• Nie Znaleziono Wyników

5 C2 со (nt) ^ n2co(r), (A — c2)u(x, у) = 0 in the half-plane On the limit properties of the solution of the Dirichlet problem for the equation

N/A
N/A
Protected

Academic year: 2021

Share "5 C2 со (nt) ^ n2co(r), (A — c2)u(x, у) = 0 in the half-plane On the limit properties of the solution of the Dirichlet problem for the equation"

Copied!
8
0
0

Pełen tekst

(1)

ROCZNIK1 PO LS Kl EGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXVI (1986)

Eu g e n i u s z W a c h n i c k i

(Krakôw)

On the limit properties o f the solution o f the Dirichlet problem for the equation (A — c2) u( x, у) = 0 in the half-plane 1. In paper [6] a solution of the Dirichlet problem for the equation {A —c2) u( x , у) = 0, c > 0, in the half-plane Æ+ = {(x, y): |x| < oo, y > 0] has . been given. This solution is of the form

u(x, y) = /(/; x, y) = —^ = I f ( x - s ) H ( s , y)ds = f * H ( -, y)(x),

where

12 1

H (s, y) — - c y-

71 \/},2 + s

2 K 1 (C\/y2+S2)

and K v is the MacDonald function of index v ([7]).

The purpose of this paper is to present some limit property of the function / (/;x, y) as y 0+. Such a problem in the case of Laplace equation was investigated in papers [1 ]— [3], [5].

2. Let

со

be a function defined in

[0, oo).

If (i) co(0) = 0,

(ii) со is a continuous and non-decreasing function in .[0,

oc),

(iii) for every t ^ 0 and every positive integer n

со (nt) ^ n2co(r),

then we call со a function of the type of 2-nd modulus of smoothness.

It is easy to show that there exist positive constants C1?

C2 such that

l

(1) Cj

t2

^ co(0 ^ C2 j~y^d z,

0 < t < j . t

Moreover, there exists a function со* satisfying conditions (i)— (iii) such that

5 Co(f) ^ co*(f) ^ co(f),

0 ^ t

<

oo,

and the function

co*(t)/t2

is a non-increasing one in (0,

oo).

(2)

180 E . W a c h n i c k i

Let Щ L„ denote the set of all functions f e L p(R) (1 ^ p < oo) for which

\\f(- + h ) - 2 f ( ' ) + f ( - - h ) \ \ p * : a > m,

where со is a function of the type of 2-nd modulus of smoothness satisfying the condition

m o

h ^

J *

о We prove

Th e o r e m 1.

I f f е Щ Ь р

(1 ^

p

<

oo), then there exist real numbers M > 0 and a ^ 1 such that

(2) II/(/; % y)—f (* )llp < M ^ ° ^ ~ d t + y J ^ - d t + y j.

о у

Proof. It is known ([6]) that I ( \ ; x, y) = exp( — cy), hence

(3) II/(/; -, y)-/(-)llp < »/(/; -, l; -, y)llp+

+ll/(i;% y)/(-)-/(-)llp

= ll/(/; -, y ) - H i;-, y)/(-)llp+ll/llp|exp(-cy)-i|

<11 /(/;-, y ) - / ( i; - , y)/(-)llp+c3y,

where C3 is a positive constant.

The kernel H(s, y) of the singular integral /(/; x, y) is a positive one and it is an even function with respect to s. Hence, by Holder-Minkowski inequality ([2]) we obtain

(4) l|/(/; -, •, y)f(')\\p l r

UJ (/ (x - s )- / (x ))# (s , y)ds

p \i/p dx

^/bz J ^/271 (/ (x - s) - 2/ (x) +/ (x + s)) H(s, y) ds

p \i/p

dx j

< U Iu , . | / (x -s )-2 / (x )+ / (x + s)|pdx y/p H{s,y)ds

J l K

J

\ y / 2n

J /

a)(s)H(s, y)ds.

(3)

We have the following ([6])

H( s, y) < ~y{ y2 + s2) 1, J > 0, |s| <

oo

. V n

Since ([7])

К 1 (z) ~ /— exp( — z) asz->oo,

thus there exists a constant a ^ 1 such that

H(s, y) ^ M t ys~3/2exp( — cs) for s ^ a , where is a positive constant.

Hence

1 f , u f y^(s) 1 f yw(s)

J b . J л J s2+y2 n ] s 2 + y2

О О у

+ M 2y со (s) s 3/2 exp ( — cs) ds < — f ds+—

71 J S 71

О у

'co(s) ds +

+ M 2y co(s)s 3/2 exp ( — cs)ds,

where M 2 is a positive constant.

It is easy to show that 00

Jco(s)s~3/2exp( — cs)ds ^ C4, .*

a

where C4 is a positive constant,

Hence, by (3), (4) and (5) we obtain (2).

From Theorem 1, in the case where to(h) = Khx, 0 < a ^ 1, К is а positive constant, we have the following

Co r o l l a r y.

I f f e L p(R)

( 1

^ p <

00)

and

then

11/(4- h ) - 2 f ( • ) + / ( - h)\\p = 0(\h\% 0 < a ^ 1,

II/(/;*, y)-/(-)llp =

0 (y l 0(y\\ny\)

for 0 < a < 1,

for

ol

= 1

as у — ■» 0+.

(4)

182 E . W a c h n i c k i

3. Now we consider (in a way) the inverse problem to the problem from Theorem 1. First, we prove an inequality of the Bernstein type for the integral /(/; x, y).

Le m m a

1. I f f e L p(R), 1 ^ p < oo, then ( 6 )

dx2 I if', x, y) < MAf\\Py~\

where M 3 is a positive number.

Proof. It follows from the results of [ 6 ] that

dx2 /(/; x, y) = f (s ) к % R

d_2_

dx2 H( x — s, y)ds.

Applying the formula ([7])

y -z v K v(z) z~v К

v + 1

(z) we get

(7) ^ / ( / ; x, y) = — \ f { x - s ) s 2{cQ) 5K 3{cg)ds c6y

сАУ f { x - s ) { c e ) K 2(cQ)ds,

where

q2

= s 2 + y 2.

In view of properties of the convolution ([2]) and (7) we have d2

dx 2/( / ;

у

)

с у

^ Wf Wp^- ^i C

|s 20 3K 3{cg)ds + Ip 2

K 2{cq)

ds cz у

2

^ 2||/||_ —I c s2

q

3 K 3(cg)ds +

q

2K 2(cg)ds By the formula ([7])

00

J t2m+1(t2 + z2) ~n/2K n{ a J t 2+ z 2)dt = K „ - m-i(az)

о

(5)

for m > — 1, a > 0, z > 0 and n = 1, 2, we obtain i l

ôx2 i (/; y) ^ C 5\\f\\py - l>2K 3l2(cy), where C5 is a positive constant.

Since ([7])

K 3/2(z) = J ^ { l + l / z ) e x p { - z ) , z > 0,

then (6) is true.

We shall prove

T

heorem

2. Let f e L p(R), 1 ^ p < oo. I f

(8) \\I ( f- , y) - f ( - ) \\P ^co(y),

where co{y) (y > 0) is a function of the type of 2-nd modulus of smoothness in L p metric, then 2-nd modulus of smoothness co2(f, t) of the function f in L p metric satisfies the inequality

l

(9)

co2 ( f ,

r)=SC6r2 0 < f < 1/2,

t * where C6 is a positive constant.

Proof. We apply the Bernstein method. We have m- 1

f ( x ) = /(/; x, i ) + X [/(/; x, 1/2j +l ) - I ( f ; x, l/ 2 ')]+ / (x )-/ (/ ; x, 1/2")

j= i

for every integer m ^ 2.

Hence

f (x + h) — 2f (x) + / (x — h) = (x, h) + A 2(x, h) + A3(x, h), where

A i (x, h) = /(/; x + h , % ) - 2 I ( f ; x, i) + /(/; x - h , {),

m— 1

A2( x , h ) = z {[/ (/ ; * + &, 1/2J + l) — I ( f ' , x + h, 1 / 2 J)] —

— 2 [/ (/ ; x, i/2j +i ) — I ( f ; x, 1/2-0] + + [/(/; * - A , 1/2J + x) —/(/; x - A , 1/20]}, Л3(х, A) = [/ (x + A) — / (/; x +A, 1/2")]- 2 [/ (x )- / (/ ; x, 1/2-)] +

+ [/ (x — A) — / (/; x — A, 1/2")].

(6)

184 E . W a c h n i c k i

We notice that

/(/; x + h, i ) - 2 /(/; x, !) + /(/; x-/i, i) ft

/2

ft

/ 2

^ / ( / ; x + f i + t j , $)dtl dt2.

— ft/2 —h/2

Hence, by Holder-Minkowski inequality and by Lemma 1 we get

ft/ 2 h/2

(10) \\AA',h)\\P -

«/ v

■h/2 -h/2

d2

dx 2I { f ‘> x + tx + t2, -j)dt! dt2

< h 2 x, i) ^ C 7 h2,

where C7 is a positive constant.

From the assumption and Hôlder-Minkowski inequality if follows that

(И ) 1Из(‘> h)\\p ^ 4co(l/2m).

In order to estime \\Л2(-, h)\\p let

(12) m„ (x) = /(/; x, 1/2n+1) —/(/; x, 1/2"), n = 1, 2, ...

From the Fubini’s theorem it follows that

/(/(/; *, 1/2"); X, l/2"+1) = /(/(/; X, l/2"+1); x, 1/2").

Hence, by the properties of the convolution and by (12) we get (13) u„(x)

= / ((/ (• )-/ (/ ; -, 1/2")); x, l/2"+ * )- / ((/ ( )- / ( / ; -, l/2"+1)); x, 1/2").

Further, we find

h/2 h/2

u„ (x + h) - 2 un (x) + un( x - h ) = A 2

dx 2un(x + t1+ t 2)dtl dt2,

-h/2 -h/2

hence, by (6) and (13) m- 1

И2(%

h)\\P

^ Z \\Uj( '

+ h) - 2uj { ' ) + uJ(--h)\\l j= 1

m-l ( Д2

h2 I \ g p / ((/ (• )-/ (/ ; % i/2J)); x, i/2J+1) +

+ A 2 _

dx2

/ ( ( / ( • ) - / ( / ; • . i / 2 J + l ));x , 1/21)

(7)

m— 1

< M 3h2 I {! ! / ( • ) - / ( / ; -, s-1

+11 / (• )- / (/ ; -, i/2J+')llp22j! . By assumption and by properties of the function to we have

m— 1

(14) \\A2(-, h)U, ^ M 3h2 £ (<u( l/2j) 22° + u + w ( 1/2-7 + *)22J)

j = i m - 1

^ 5 M 3/i2 X w ( 1/2') 22

j

j = i m— 1

= 10M3 h2 £ ûi(l/20(l/20-3(l/ ÿ +1)

i = i

1/2

^ C 8 h 2

J

w ( z ) z ~ 3 d z , 2 ~ m

where C8 is a positive constant.

Therefore it follows from (10), (11) and (14) that

1/2

\\f(- + h ) - 2 f ( - ) + f ( - - h ) \ \ p ^ C 1h2 + 4co(l/2m) + Cgh2 J ( o( z) z~4z

2~m

for every integer m ^ 2 and real / 1 .

If we assume 0 < t < 1/2 and choose m ^ 2 such that the inequality 2~m

< t < 2~m+i holds, then by properties of the function o> we get

1/2

ll/ (‘ + ^) —2/(•)+/(• —/i)||p ^ C7 h2 + 4(o(t) + C8 h2 J m (z)z-3rfz.

t/2

Consequently

1

(o2(f, 0 < C7 f2 + 4a>(f) + C9f2 Jcu(z)z~3dz t

and by (1) we have (9).

In the case where co(h) = Khx, 0 < a < 1 from Theorem 2 it follows

Co r o l l a r y.

I f f e L p(R),

1 <

p

< 00

and

ll/(/;% y)-f(-)\\P = o ( f ) , y > 0 ,

then \\f(- + h ) - 2 f ( - ) + f ( - - h ) \ \ p = 0(\h\*) as Л - 0 .

We notice that all the results of the present paper remain true if p = оc .

The proofs are similar, but more elementary.

(8)

186 E . W a c h n i c k i

References

[1 ] P. L. B u tz e r , W . K o b le , R. J. N e s s e l, Approximation by functions harmonic in a strip, Arch. Rat. Mech. Anal. 4, 5 (1972), 329-336.

[2 ] P. L. B u tz e r , R. J. N e s s e l, Fourier Analysis and Approximation, vol. I, New York and London 1971.

[3 ] V. I. G o r b a jc z u k , P. V. Z a d i e r j e j , Svojstva reszenij zadaczi Dirichle dla kruga i polosy, Mat. Sbor., Inst. Mat. USSR, K ijev 1976, 64-68.

[4 ] A. F. T im a n , Tieoria priblizenija funkcji diejstvietielnovo pierjemiennovo, M oscow 1962.

[5 ] M. F. T im a n , D A N SSSR (1962), 145.

[6 ] E. W a c h n ic k i, Solutions de certains problèmes aux limites pour l'équation A u (x , y) — c 2 u (x , y) = 0, Demonstr. Math. 10.2 (1977), 417-442.

[7 ] G. W a ts o n , A treatise on the theory o f Bessel functions, Cambridge 1962.

Cytaty

Powiązane dokumenty

We first notice that if the condition (1.7) is satisfied then the a priori estimates for u − ε 1 (x) given in Corollary 3.3 can be modified so as to be independent of ε... Below

In recent, years, several bounds of eigenvalues, norms and determinants for solutions of the continuous and discrete Riccati equations have been separately

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIK1 POLSKIEGO TOWARZYSTWA MATEMATYCZNEGOJ. Séria I: PRACE MATEMATYCZNE

In the paper [ 2 ] we solved only the Neumann problem for this region... This majorant applies also to the remaining

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

[r]

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO.. Séria I: PRACE MATEMATYCZNE

We propose the Galerkin method with finite-dimensional spaces based on the Lagrangean finite element of degree k £ N (see Sec.. In the case of strong ellipticity