, KQ

and

o (M.P. No. 1574)

7

OPeC. l074

8

20

5° 10° 3° O

-J Ko '7 Ko Ko '7 Ko <o Ko Ko To Ko Ko 'T Ko Ko '7,

010°

oI0

510°

1%)

0I0°

610° (%3

0I0'

010°

(%) 0IO

0I0°

(06)

610'

0I0°

1%) 010°

010°

1%)

0 058 452 0 247 250 0 139 127 0

05

30 120

86

IO 323 414 124 215 225 3.2 120 113 14,8 IS ICC lOS 246

20

287 371 246 180 33 290 93 97 300

25

ii

se

sos

30

068 554 30.1 540 523 34.5 141 63 51.4 60 78 365

35

20 147 45.0 41 68 30,6

40

317 010 34.3

07

288 417 99 121 98.9 21 57 23.3

45

78

III

50.1

-

I 45

- 00

50

594 7*0 41.0 245 437 45.3 45 216 94.5 36 95 47.9 -25 33

55

124 97 57.2 54 74 40.2

-47

21 60 345 876 41.5 214 583 54.1 00 164 51.0 12 95 21.1

65

ISO 32.9 53.5 76 156 57.8

- II

54 -0.2 10 291 084 306 165 092 622 52 109 55.2

-35

14

75

137 255 64.2 28 SI 41.0

60

301 906

936

258 491 01.8

III

218 64.9 4 51 99

85

211 449 442 54 178 43.5 -21 20 -14,2 90 524 734 58.7 85 098 662 33 141 37.1 95 133 347 670 30 102 44.5 00 271 680 634 124 298 67.4 3 63 7,6 05 240 620 63.0 99 248 06.1

-24

22 IO 215 503 669 61 198 01.1

IlS

188 500 08.3 40 149 44.5 120 640 441 59.0 IC lOO 191

-25

132 581 68.7

-II

90

(30

105 301 84.4

35

74 282 60.7 140 44 202 48,5 145 4 ISO

e

-10

-15°

J Ko Ko °7 Ko Ko '7 010° s10°

010"

(061

6IO°

010°

1%) 0 63 65 0 5 4.4 0

05

97 62 2 46

04

IO 8 60 2.8

- 3

41 -1.0 IS 58 08 82 10 94

-30

20

25 35 15.1

-IS

47 .-l5,2 25

II

SS 5.7 .-32 46 -27.6 30

- 6

45 - 6.1 -48

*4

-4*0

35

-23

36 -38.8

-62

42 40

44

50

-866

-82

40

45

-65

26 50

-53

17

(9)

1012106291

(SLSI

0N

dI)

oo

pu

s

iqj.

Oc 701- 00 0V IP

38-

0V

919-

29 OZI

-

869-

26

9-

00

009-

LI

¿G

-

110- 66

¿6-

00

021 ¿'10- £21

-

020-

01 ¿L

-

962-

06

00-

07

?0Z-

lOi

90-

903-

69 29

-

29

-

66

2-

O

¿'II-

201

26-

¿LI-

99 66

-

$0

-

OP

II-

01

66

-

001

51-

09

69 97

-

71

-

IO Z

-

01 06

-

001

£1-

93

-

39 02

-

60

60 Z 00 o 063 301- 0 SOI 01 O 09

¿I_

Q $0 6

0

0 60

01-

91-

09 13

01-

LOI 66

001-

592 76 QO_

00

¿00 OPI- ¿9 lOI 99 ¿'0 59

PI-

83-

00 L

01-

601 963

LOI-

$31 911 29 09 99

01-

99-

IP

II

01-

¿'LI 207

631-

OlI

$01

90-

00 00 9

-

171- ¿6 91

07-

07

0*

L'IO-

Q IO 0

96-

LOI C'SI

-

611 612

l'IO

07-

292 002 501

-

981 06 ¿7- 08

-

66 6

060-

06 00

00-

86 ¿6

620-

61 96

002-

92-

85

'II

-

96 IGl ¿12

00-

960

III

9

-

201 IS £I 0.16- 06 29

776-

66 09

06-

IB 29 09 IP 0.18- 2 01

L'SI-

-

09 791 692

06-

092

¿PI $6

-

99 SI 97 01. 96 001

00-

99 06 90 ¿9

20-

201 ZIO

90-

¿II

9 66 99 30 801

09

1%) .MIO ,010 I%I

,0I0

e_oto 1%)

,010

,0IZ

1%)

,,0I9

0I9

0I9

0 99 0)! 09 9 09 09 9 C

.00-

.77-

.00-

9

621-

69-

9 50

57-

2-

001 971 006 029 901 201 92 20 901

SII

769 $61 SO

Oil

299-

80 8

-

PII

£60 POI SOi ZIO 009

DL,

SOI 91 06

GIL

211. ¿92 620 001 201 001

06

069 OPI 99 969 210 191 06

990-

IO

01-

290

¿II

06 ¿'19 SIP ¿02

59

692

59 El 769 012 911

079

906 202 09 070 99 ¿9 199 062 601

029

066 ¿02 7,1.

II

10

909

III

19

699

912 091 ¿'59 979 257 01 00

$11-

9

-

209

901 05

708

¿00 $51

79

062

90 ¿I

609

091 LOI

960

600

lIE

910 019 00

09

902 692 216 671 681

619

OP P1

616

00

769-

¿2 62 '29 1G

09

010

802

ILl

010

009 692 606 968 510

00

OLI 702

000

IS 001

609

-

I 16

VI-

7V ¿06 00

26-

702 00 IO

700

621 901 S'SO 692 061 979 96 500 660 OIL 026 0V OZI 501 690. IO 99 l'OS

62-

80 9'69

00

69-

06 9

-

700 91 08 2'66 601 261 OSO 962 907 020 020 690

982

605 296

00

¿9 90 01 ¿'90 99 91

07

701 09 02 020 76 66

910

181 OSI

092

960 OIS

013

359 669 OLI 90$ 966

02

SOI GOl 292 90 60 131

cl

201 99 ¿0 OSI 001 771 691 602 I 12 001 010 010 SOI 209 576 ¿5 195 939 01

00

5 IS 00 O

PII

LOI 0 037 062 0 lOO 060 0 7L9 696 0 P601 099 O 061 .21 ,0I O 1%) ,,,OI O oDIO 1.61 01 O D10 1%) 919 DIO 161

MI

°

9I

S 1%) _OI0 e,OI0 OIO 01. 09 09 01. 09 09 03 09 0 09 09 °L 03 09 09 09 0

.01-

.01-

.7-

.0

.0

.01

0

(10)

¡.08

05.7)

20.8-(253)

0.95R

.5.0(50.6)

0.9 R

86.4 67.0 "lb.

0.7R

(

¡193

(607)

22.9)

(32.8)

(36.5)

48.0

56.2

(44.0)

0.5 R

I

0.4

(85.9)

(27.9)

(46.2)

0.3 R

54.0

.1

/

7.0

28.0)

0.70

= 0.55

TO PROPELLER,OE.0.55

46

CORRESPOND

50

FIGURES IN BRACKTS

O

Model Propellers

l2.5

-Fig. 1.

54.0

(11)

0.8

M.P.N0. 1572

H/D= 1.00

AU-0P4--70

C

o

UIIÌIIIi!IUII I

iiÌi

ituIuiuliiI.lII

uiìatiuuiiio

IUUULUIP

-tiIIN

r4uuiiI1II

UiIi

-06 -04 -02

Fig. 2.

M. P. No. 1572

-0.4

0

02 04 0

08

IO

2

4

6

J

10

1.0

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

o

0.4

0.3

0.2

0.1

o

-0.1

0.8

0.6

0.4

0.2

o

0.2

(12)

I.1

I.0

0.9

0.8

M .P. NO. 573

H/D= 0.80

AU- CP4-70

0.2

0.4

-06 -04 -Q2

0

02 04 06 08

lO

12

14

1.6

J

Fig. 3.

M. P. No. 1573

ÌII Hull

IlItuIuiiIlIIuI

INhIIuuuIII'uuii

0.7

uuuuiuuiuiuuui

uflhIIIIiiuuIiuIiuIIII

iuuauuuuiuumismiuu

uuuuuuuuuuiiiìiurnwuuu

Q

IUhlIItIIÌiIIiIi!'

uiuiiuuuuiuui'uiuiiu

iuiuuuuuuiuiuiuiiuu

uiuuuiuuuiuiuiiiii

UUIIUIU!IIULUIUI1

iuuuuuuruiiiuuuis

uuuiuiuiiuuuuuiiiu

uiiuuuiuiuuaiuuiuu

1IIIUUtIItIUtIIUEUUUU

UUUUUIISlIIUI!Ui

iuuuuuiiiiiuiu

UU1ISUIUltIUIIU

IUUIìiUiIIiUi

uuwiiimiiiiiuuumuu

iuiiuiiàiiuuiuuuu

11

0.6

0.4

02

0.6

0.5

0.4

0.3

0.2

0.1

0.4

0.3

0.2

0.1

-O.!

(13)

M.P.N0. 1574

H/D 0.60

AU- CP4- 70

-04

0.4

-06 -04 -02

0

02 04 06

08

.0

2

4

.6

J

Fig. 4.

M. P. No. 1571

.2

III"!

IIIIiIIiIiHh1!iILIiILIII

umuuuuiuuuuiiuiuu

IUUIUIiIUUIIUUUIUUII

UUUIUi5UUIhiUUiIUIIU

0.I

1111111!

IiiUULIBi

UUUI1Ii!IiUIi1lUI

IIUIIIIIIIIIINIINI

UUUIIRIIi1II

UUUUUUiL!1a&!IXiiIi

UIuuIuIuI"i.UII'

1111111!

IIUIh1! tI1I

IUI.IIII

I1II

UUUUUiiUUFIIIUUIUUUI.

12

LO

0.9

08

0.7

0.6

0.5

04

03

04

0.3

02

O. I

-02

0.8

0.6

0.4

02

(14)

UIilUihiIiLU

imuiìiuuuiu_

ulI-I-.iuIi_____

u

u

uuuuiuuurnu

uu.i.iu&iui

UÓf4iuIir!u

.

'I

-ii

i H

M.P.N0. 575

H/Dr 0.80

AU-CP4 -55

-0.4

-0.6 -0.4 -0.2

0

0.2

04

0.6

0.8

1.0

1.2

1.4

.6

J

FigS. M. P. No. 1575

13

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.I

o

0.4

0.3

02

Ql

o

-0.1

-0.2

0.8

0.6

0.4

0.2

o

Q2

(15)

.0

o

0.9

I

o

0.8

o

n

u

0.7

Q-0.6

\

-Q

,rnsu: i. .i.vuiii .uiuiwe

.

j

UPdiUiUU.i

U

'b'4UU AU,,4UUIUIU

Ur UIa1U PUUUU. IUPÌ.UUUUIUU uUuuuU PrdI,PdUI.

U .U'iUU '4IU'U.AU SUI iUiUI ak rSVP IUVISUUU IIUUUdUI1UP UP PU UUiUiUiU IPdiUU

U

UU.'sjU

UUUUUgU.IIU5I!iP IUi4Vj,UUUUUp jP d.P PjU.

P.IUP

PI'UP Plb UUUSUi

UU5

i'aU

'SUrUUrjI!IuU..UIdI PUP.1UPUUUd

dUIlU

UUUSUU eP.iUUl!ijUPUUUUI..

UUUi:.a.

I ..U'AU

'.

.

'

n

UUUC \b

bUUj' pjj...i. UI Ii

U UI

UPUP.0 U'IU' P4n'W4S'dSdU

U' u'm'Ul. IULUISd

UP

UUU.SC.:U 4.,.JU.I.,I UgUSil

I

U

UUUUUUjja#IrI

P PUUPil IIàUPUPIdlUlB iU5.' IlUUSYUUL

U!iiIP r ia UP.UUP jUUU4UP.IU

UP

PdUIdUPjPjUP.

U 4U,'UUIWU'.rU.I'U'j..i.S

U ra,.4'apj n..rau., 4U1!IU

rU.i5p ' 1U4?UIIPUII IPLUUUUU1UU

U.UIltd.1 IdUl.lIIh IUÌUPp.

UUUUUUUUd

,

dUjU4UVjUdUP1jUUd

-d

U

UUUUUUUUP

---.

UUIUUUI

.

IU'I

IPUUUUIUUIP alUlil

,.UUUII i1UUUU

aUtdU UIdaSurdUpprgUdPa'aPdU IPd UUUU'lIP

UUS

a.ai'

IIIUdPUUSUPUUjIUUUI.

dIIUSU

o

Expanded Area RatioS 0.70

Type

AUCP470

2

3

4

5

6

8

9

lo

2

3

Fig. 6.

/B9 ö.Diagram (AU-CP 4-70)

(16)

s-0.12

0.I

0.0

0.0

bQ°

z

N

'-0.0

-0.02

-0.

V/ND

Fig. 7.

Calculation Diagram (AU-CP 4-70,

H/D_-1.00)

15

T:Thrust (KT)

\

(J

.

:

AU-CP4-70

D:

oIe'r

l

()

Q

0.70

V* Advance Speed (kt)

1PEI

e:

Angie of Tws (Dia)

'

Pop.Effer,y(Op

II_1iI41F4IISIII

ii

o.

iii[iIii1i&II

'w

'

'i

Q

li

iLîiLihiIiIl

-2

-

b

2

3

4

(17)

16

p: D H P(PS)

N

R PM/lOO

D : PropalIrDia.(m)

V: AdvceSps.d(i(t)

0.10

e

AngIsofTwi.t(D

:

Prop. Efficl.ncy(Op.rJ

0.12

0.08

0.06

b

0.04

0.02

o

-0.02

-0.04

T: TViu*t (KT)

o

o

)

HID. 0.80

A

'r

1WILt

41

p414,

UU

iaich7:fíI7III

'I,,,

hIIIIL,II1L*JFI1I

VJND

Fig. S.

Calculation Diagram (AU-CF

-7O, H/D=O.80)

o

N

(18)

0.02-

0.10-0.08

0.06

0.04

0.02

o

0.02

-0.04

T

Thrust (KT)

0Qcj

O

",

. D

PropellerD3a.(m)

V,: Mvonse Speed (kf)

e

Angle of twlt (D.&

¶o Plo EffIciancy(Opsi

AU CP4 70

HID. 0.60

Fig. 9.

Calculation Diagram (AU-CP 4-70, H/D=0.60)

Ut

0 7 0

17

2

(19)

18

AU-

CP4

-NcR

D

'D

Mvonc

.

hrust

Propeller

(K

H P

(PS

P M/ I

TO

S

cg

(MPNO

H/ D

a

=

575)

= 0.80

0.55

h

..

-2

o

2

3

4

VA/ N D

Fig. 10.

Calculation Diagram (AU-CP 4-55 (non.uniform) H/D=O.80)

0.12

0.10

0.08

0.06

0.04

.

0.02

o

-0.02

-0.04

(20)

0. .4

0.76)

(0.78)

0.794)

(0.80)

(0.80)

(080)

(0.776)

(0.72)

9

0.6

0.7

0.8

0.9

H/D

Fig. 11.

Pitch Distribution of M. P. No. 1575

r, R

LO

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Cytaty

Powiązane dokumenty

[r]

Included were original studies that assessed the effects and/or elements of footwear or footwear characteristics on aspects such as fit, comfort, foot health, foot pain, balance,

This is particularly the case in the wall region where in both cases particles align to the walls but AR-6 particles are also pref- erably aligned with the direction of gas flow,

Na tym tle tym mocniej uwydatnia się rola ludzi usiłujących ratować więźniów, rola szpitala wię­ ziennego, Patronatu, niektórych pol­ skich strażników i

Ciekawą prelekcję na temat roli współczesnej adwokatury w ramach demokratycznego państwa prawa wygłosił heinz weil – niemiecki adwokat stale praktykujący we

W konsekwencji wyobraźnia (historyczna) jawi się jako ponadjednostkowy byt typu epistema, struktura, wreszcie paradygmat, a jedną z dróg poznania manife- stującej się w

[r]

Sin embargo, décadas antes, en pleno apogeo del fantaterror español, Amando de Ossorio llevó a la gran pantalla una propuesta totalmente original por inaudita, la de los