• Nie Znaleziono Wyników

Skład aminokwasowy białkowego komponenta kwasow huminowych z gleby

N/A
N/A
Protected

Academic year: 2021

Share "Skład aminokwasowy białkowego komponenta kwasow huminowych z gleby"

Copied!
16
0
0

Pełen tekst

(1)

LESZEK CZUCHAJOWSKI, ALEKSANDER ERNDT

AM INO ACIDS CO M POSITION OF PRO TEIN A CEO U S COM PONENT OF SO IL HUM IC ACIDS

Department of General Chemistry, U niversity College of Agriculture, Kraków

HUMIC ACIDS STRUCTURE AND THEIR NITROGENOUS COMPONENTS

T he organic m a tte r of th e soil is a com plex of sub stances th e com posi­ tio n of w hich is d e term in ed in p a rt by th e p la n t and an im al residues added to th e soil, and to a g re a te r ex ten t, by th e tra n sfo rm atio n s of th ese su b ­ s tra te s th ro u g h physical, chem ical and biological m eans. Soil organic m a t­ te r contains m ost, if not all, of th e n a tu ra lly occurring organic com pounds. In additio n to th e in te rm e d ia ry p roducts of organic m a tte r break d o w n and secondary sy n th e tic pro d ucts of m icrobial action, th e re exists in th e soil an accum u lation of th e m ore re sista n t p ro du cts of decom position — th e soil hum us.

The n ativ e organic fractio n of soils is m ade up of a h eterogen ou s m ix ­ tu re of polym erized arom atic m olecules, polysaccharides, bound am ino acids, uronic acid polym ers, and various organic phosphorus com pounds [27]. By definition, hum us is a com plex m ix tu re of am orphic and colloidal substances arising from m odified p la n t m ate ria ls an d synthesized m icro­ bial tissue.

T he c h a ra c te risa tio n of hu m u s is fa r from com plete, and concepts con­ cerned w ith its fo rm ativ e processes are, to a larg e ex ten t, speculative. E arly th eo ries p o stu la te d th a t lignin com plexed w ith p ro te in of m icrobial origin provided th e m ain source of hum ic substances in soil. H um ic acids w ere found to yield d eg rad atio n p ro d ucts id entical w ith those obtained from lignin. T he sim ila rity b etw e en th e aro m atic s tru c tu re of lig nin and th a t found in hum ic acids, and th e re la tiv e resistan ce of lignin to enzym a­ tic break d o w n m ay be said to be in good a g reem en t w ith th e lign in th eo ry of h um u s fo rm atio n [45].

(2)

M ore rec e n t studies, how ever, suggest th a t m an y com pounds of non- lignin origin m ay also be a source of aro m atic “s tru c tu ra l c lu ste rs” . Mi­ cro-organism s a re able to give rise to com pounds of an aro m atic or h e te ro - arom atic n a tu re th ro u g h th e conversion of m an y diverse organic com­ pounds including c a rb o h y d rates [34]. Such aro m atic stru c tu re s can be oxi­ dized and condensed w ith am ino acids or p ep tides w ith th e fo rm atio n of substances sim ilar to those found in th e soil hum ic acid fraction. It app ears at th e p re se n t tim e th a t th e “n u clei” of hum ic acids arise both from a lte ­ red lignin and ta n n in com pounds and th ro u g h th e sy n th esis of arom atic com pounds by m icro-organism s. It seem s p ro b able th a t m an y p ro du cts of synthesis and m icrobial m etabolism such as am ino acids, peptides, am i- nosugars, nucleoproteins, p u rin e and p y rim id in e bases, uronic acids, orga­ nic acids, alcohols, etc., p a rtic ip a te in th e fo rm atio n of th e fu n ctio n al groups of hum us.

The ch em istry of soil organic m a tte r is b e st stu d ied in th e absence of inorganic m a trix of soil and th e re fo re th e organic m a tte r m u st firs t be dissolved by an aqueous or nonaqueous e x tra c ta n t. A t p re se n t available ex tra ctio n pro cedu res are ra th e r em pirical, and th e com plete e x tra ctio n seem s to be a n im possibility. On th e o th er hand, m ost e x tra ctio n proced ures p ro b ab ly p roduce artifa c ts, organic m a tte r e x tra c te d from th e soil m ay be v e ry d iffe re n t from th a t w hich ex ists in th e soil. O xidation, p o ly m eri­ zation and photochem ical reactio n s can change to some e x te n t th e p a re n t m ate ria l d u rin g ex tractio n .

E x tra c tio n is m ade d ifficu lt by th e ad so rptio n of organic m a tte r on m in e ral co n stitu en ts of th e soil. D ue to th e ir g re a t su rface a rea and p re ­ pond eran ce of rea c tiv e ad so rp tio n sites, clay m in erals low er th e e x tra ctio n efficiency. It has been show n [21] th a t p o lar com pounds and non-ionic com pounds a re adsorbed on clay, p a rtic u la rly on th e basal su rfaces of ex ­ panding clays. A liphatic m olecules a re o rien ted w ith th e plane of th e ir chains bo th p a ra lle l and p e rp e n d icu la r to th e clay surface. Some organic m olecules a re held to th e clay su rface th ro u g h С—H " '0 bonds [3, 12, 29], a lth o u g h an y ad so rb ate capable of supplying electrons to th e incom plete p o rbitals of adsorbed or lattic e alu m in iu m could be adsorbed as a carbon­ ium ion [25]. D etailed stu d y has show n [11] th a t exposed la ttic e a lu m in ­ ium or iro n are involved in th e ad so rption of c a rb o h y d rates on clay. O rganic cations and polycations, such as proteins, below th e isoelectric poin t a re adsorbed on clay b y a catio n -ex ch ang e m echanism . T hese cou- lom bic forces a re p ro bab ly su p p lem en ted b y van d e r W aals forces and С—H""0 bonds b etw een th e organic m olecule and th e clay m in e ral s u r­ face. T he use of a basic e x tra c ta n t rem ove adsorbed am photeric com­ pounds. A n increase in b asicity re n d e rs th e organic m a tte r electron eg ativ e and p rev e n ts ex tensiv e ad so rptio n by coulom bic rep u lsio n forces [32].

(3)

In ad dition to th e q u a n tity of organic soil m a tte r h e ld to th e clay s u r­ face, th e re a re indications th a t significant am o unts of organic m olecules in soil and sed im ents occur in in tim a te association w ith clay [40]. It has b een suggested th a t am ino acids and p ep tid es a re adsorbed on in te rla - m ella r surfaces of clay m inerals. R esu lt of X -ra y d iffra c tio n stu dies have show n th a t th e re is an a p p a re n t “c o n tractio n ” of th e thickness of am ino acids and p eptides by ad so rp tio n on in te rla m e lla r positions of m ontm o- rillonite, indicated th a t th e adsorbed m olecules a re “k e y e d ” into hexag on al holes [19]. A m ino acids or p eptides boun d to clay in th is m a n n e r w ould be p a rtic u la rly d ifficu lt to rem ove by chem ical or biological agents. T he ad so rptio n of am ino acids b y clay p rovides a p a rtia l ex p lan atio n for th e ir a b ility to su rv iv e in sed im ents and se d im e n ta ry rocks over geologically long periods of tim e [39].

A n o th e r facto r w hich affects th e so lu bility of organic m a tte r is th e fo r­ m atio n of salts and gels w ith m eta l ions. T he org an o -m in eral colloids in soil a re a com plex m ix tu re of floccules and gels [44], th e s ta b ility of w hich depends on th e pH and o x id atio n -red u ctio n sta tu s of th e soil [1]. These organom ineral gels a re tra n sfo rm ed into w a te r-so lu b le h yd roxy-co m plex es by p a rtia l hydrolysis in a slig h tly alkalin e m edium . In a stro n g ly alk alin e m edium th e y a re com pletely h y dro ly sed [26].

T he rem oval of th e organic p hase b y solvent e x tra ctio n of th e soil gives a larg e n u m b er of re la tiv e ly sim ple com pounds of kn ow n s tru c tu re s such as carb o h y d rates, carboxylic acids, esters, am ino-acids, glycosides an d o r­ ganic bases. T he re m a in d e r of th e soil organic m a tte r consists of a m ix tu re of am orphous b ro w n or black p ro d u cts re fe rre d to as “h u m u s” , and p a r­ tia lly decom posed p la n t and anim al residues. “H u m us” has b een se p ara te d into fractio ns d ifferin g in so lu bility in w a te r, alkalis, acids an d organic solvents, b u t in view of th e h ete ro g en e ity of th e fractions d iffe re n t te rm i­ nologies have b een used b y d iffe re n t au tho rs. In th e course of th e p re se n t w ork, th e te rm “hum ic acids” is used for th a t p a rt of h um us w hich is soluble in 0.5 N sodium h y d ro x id e and p rec ip ita te d by acidification of th e alk alin e e x tra ct. Such a d efin itio n has b een w idely used, alth o u g h O d e n [33] rem o ved th e alcohol-soluble p a rt of th e p re c ip ita te as “h y m ato m e- lanic acids” ; it is, how ever, d o u b tfu l w h e th e r such a sub-division is desi­ rab le [2]. T he te rm “fulvic acids” re la tin g to th e po rtio n of “h u m u s” w hich rem ain s in th e aqueous liq u o r a fte r th e acidification of th e alk aline e x tra ct, is still re ta in e d by m an y w o rk ers alth o u g h th is fractio n includes polysaccharides, peptides, am ino acids an d re la tiv e ly sim ple phenols as w ell as com pounds of un k now n stru c tu re .

T he com position of hum ic acids is d e te rm in e d by th e source and isola­ tio n technique. E le m e n ta ry an aly ses of p ro d u cts isolated fro m vario us soils have given values rang ing for С 49-62% , H 3-6 % . N 0.4-5.0% , and

(4)

m olecular w eig hts from 1000 to 300,000 a re re p o rte d [2]. D eg rad atio n of

hum ic acids involving fusion w ith alk ali [22], oxidation w ith n itric acid

[42], p e rm a n g an a te [30], alk alin e n itro b en zen e [31], or copper oxide [18] gave sm all yields of phenols such as catechol, resorcinol, and p h lo ro glu - cinol, aldehydes including p -hy d ro x y -b en zald eh y d e, vanillin, sy rin gald e- h yde and acids such as p-hydroxybenzoic, vanillic, protocatechuic, v e ra t- ric and isohem ipinic acids.

R ecent stu d y [4, 24] have show n th a t som e of th e phenols, based upon resorcinol or phloroglucinol stru c tu re s w ere a ttrib u te d to flavonoid p re ­ cursors, o th ers based upon catechol ty p es w ere reg a rd e d as lig n in -d eriv ed units. It w as th e n concluded th a t besides lignin, flavonoids and possibly o th er n a tu ra lly occurring polyphenols m ay be involved in th e fo rm atio n of hum ic acids, as suggested ea rlie r by T r u s o v [43].

In fra re d ab so rptio n bands of hum ic acids in th e region of 1600 cm -1,

1510 cm-1 and 840 cm“ 1 are co rrelated w ith th e presence of arom atic rings

[35]. In p a rticu la r, rin g s of th is ty p e have been po stu lated in a q u a n tu m ch em istry in te rp re ta tio n of in fra re d abso rp tio n changes w hich ap p eared by p yrolysis of hum ic acids and of m odel arom atic com pounds having OH groups [6, 10]. M ore recen t ex p erim en ts [5] on th e d eg rad atio n of hum ic acids using zinc d u st distillatio n a t 500°C in a stre a m of hydrog en have proved th e presence of arom atic nuclei in th e hum ic acid m acrom olecule. A n th racen e and 2,3-benzofluorene w ere isolated in cry stallin e p u re form from th e d estillate. A com bination of UV sp ectro m etry , v ap ou r phase chro m ato g rap h y and m ass sp e ctro m e try provided convincing evidence of th e presen ce of nap h th alen e, 1- an d 2-m e th y ln a p h th a le n es and a w ide ran g e of o th er aro m atic h ydrocarbons in th e d istillate, including pyrene,

perylene, 1,2-benzopyrene, and coronene, to g eth e r w ith hom ologues, and

also the presence of hom ologous acridines and 1,2- or 3,4-benzoacridines. In a subseq u en t e x p e rim e n t oxidation of hum ic acids w ith p e rm a n g an a te follow ed by d ecarb o x y latio n in quinoline and C u S 04 gave an th raq u in o n e, m eth y la n th ra q u in o n e s, 2-m e th y ln a p h th a le n e, fluorenone, xantho ne, m e- th y lx a n th o n e s and th e h y drocarbons C13H 12, C14H10 and Ci5H 14. E ven though th e p rod u cts from th e zinc d u st d istillatio n m ay arise from secondary r e ­ actions th is is im probable in th e case of pro d u cts from th e p e rm a n g an a te oxidation. C onsequently, it is believed th a t th e existence of a po lyn u clear arom atic s tru c tu re in hum ic acids has b een established.

E lectron p aram ag n etic resonance spectra have show n [37] th a t soil

hum ic acids contain stable organic free rad icals of th e ord er of 1018 spin/g.

These rad icals a re ex ceptionally stab le w ith resp ect to tim e and chem ical attack . T he sam ples have show n no d etectab le decrease in spin concen­ tra tio n s over a period of th re e y ears. E x tensive acid hy drolysis of hum ic acids only increased th e free rad ical co n ten t in th e hyd ro ly sate; th is sam e

(5)

b eh av io u r w as enco u n tered w ith high te m p e ra tu re oxidation, w h e re as th e red u ctio n of hum ic acids w ith sodium m eta l and lith iu m alu m in iu m h y ­ dride caused only a sm all decrease in spin co ncentration.

It w ould a p p e ar th a t fre e radical species are an in te g ra l p a rt of th e n a tu ra l hum ic acids m acrom olecules and th e rad ical s tru c tu re is e ith e r shielded by th e polym eric n etw o rk or stabilized by delocalization of th e u n p a ire d electrons over a su itab le arom atic system .

As a significant increase in spin co n cen tratio n has been observed for th e sam ples w h en th e y w ere co n v erted to th e sodium salts, it is assum ed th a t hum ic acids con tain sem iquinone radicals co existent w ith q u in h y - drone m oieties, pro bab ly d eriv ed from ortho or p ara benzoquinones.

It is ch aracteristic th a t our previous stu d y [8, 9] on th e origin of th e absorptio n b and n e a r 1600 cm-1 in th e in fra re d sp ectra of hum ic acids have p o stu lated th e presence of h y d ro x y p h en y l-q u in o n es and of some sim ple condensed h y d ro x y ary lq u in o n es “in form of sem iquinones and h y d ro - quinone-q u ino ne c h a rg e -tra n sfe r com plexes, as th e s tru c tu ra l u n its in th e hum ic acids m acrom olecules.

T he g en eral s tru c tu re (I) has re c e n tly been advanced [5] in w hich h u ­ mic acid is a com plex consisting of a polycyclic arom atic “core” a tta ch e d to polysaccharides, proteins, rela tiv e ly sim ple phenols and m etals.

Carbohydrates --- Polypeptides

Polycyclic x aromatic core

Phenolic acids --- M etals (I)

Most of th e carb o h y d rates a re p rob ably p re se n t as polysaccharides. F o r s y t h [16] show ed th a t boiling w a te r rem oved from hum ic acids de­

rived from a v a rie ty of sources, about 20% as a polysaccharide m ix tu re

yielding on acid hy drolysis glucuronic acid, galactose, glucose, m annose, arabinose, xylose and ribose. R are 4-O -m eth y l-D -g alactose and 2-O -m e- th y l-L -rh a m n o se have b een isolated [13] from a p e a t polysaccharide.

T he rem o val of carb o h y d rates and phenolic acids b y m eans of cold or hot w a te r is not necessarily evidence in fav o u r of physical adsorption; rea d ily h y d roly sab le depsidic, e ste r and glycosidic linkages a re fre q u e n tly en co un tered in o th er fields, e. g. th e gallo- and ellagitam ins [20], an d th e hyd rolysis of hum ic acids w ould p ro b ab ly be fac ilita te d by th e p resence of carboxy l or o th er acidic groups in th e m olecule. T h ere is no d o ubt th a t polysaccharides of th e hum ic acid fra c tio n of th e soil p lay a n im p o rta n t

(6)

role in th e cation -ex ch ange capacity, carbon m etabolism , and com plexing of m etals in soil.

T he m ode of a tta c h m e n t of th e protein aceous co n stitu e n ts is still u n certain . H ow ever, m an y au th o rs [28, 41] considered th a t th e sta b ility to w ard s chem ical and m icrobial a tta c k of th e p ep tides w as an in dicatio n th a t th e y a re an in te g ra l p a rt of th e hum ic acid m olecule. T he sta b ility m ay be caused b y chem ical com bination of th e p ep tides w ith quinone groups by rea c tio n sim ilar to th ose fre q u e n tly p o stu la te d in e a rlie r th eo ries of tanning.

S tud ies on m odel substances (II, III, IV) have show n [5, 14] О

R y II R = —NH • CH2 • CO • OC2H5

Y ) III R = — CH3

II \ n h • CH2 • C O • OC2H 5 IV r = _ o c h 3

о

th a t all th re e com pounds lost glycine on h y drolysis w ith 6 N HC1 ju st as

th e n itro g e n w as rem oved fro m hum ic acids by hydrolysis. S im u lta ­ neously, in all th re e cases black am orphous substances w e re produced, p resu m ab ly by f u rth e r condensation of th e h y d ro xy -p -benzo qu ino nes resu ltin g from th e rem o val of th e glycine. H ow ever, all th re e com pounds in v estig a ted are u n lik e ly to lose th e ir n itro g en by tre a tm e n t w ith w a te r, a n d th e rem oval of a sm all am o u nt of p e p tid e -lik e substances by e x tra c ­ tion w ith cold or hot w a te r suggests e ith e r p hysical a tta c h m e n t or a lte r­ natively, a tta c h m e n t by h y d ro g en bonding b etw e en th e im ide groups of th e pep tid e and phenolic groups (stru c tu re V or VI).

HO -> H—N— C-i i и ^ R O V xR fH—N< -Q / > \ r <-o^ VI

Som e n itro g en in hum ic acids is stable against hydrolysis w ith 6 N HC1

and un affected b y m éth y la tio n and acéty latio n [15, 23] and m ay be p re s e n t in heterocyclic form .

T he p re se n t stu d y w as u n d e rta k e n to d e te rm in e q u a n tita tiv e ly th e am ino acid com position of th e p ep tid e and p ro te in content of soil hum ic acids, its c h a ra c te ristic response to th e conditions of hydrolysis, and to in v estig ate th e re la tio n to th e am ino acid com position of th e soil and g reen p la n t species.

(7)

EXPERIMENTAL

As a re s u lt of co llaboration w ith th e D e p a rtm en t of Soil Science, U n iversity College of A g ricu ltu re, Cracow, it has b een possible to exam ine hum ic acids e x tra c te d from th e follow ing soils.

Soil I; source: A g ricu ltu ra l E x p erim en t S tatio n (RZD) P ru sy , field B, profile located ca. 300 m from th e road. P a re n t rock: loess; p la n t cover: arab le field p rep a re d for e x p e rim e n tal w ork, sam ple from horizon A x (В ) 25-30 cm, b ro w n -g re y fine sand w ith hu m u s streak s, slightly m oist, cru m b s tru c tu re , loose, no roots, pH 7.0; soil type: p ro p er brow n soil, soil fam ily: form ed on loess, te x tu ra l group: fine sand;

Soil II; source: p e a t m eadow , Szarów. P a re n t rock: low m oor fen te n d ­ ing to tra n sitio n m oor, on M iocenian clay; p la n t cover: R an un culu s sp.,

T araxacum p a lu stre , Plantago lanceolata, B eilis p e ren n is, Poa a nnua,

sam ple T 2, 51-126 cm, brow n p e a t slig h tly decom posed, w et; soil type: p eat soil, soil fam ily: form ed on low m oor fen w ith u n d erly in g M iocenian clay; p e a t species: A ldersedge peat.

ISO LATION OF HUMIC ACIDS

A ccording to th e sta n d a rd p ro ced u re [2], th e a ir-d rie d soil sam ple w as d e fa tte d w ith a m ix tu re of equal volum es of e th y l alcohol and benzene, and d rie d a t 90°C. T he d e fa tte d soil (20 g) and 250 cc of 0.2 N NaOH, a fte r standin g a t room te m p e ra tu re for 18 h rs w ith occasional shaking, w ere centrifuged. T he s u p e rn a ta n t liquors w e re filte re d th ro u g h a sin te re d glass fu n n el (No. 4) an d th e filtra te w as acidified w ith 0.2 N HC1 to pH 1. For collection of th e hum ic acids a m odified F o r s y t h a nd F r a s e r ’s tech n iq u e [17] w as used, in w hich th e acidified m ix tu re w as cen trifu ged , th e liq u o r d ecan ted and th e m oist p rec ip ita te w as frozen to — 50°C for 12 hrs. Then, it w as allow ed to th aw an d th e solid collected on a sin tered glass fu n n el (No. 4), w ash ed u n til free from chloride, and d rie d a t 90°C.

T he y ield of hum ic acids e x tra c te d from th e soil I w as 0.2*Vo, and from th e soil II — 26’°/o, respectively . T he re su lts of elem en tal an alyses are included in Table 1.

ACTION OF HYDROCHLORIC ACID ON HUMIC ACIDS

F i r s t h y d r o l y s i s : T he sam ple of 0.2 g of hum ic acids and 20 cc

of 6 N HC1 w e re placed in a glass tu b e w hich w as th e n sealed u n d e r

nitrogen. T he h y drolysis w as carried out by h eatin g th e tu b e co n ten t in an oven a t 110°C for 20 hr. Then, th e tu b e w as opened, th e liq u o r filte re d th ro u g h a sin te re d glass fu n n el (No. 4) and th e solid w ashed w ith th re e portions of 25 cc dist. w ater. T he com bined filtra te w as ev ap o rated to

(8)

T a b e l a 1

E lem entary a n a ly s is o f s o i l humic a c id s and o f th e r e s id u e s a f t e r t h e i r h y d r o ly s is E lem entary с c a p o s it io n /% / D ecrease o f n it r o g e n i n % o f i t s c o n te n t in : No. M a te ria l С H N pa ren t humic a c id s r e s id u e a f t e r f i r s t hydro­ l y s i s

1 Humic a c id s d e r iv e d from th e brown l o e s s ,

P ru sy , I 5 2 ,5 1 4 ,8 4 2 ,7 7 2 R esid ue a f t e r f i r s t h y d r o ly s is 1 ,5 3 1 ,3 6 > 4 % 3 o f I R esid ue a f t e r second h y d r o ly s is 4 5 ,3 1 3 ,5 8 > 11%

4 Humic a c id s d e r iv e d fr o n th e peCst meadov/,

S żarów, I I 5 3 ,4 9 5 ,3 4 4 ,0 5 R esidue a f t e r f i r s t ' h y d r o ly s is o f I I R esid ue a f t e r second h y d r o ly s is 5 7 ,9 7 5 9 ,4 2 4 ,7 6 4 ,3 9 o in > 4 S £ 6 1 ,2 3 >3C?& T a b e l a 2

Amino a c id c o m p o sitio n o f p r o te in a c e o u s component o f s o i l humic a c id s ; th e d a ta e x p r e s s a p e r ce n ta g e n it r o g e n c o n tr ib u tio n o f each amino a c id i n th e t o t a l

n it r o g e n c o n te n t o f a l l amino a c id s rec o v e r ed

Humic a c id s from th e brown l o e s s s o i l , Humic a c id s from th e p ea t meadow s o i l ,

Amino P r u sy , / I / Szarów, / I I / a c id F i r s t h y d r o ly z a te s , 4 Second h y d r o ly z a te s , ZB F i r s t h y d r o ly z a te s , h y d r o ly z a te s ,Gecond IXb LYS 9 ,9 6 ,8 5 ,2 1 5 ,8 2 4 ,0 8 ,3 1 0 ,4 9 ,4 2 2 ,0 1 2 ,0 HIS 4 ,8 2 ,3 1 .3 6 ,2 X 4 ,0 3 ,0 3 ,6 1 0 ,5 X ARG 8 ,8 4 ,0 3 ,5 1 6 ,0 X 6 ,6 5 ,4 3 ,5 1 3 ,9 X ASP 1 3 ,4 1 2 ,2 1 4 ,3 6 ,2 6 ,6 1 3 ,2 9 ,9 1 4 ,2 7 ,7 8 ,3 THR 4 ,0 4 ,8 6 ,4 2 ,6 3 ,4 5 ,2 4 ,5 6 ,0 3 ,0 3 ,0 SER 3 , 4 4 ,7 5 ,7 2 ,6 4 ,0 4 ,1 4 , 4 4 ,9 3 ,1 4 ,3 GLU 9 ,3 1 0 ,7 9 ,4 6 ,1 8 ,3 8 ,9 9 ,0 1 0 ,6 8 ,0 1 0 ,2 PRO 6 ,4 9 ,5 8 ,1 4 ,7 7 ,1 5 ,0 3 ,1 8 ,0 4 ,5 6 ,9 GLY 8 ,3 1 0 ,1 1 3 ,4 6 ,2 8 ,3 1 0 ,1 1 1 ,4 1 2 ,2 9 ,2 1 1 ,1 ALA 8 ,3 1 0 ,1 9 ,6 4 , 4 6 ,1 1 2 ,0 1 0 ,4 1 1 ,5 5 ,9 8 ,0 VAL 6 ,7 6 ,2 6 ,7 9 ,3 8 ,6 6 ,8 6 ,2 8 ,6 1 1 ,3 1 0 ,6 MET 0 ,8 0 ,4 0 ,4 0 ,2 0 ,9 0 ,4 0 ,3 0 ,5 0 ,0 5 tr a c e s I LEU 3 ,7 3 ,5 3 ,8 6 ,2 7 ,0 3 ,7 3 ,8 5 ,3 7 ,5 8 ,5 LEU 6 ,7 6 ,8 6 ,7 6 ,4 8 ,2 6 ,3 6 ,0 8 ,0 8 ,1 9 ,9 TYR 1 ,7 1 ,5 1 ,4 2 ,6 2 ,1 1 ,8 1 ,1 1 ,1 2 ,0 2 ,1 PHEN 3 ,7 5 ,4 3 ,9 4 ,6 4 ,8 4 ,0 5 ,6 3 ,8 4 ,9 5 ,0 Uniden­ t i f i e d Long c o l . , b u f f e r I I :

ca. 53 m in ., ca 75 min. a b sen t

Long c o l . , b u ffe r I I :

(9)

dryness a t 40-45°C an d used for d e te rm in a tio n of am ino acids. T he solid collected on th e fu n n el w as d ried in vacu um to co n stan t w eight, analyzed for C, H, N co n ten t and reta in e d for n e x t hydrolysis.

S e c o n d h y d r o l y s i s : T he d ried sam ple (0.2 g) of th e solid resid u e

a fte r firs t hyd ro ly sis and 20 cc of 6 N HC1 w ere placed in a glass tube,

sealed u n d e r n itro g en and tre a te d as d escribed above. T he evap o rated f iltra te w as used for th e d e te rm in a tio n of am ino acids. T he rem ain in g resid u e w as an aly sed for C, H, N, content.

B oth hy dro lysis p ro ced u res w e re c a rrie d out on rep lica te sam ples and all d e te rm in a tio n s re p e a te d tw ice.

T he re su lts in T able 3 show th e m ean valu es of tw o or th re e se p ara te estim ations; th ese a re p rese n ted in T able 2.

AM INO ACIDS A N A L Y SIS

T he analyses w e re c a rrie d out on th e B eckm ann-Spinco 120B am ino acids au tom atic an alyser, fitte d w ith tw o colum ns. T he longer one, 50 cm long an d 0.9 cm in d iam eter, filled w ith C ustom S p herical R esin T ype

AA-15 (m inim al 8'°/o crosslinked sulp h o n ated sty re n e copolym er), w as

elu ted in a s ta n d a rd w ay w ith 0.2 M citric b u ffe r a t pH 3.28. In about 150 m in u tes b u ffe r I w as replaced by citric b u ffe r II, pH 4.25. T he sh o rt colum n, 10 cm long and of th e sam e d iam eter, filled w ith AA-27 resin, w as elu ted w ith citric b u ffe r pH 5.28. T he in v estig ated sam ples w e re in ­ tro duced on colum ns a fte r dissolving th em in 0.1-2 cc of th e b u ffer. T he co n cen tratio n ord er of th e solution d eriv ed from th e in te n sity of ch ro m a­ togram s.

T he rep ro d u c ib ility of m axim a positions of th e calib ratio n m ix tu re com ponents w as p e rfe c t as long as th e sam e solution of n in h y d rin re a g e n t and of th e b u ffers w ere used th ro u g h o u t th e analysis. H ow ever, in analyses c arried out w ith new ly p rep a re d portions of n in h y d rin rea g e n t and of th e b uffers, th e positions for in d iv id u al am ino acids varied: for th e com pounds ap p earin g w ith in th e first 70 m in u tes (long colum n separation) th e change w as w ith in th e ran g e of 2 m in., fo r those ap p earin g la te r w ith in th e ran g e of 4 m in. By th e sh o rt colum n se p ara tio n th e differen ces w ere in th e

ran g e of 2 m in., except for ARG w hich w as rev ealed at in te rv a ls of

4-5 min.

E lutio n tim e fo r th e am ino acids w as as follows; sh o rt colum n: LYS

(ORN) 27, H IS 37, ARG 68; long colum n, I b u ffer: A S P 45, TH R 53, SER 56,

GLU 64, PRO 74, GLY 88, ALA 95, ABUT 110, VAL 128; II b u ffer:

ILEU 8-12, LEU 16, TYR 34, PH E 41 m inutes. Q u a n tita tiv e calculations w ere m ade by th e sta n d a rd m ethods using th e calib ratio n curves as referen ce.

(10)

Amino a c id com position o f p r o te in a c e o u s component o f s o i l humic a c id s ; mean v a lu e s o f n itr o g e n c o n tr ib u tio n from Tab. 2 , compared w ith th e v a lu e s g iv e n f o r s o i l and p la n t p r o te in h y d r o ly z a te s ,

/ 3 6 , 3 8 ,4 8 / and / 4 6 , 4 7 / Amino a c id Humic a c id s S o i l s from L eaves o f P h aseо lu s v u l g a r i s , p r o te in f r a c t i o n s / 4 7 / Lucerne / 4 6 / Grass p r o te in s / 4 6 / P rusy / I / Szarów / I I / f i r s t h y d ro l. 4 second h y d r o l. *B f i r s t h y d ro l. П А second h y d ro l. K B Lacombe / 3 6 / Flanagan, s i l t loam, / 3 8 / H o y t v i l l c , c la y loam, / 4 8 / whole p r o t. cy to ­ plasm . p r o t. A В LYS 7 ,3 1 5 ,4 9 ,4 1 7 ,0 1 5 .7 * 1 3 ,4 1 4 ,0 9 ,5 1 0 ,8 9 ,4 9 .4 9 .4 HIS 2 ,8 6 ,2 3 ,5 1 0 ,5 2 ,4 * 1 .7 2 .5 5 ,8 4 ,4 5 ,1 5 .0 4 .7 ARG 5 ,4 1 6 ,0 5 ,2 1 3 ,9 4 ,1 * 4 ,9 2 ,8 1 6 ,0 1 1 .5 1 6 ,6 1 5 .7 1 4 ,4 ASP 1 3 ,3 6 ,4 1 2 ,4 8 ,0 1 3 ,5 6 ,3 1 3 ,6 8 ,4 1 0 ,0 7 ,8 8 ,0 8 .1 THR 5 ,1 3 ,0 5 ,2 3 ,0 9 ,1 8 ,4 6 .7 4 ,6 4 ,7 4 ,2 4 ,6 4 ,6 SER 4 ,6 3 ,3 4 ,5 3 ,7 5 ,6 8 ,6 * * 7 .6 5 ,2 6 ,4 4 ,2 3 ,9 4 ,8 GLU 9 ,8 7 ,2 9 ,5 9 ,1 9 ,7 7 ,9 9 .2 9 ,0 9 .7 7 ,7 8 ,6 7 ,6 PRO 8 ,0 5 ,9 7 ,0 5 ,7 4 ,3 5 ,6 4 ,1 4 ,3 5 ,0 4 ,5 4 ,0 4 ,6 GLY 1 0 ,6 7 ,3 1 1 ,2 1 0 ,2 1 3 ,2 1 2 ,2 1 0 ,6 7 ,9 7 ,8 7 ,5 6 ,7 7 ,9 ALA 9 ,3 5 ,3 11 .3 7 , 0 6 ,3 1 0 ,7 1 2 ,2 6 ,9 7 ,4 7 ,1 7 ,5 8 ,0 VAL 6 ,5 8 ,9 7 ,2 1 1 ,0 6 ,0 6 ,5 6 ,9 5 ,4 6 ,0 5 ,9 5 ,1 6 ,4 MET 0 ,5 0 ,4 0 ,4 t r a c e s not g iv e n 1 .2 1 .3 1 .3 I LEU 5 ,7 6 ,6 4 ,4 8 ,0 3 ,2 4 ,5 2 ,5 3 ,8 3 ,9 4 ,4 5 .1 4 .2 LEU 6 ,7 7 ,8 6 ,8 9 ,0 3 .7 5 ,9 4 ,4 7 ,4 7 ,0 7 ,5 7 .5 7 ,2 TYR 1 .5 2 ,4 1 .3 2 ,1 1 .8 1 .6 0 ,9 2 ,6 2 ,3 2 ,8 3 .1 2 ,8 PHEN 4 ,3 4 ,7 4 ,5 5 ,0 2 ,7 1 .8 2 ,1 3 ,6 3 ,2 3 .9 4 .4 4 ,0

* / n o t g iv e n in / 3 6 / , supplem ented by th e authors*, * * / not g iv e n / 3 8 / , supplem ented by th e authors

L . C z u c h a jo w sk i, A . E r n d t

(11)

RESULTS AND DISCUSSION

T he am ino acid co n tents of acid hydro ly zed hum ic acids derived from th e b ro w n loess soil (I, P rusy) and from th e p eat m eadow soil (II, Szarów) are show n in T able 2. T he d ata express a p ercen tag e n itro g en co n trib u tio n of each am ino acid in th e to ta l n itro g en content of all am ino acids recovered. W ith in individual am ino acids w hich a re typical con stitu en ts of p ro te in p rep a ra tio n s try p to p h a n w as not estim ated because of its d e stru c tio n u n d e r th e conditions of hy drolysis em ployed. On th e o th er hand, th e re su lts p rese n ted in T able 2 show ing th e tim e of elu tion of am ino acids from the colum n ind icate th e presence of some u n id en tified com ­ p onents giving a positive rea c tio n w ith n in h y d rin . T h e re a re tw o com ­ pounds ap p earin g in ca. 53rd and 75th m in. of elu tio n w ith b u ffe r II from th e long colum n w hich m ay be reg ard ed as glucosam ine and galactose- am ine.

P re se n ta tio n of a n aly tical re su lts included in T able 3 shows clearly th e re la tio n b etw e en am ino acid com position found in hum ic acids an d th a t of p la n t p ro te in p rep aratio n s. It seem s also u seful to point out certain considerations reg a rd in g th e relatio n sh ip b etw e en am ino acid com position d e te rm in e d in th e p re se n t w o rk and th e am ino acid co n ten t of acid h y dro lyzed soils re p o rte d in th e lite ra tu re [32, 36, 38, 48]. T he com parison of th e am ino acid com position in hum ic acids w ith th a t foun d in p ro tein h ydro ly zates fro m th e leaf of P haseolus vulgaris [47] is w o rth y of special note because of a n id e n tity of th e h y drolysis p roced u re and of th e te c h ­ niqu e of am ino acids analysis.

In o rd er to avoid in e q u a lity of sam ples associated w ith heterog en eou s soil m aterial, each hum ic acids sam ple to be hydro lyzed consisted of several hum ic acids po rtion s e x tra c te d e ith e r from th e b row n loess soil (I, P ru sy ) or from th e p e a t soil (II, Szarów).

In T able 1 a re given th e re su lts of elem en tal analyses of hum ic acids b efore hydro lysis and a fte r th e first and th e second tre a tm e n t w ith 6 N hydrochloric acid. It can be seen th a t th e first hydrolysis low ers th e nitro g e n co n ten t in th e resid u e alm ost equally in hum ic acids I (Prusy) and in hum ic acids II (Szarów). T he d ecrease is 45% in I and 48% in II, respectively , even th o u gh th e p a re n t hum ic acids before hydrolysis d iffered m ark e d ly in th e ir n itro g e n co n ten t (2.77% N in I, 4.0% N in II). T he second hydroly sis causes a d iffe re n tia tio n in th e release of n itro g en from th e resid u e a fte r th e firs t action of 6 N HC1; th e v alues a re 11% and 30'% of th e n itro g e n p re se n t before th e second tre a tm e n t.

No larg e d ifferences in am ino acids co n ten t of th e firs t h y d roly zates of hum ic acids I an d II w ere found, although, at th is stage of hydrolysis th e co n ten t of alan in e w as 11.3% (II) and 9.3% (I). D ifferences in am ino acids co n ten t in th ese h y d rolyzates w ere w ith in th e ran ge of am ino acid

(12)

d istrib u tio n in p ro te in p rep a ra tio n s of cytoplasm ic an d chloroplast fra c ­ tions rem ov ed from th e leafs of Phaseolus vulgaris [47].

L a rg er differen ces in th e co n ten t of in d iv id ual am ino acids w e re found in th e second h ydro ly zates of I an d II. T he con tents of LYS, HIS, ARG, A SP, GLU, GLY, ALA and VAL ex pressed as a p erc e n ta g e of th e to ta l am ino acid n itro g e n d iffered b y m ore th a n 1.5'%. H ow ever, a c e rta in re g u la rity of v ariatio n s in am ino acid co n ten t in th e firs t and th e second h y dro ly zates of hum ic acids (II an d I) d eriv ed from b o th ty p es of soil is

n o tew o rth y . As th e action of 6 N HC1 p roceeded th e co n ten t of LYS in

th e h y d ro lyzates expressed as a p ercen tag e of to ta l am ino acid n itro g en

increased by ca. 8% (II) and 6% (I), th a t of H IS b y 7% and 3% , ARG

9% and 11%, VAL 4% and 2% , ILEU 4% and 3% , respectively; th e

co n ten t of A S P d ecreased by 4% an d 7% , an d th a t of ALA w as low er by 4% and 4% , respectively . In fact, th ese differen ces w e re associated w ith all analy sed basic am ino acids an d does not re fe r to th e n e u tra l am ino acids having cyclic fra g m en ts and h y d ro x y l groups.

It is of p a rtic u la r in te re s t th a t th e am ino acid com position of th e first hy d ro ly zates of b o th hum ic acids (I an d II) rem inds m uch m ore of th e d istrib u tio n of am ino acids in p la n t p ro te in of th e aboveground p a rt of

Phaseolus vulgaris [47] and of lu cern e and grass [46], th a n it does th e

am ino acid com position of second hydrolyzates. In th e la tte r, only th e contents of ARG, A SP, PRO an d ALA m ay be re la te d to th e p la n t p ro te in com position.

It seem s also in te re stin g to com pare th e re su lts of th e p re se n t w ork concerning th e am ino acid com position of proteinaceous co n stitu en ts of hum ic acids w ith those of acid hy d ro lyzed soils re p o rte d in th e lite ra tu re [36, 38, 48], alth o u g h some co rrection is n eeded for th e presence of sm all q u a n titie s of free am ino acids d etected in soil [7]. D iffe ren t conditions of hydrolysis and an aly tic a l p ro ced u re m ay also in fluence th e results. N evertheless, th e im pression is th a t th e c o n ten t of eight am ino acids (LYS, HIS, ARG, A SP, GLU, GLY, VAL, ILEU) in th e firs t h y drolyzates of hum ic acids is com parable w ith th a t found in hydrolyzed soil. W ith resp ect to th e co n ten t of PR O and LYS soil hy d ro ly zates a re sim ilar to th e second h y dro ly zates of hum ic acids.

Obviously, conclusions of a n o v er-all n a tu re re q u ire m ore d etailed stu d y on hum ic acids deriv ed from a w id e r ran g e of soil types. O n th e basis of th e p rese n t re su lts a n assu m p tio n can be m ade th at: soil hum ic acids contain tw o m ain proteinaceo us fractio n s d ifferin g in am ino acid com position, or th e re is a d ifferen ce in th e su scep tib ility to h y d ro ly tic cleavage of p ep tid e bonds in th e am ino acid sequence of p ro tein s and peptid es w hich re su lts in tw o “fra c tio n s” havin g d iffe re n t am ino acid com­ position. In a n y case, am ino acid d istrib u tio n in b o th “fra c tio n s” seem s to

(13)

be re p re se n ta tiv e of proteinaceous co n stitu en ts of soil hum ic acids. T he m ore easily hy droly zed com ponents a p p e ar to be sim ilar to p la n t protein.

It is d ifficu lt to n eglect th e possibility of decyclization of N -heterocyclic non-pro teinaceou s com ponents of hum ic acids follow ed by sp littin g th em into basic and ch ain b ran ch ed am ino acids, on prolonged hydrolysis. This w ould be consistent w ith th e increase of VAL and ILEU co n ten t found in th e second h ydrolyzates. Such reactio n s w ould be expected to c o n trib u te to th e d iffe re n tia tio n of am ino acid co n tent in th e second h yd ro ly zates of hum ic acids d erived from d iffe re n t soils.

The authors are in debted to Miss Zofia Pasternak for assistance in the laboratory work.

REFERENCES

[1] A l e k s a n d r o w a L. H.: Dokł. Sow. Poczw ow iedow к VII Mieżdun. Kongr. w S. Sz. A., A. N. SSSR, I960.

[2] A t h e r t o n N. М., С r a n w e 11 P. A., F l o y d A. J., H a w o r t h R. D.: Tetrahedron, 23, 1967, 1653.

[3] В r a d 1 e у W. F.: J. Am. Chem. Soc., 67, 975, 1945.

[4] B u r g e s N. A., H u r s t H. M., W a l k d e n B.: Geochim. et Cosmochim. Acta, 28, 1964, 1547.

[5] C h e s h i r e M. V., C r a n v e i l P. A., F a l s h a w C. P., F l o y d A. J.: Tetrahedron, 23, 1669, 1967.

[6] С z u с h a j o w s k i L.: Roczniki Chem., 41, 237, 1967.

[7] C z u c h a j o w s k i L., B a r u t o w i c z Z.: Bull. Acad. Polon. Sei., sér. sei. biol., 18, no. 9, 1970.

[8] C z u c h a j o w s k i L., E r n d t A.: Roczniki Chem., 43, 1969, 1451.

[9] C z u c h a j o w s k i L., E r n d t A.: Bull. Acad. Polon. Sei., sèr. sei. chim., 18, 1970, 35.

[10] C z u c h a j o w s k i L.: Roczniki Chem., 41, 1967, 593.

[11] D e S. K., R a s t o g i R. C.: Z. Pflanzenernähr. Düng. Bodenk., 98, 1962, 121. [12] D e u e 1 H.: Trans. Intern. Congr. Soil Sei. 7th congr., 1, 1960, 38.

[13] D u f f R. B.: J. Sei. Food Agr., 3, 1952, 140.

[14] F i s c h e r E., S c h r ä d e r H.: Ber. Dtsch. Chem. Ges., 43, 1910, 525. [15] F o r s y t h W. G. C.: J. Agr. Sei., 37, 1946, 132.

[16] F o r s y t h W. G. C.: Biochem . J., 41, 1947, 176; 46, 1950, 141.

[17] F o r s y t h W. G. C., F r a s e r G. K.: Nature (Lond.), 160, 1947, 607. [18] G r e e n G., S t e e 1 i n к C.: J. Org. Chem., 27, 1962, 170.

[19] G r e e n l a n d D. J., L a b y R. H., Q u i r k J. P.: Trans. Faraday Soc., 88, 1962, 829.

[20] H a s l a m E.: Chemistry of Vegetable Tannins, Acad. Press, Lond. 1966, pp. 92, 126, 129.

[21] H o f f m a n R. W., B r i n d l e y G. W.: Geochim. et Cosmochim. Acta, 20, 1960, 15.

[22] H o p p e - S e y l e r F.: Z. physiol. Chem., 13, 1889, 66. [23] H o s a d a K., T a k o t a H.: Soil and Plant Food, 3, 1957, 197.

(14)

[25] J u r i n a к J. J., V о 1 m a n D. H.: J. Phys. Chem., 63, 1959, 1373. [26] K a w a g u c h i K., K y u m a K.: Soil and Plant Food, 5, 1959, 54.

[27] K o n o n o w a M.: Substancje Organiczne Gleby, ich Budowa, Własności i Me­ tody Badań, PWRL, W arszawa 1968.

[28] L a d d N. J.: Austr. J. Biol. Sei., 17, 1964, 153.

[29] M a c E w a n A. F.: Trans. Faraday Soc., 44, 1948, 349. [30] M o r r i s o n R. I.: Chem. and Ind., 1955, 231.

[31] M o r r i s o n R. I.: J. Soil Sei., 9, 1958, 130; 14, 1963, 210.

[32] M o r t e n s e n J. L., H i m e s F. L.: in F. E. Bear “Chemistry of the S oil”, Reinhold Publish. Corp., 2nd ed., N. Y., 1965, p. 209.

[33] O d e n S.: Kolloidchem . Beihefte, 11, 1919, 75.

[34] P i n c k L. A., D y a l R. S., A l l i s o n F. E.: Soil Sei., 78, 1954, 109.

[35] S c h a r p e n s e e l H. W., A l b e r s m e y e r W. Z.: Pflanzenernähr., Düng., Bodenkunde, 88, 1960, 203.

[36] S o w d e n F. J.: Soil Sei., 80, 1955, 180.

[37] S t e e 1 i n к C.: Geochim. et Cosmochim. Acta, 28, 1964, 1615. [38] S t e v e n s o n F. J.: Soil Sei. Soc. Am. Proc., 20, 1956, 204.

[39] S t e v e n s o n F. J., C h e n g C. N.: Geochim. et Cosmochim. Acta, 34, 1970, 77. [40] S t e v e n s o n F. J., K i d d n e r G., T i l o S. N.: Soil Sei Soc. Amer. Proc.,

31, 1967, 71.

[41] S w a b y R. J., L a d d N. J.: Trans. Int. Soil Conf., N ew Zealand, Comissions IV and V, 1962.

[42] S z m u k A. A.: Trudy Kubańsk. S-Ch. Inst., t. 1, wyd. 2, 1924. [43] T r u s o w A. G.: Ż. Opytnoj Agronomii, 17, 1916.

[44] Т у l i n A. T.: Soil Sei., 45, 1938, 342.

[45] W a к s m a n S. A.: “Hum us”, 2nd ed., The W illiam s and W ilkins Co., Baltim o ­ re, USA 1938.

[46] W i l s o n R. F., T i l l e y J. M. A.: J. Sei. Fd. Agric., 16, 1965, 173.

[47] W o j t a s z e k T., C z u c h a j o w s k a Z.: Coll. of Papers pres, to the Intern. Congress of Horticulture, Israel 1970.

[48] Y o u n g J. L., M o r t e n s e n J. L.: Res. Circ. 61, Ohio Agr. Expt. Sta., 1958.

L. CZUCHAJOW SKI, A. ERN DT

SKŁAD AMINOKWASOWY BIAŁKOWEGO KOMPONENTA KWASÓW HUMINOWYCH Z GLEBY

K atedra C hem ii O gólnej WSR w K rak ow ie

S t r e s z c z e n i e

Z gleby brunatnej w łaściw ej, w ytw orzonej z lessu (Prusy) oraz z gleby torfowej, w ytworzonej z torfu niskiego na ile m ioceńskim (Szarów), otrzymano w w yniku ekstrakcji 0,2n NaOH w tem peraturze pokojowej oraz wytrącania kwasem solnym — kwasy hum inowe I (Prusy) i II (Szarów), różniące się znacznie zawartością azotu: I — 2,77%, II — 4,00°/o. K wasy te poddano hydrolizie w warunkach beztlenowych przy udziale 6n HC1 i w otrzymanych hydrolizatach oznaczono zawartość poszczególnych am inokwasów; analizę prowadzono na autom atycznym analizatorze Beckm ann-Spinco 120B. Ponieważ hydroliza nie przeprowadziła całej ilości kw asów hum inowych do

(15)

roztworu, pozostały osad poddano powtórnej hydrolizie, po czym w e w tórnych h y­ drolizatach oznaczono zawartość am inokwasów. Wyniki analizy elem entarnej w y j­ ściowych kwasów hum inowych oraz nie zhydrolizowanych pozostałości po pierwotnej i wtórnej hydrolizie, a także ubytek zawartości azotu podano w tab. 1, zaś w yniki analizy ilościowej am inokwasów uwolnionych z części białkowej kwasów hum ino­ w ych w w yniku hydrolizy pierwotnej i wtórnej przedstawiono w tab. 2; przytoczone w niej wartości liczbowe podają, jaki procent azotu ogólnego, znajdującego się w e w szystkich oznaczonych am inokwasach, przypada na każdy am inokwas. W tab. 3 porównano wartości średnie poszczególnych oznaczeń z tab. 2 ze składem am inokwa- sowym białek roślinnych [46, 47] oraz zhydrolizowanych gleb [36, 38, 48].

Pierw sze hydrolizaty kwasów hum inowych obu typów — Ia i IIa — w ykazały podobny skład am inokwasowy; w w iększym stopniu różniły się jedynie zawartością ALA. Różnice składu am inokwasowego między IA i I Ia m ieściły się w granicach róż­

nic znalezionych np. dla frakcji cytoplazm atycznej i chloroplastowej białka liści Phaseolus vulgaris [47]. Drugie hydrolizaty — Ib i Ив w ykazały nieco w iększe różnice składu am inokw asow ego, przekraczały one 1,5%> zawartości sumarycznego azotu am i­ nokw asowego w przypadku: LYS, HIS, ARG, ASP, GLU, GLY, ALA i VAL. Jednakże, co jest charakterystyczne, prawidłowość wzrostu lub spadku zawartości am inokw a­ sów przy przejściu od pierwotnych do wtórnych hydrolizatów okazała się dla kw a­ sów hum inow ych obu gleb taka sama: IIa -^ IIb , I a ^ I b . Wzrastała zawartość LYS odpowiednio o ok. 8 i 6°/o ogólnego azotu am inokwasowego, przypadającego na ten am inokwas, HIS o 7 i 3%, ARG o 9 i ll°/o, VAL o 4 i 2%> oraz ILEU o 4 i 3°/o; zm niej­ szyła się natom iast zawartość ASP o 4 i 7°/o i ALA o 4 i 4°/o. Charakterystyczne jest to, że skład pierwszych hydrolizatów obu kw asów hum inowych Ia i Ha znacznie bardziej przypomina skład białka roślinnego niż skład w tórnych hydrolizatów

Ib, Hb.

Można pokusić się o sugestię, że w naturalnych kwasach hum inowych istnieją dwa typy głów nych frakcji białkow ych różniących się istotnie składem am inokwa- sowym, albo też w ystępują białka, które podczas hydrolizy wykazują dość podobną od­ porność wiązań peptydowych, łączących określone am inokwasy, co powoduje, iż biał­ ka te ulegają sw ego rodzaju hydrolizie „frakcjonowanej” do dwóch frakcji, różnią­ cych się od siebie składem am inokwasowym.

JI. ЧУХ А Й ОВС КИ , А. ЭРНДТ АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВОГО КОМПОНЕНТА ГУМИНОВЫХ КИСЛОТ п о ч в ы К а ф е д р а О бщ ей Х имии, В ы сш ая С ел ь ск охозя й ств ен н ая Ш кола в К рак ов е Р е з ю м е С типичной бурой почвы образованной из лесса (м. Прусы) и с торфяной почвы образованной из низинного торфа залегающего на миоценовом иле (м. Ш а­ ров) были получены — в результате экстрагирования 0,2 н NaOH при комнатной температуре и осаж дения соляной кислотой — гуминовые кислоты I (Прусы; и II (Шаров) заметно различающиеся по содержанию азота: I — 2,77, II — 4,00%. Эти кислоты были затем подвергнуты гидролизу в анаэробных условиях под воздействием 6 н НС1. В полученных гидролизатах определялось содерж ание от­

(16)

дельных аминокислот; анализы выполняли на автоматическом анализаторе Beckm ann-Spinco 120 В. В виду того, что во время гидролиза не все аминокислоты переходили в раствор, остаток подвергали повторному гидролизу и определению аминокислот во вторичных гидролизатах. Результаты элементарного анализа исходны х гуминовых кислот и негидролизуемого остатка после первого и второго гидролиза, а такж е убыль в содержании азота, поданы в таб. 1; результаты коли­ чественного анализа аминокислот освобожденных из белковой части аминовых кислот в последствии первого и второго гидролиза показаны в таб. 2; помещенные в ней цифровые данные показывают какой процент общего азота, находящегося во всех определяемых аминокислотах, приходится на каж дую из аминокислот. В таб. 3 сравниваются средние значения отдельных определений из таб. 2 с ами­ нокислотным составом растительных белков (46, 47) и гидролизованных почв (36, 38, 48). Первые гидролизаты гуминовых кислот, Iа и IIа, обладали подобным амино­ кислотным составом; более заметно они различались единственно по содержанию ALA. Различия в аминокислотном составе м еж ду 1л и IIа находились в пределах разниц выявляемых например для цитоплазматической и хлоропластной ф рак­ ции белка листьев Phaseolus vulgaris [47]. Вторые гидролизаты — I/з и Ilß пока­

зывали немного большие разницы аминокислотного состава, которые превышали 1,5% от суммарного содержания азота аминокислот в случае: l y s , h i s , a r g , a s p , g l u , GLY, ALA и v a l . Однако, что является характерным, закономерности в повы­ шении либо понижении содержания аминокислот при переходе от первичных к вторичным гидролизатам были для гуминовых кислот почв аналогичны: Н А — I I В, I А — Iß- Повышалось содерж ание l y s на около 8 % а общего аминокислотного азота, приходящегося на эту аминокислоту, на 6%; h i s — соответственно на 7% и 3%; a r g — на 9% и 11%; v a l — на 4% и 2°/о, а такж е i l e u на 4°/о и 3°/о; пони­ зилось ж е содерж ание a s p на 4% и 7%, a a l a на 4°/о и 4°/о. Характерно, что состав первых гидролизатов обеих гуминовых кислот, Iа и Пл, был заметно более бли­ зок составу растительного белка, чем состав вторичных гидролизатов Iß и Пл. Авторы склонны полагать, что в естественных гуминовых кислотах имеются либо — два типа главных белковых фракций существенно различающихся в отношении аминокислотного состава, либо —■ выступают в них белки, которые во время гидролиза проявляют сходную силу пептидных связей соединяющих данные аминокислоты, что приводит к своего рода „фракционированному” гидро­ лизу этих белков до двух фракций, отличающихся друг от друга аминокилсотным составом. W płynęło do PTG w lipcu 1970 r. Dr L eszek C zu ch ajow sk i

Z akład C hem ii O gólnej U n iw e r sy te tu J a g ie llo ń sk ie g o K raków

Cytaty

Powiązane dokumenty

Czytelny podpis

Udowodnij, że następujące punkty: środek okręgu wpisanego, środek okręgu opisanego i środki boków AC i BC leżą na jednym

Administratorem danych osobowych Pani/Pana jest minister właściwy do spraw rozwoju regionalnego, pełniący funkcję Instytucji Zarządzającej dla Programu Operacyjnego

The purpose of this study was to assess whether time of vitamin D supplementation in the first months after birth, season of birth, and feeding type (breastfeeding

W przypadku pogody mokrej (tab. 1) w miesiącach letnich zauważa się w więk- szości wzrost temperatury dopływających ścieków względem temperatury tych ście- ków podczas

Perspektywa naturalistyczna pojawiła się w drugiej połowie XX wieku jako sprzeciw wobec metodologii scjentystycznej i filozofii analitycznej.. Ta

2 Hipoteza zerowa: wartości oczekiwane (średnie) badanej cechy w dwóch grupach nie różnią się

W związku z faktem, iż włączono do naszego hipotetycz- nego modelu wyjaśniającego zdolności twórcze oraz osiągnięcia szkolne, zaprezentowano zależności między