• Nie Znaleziono Wyników

On some limit properties of the solution of the Riquier problem for the iterated Helmholtz equation in the half-plane

N/A
N/A
Protected

Academic year: 2021

Share "On some limit properties of the solution of the Riquier problem for the iterated Helmholtz equation in the half-plane"

Copied!
7
0
0

Pełen tekst

(1)

ANNALES SOCIETAT1S MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXVII (1987) ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO

Séria I: PRACE MATEMATYCZNE XXVII (1987)

Eu g e n iu s z Wa c h n ic k i (Krakôw)

On some limit properties of the solution of the Riquier problem for the iterated Helmholtz equation in the half-plane

1. Let R+ = {(x, y) y > 0 } . We consider in R 2h the following function (1) u ( f , g ; x , y )

1

2k

f(s)[2cr 1 y K ^ c ^ + ^ y K o i c r f t d s - — \g(s)yK0{cr)ds,

where r2 = (x — s)2 + y 2, c is a positive number, K v is the MacDonald function of index v ([4]) and / , g are given functions defined in the set R of all real numbers.

In paper [6] it has been proved that the function и is a solution of the equation

(2) ( A - c 2)2u(x, y) = 0

in R 2+ satisfying the following boundary conditions u(x, ÿ)\y=0 = /( x ) , Au(x, y)\y=0 =g(x), where /, g satisfy some assumptions.

Let us denote by L p, 1 ^ p ^ oo, the class of functions with a finite norm defined as follows

I I / I Ip =

( J |/ ( s r r f s ) 1"’

R

sup ess I/ (s)|

for 1 ^ p < OO, for p = oo.

In the present paper we shall prove a theorem concerning an estimation of М П /, g;y) = ||u(f, g; • , y)-f{o)\\p, M 2(f, g\y) = \\Au(f, g; o, y ) - g ( o)||p according to properties of the functions / , g. Moreover, for the case g = 0 in R we prove an converse theorem (in a sense).

This problem for the biharmonic equation was investigated in paper [2].

2. Let* eu denote a function of the type of the second modulus of

(2)

smootheness ([5]). Let Щ L p denote the set of all functions / e Lp for which II/ (o — s) — 2f (o ) + /( o + s)||p ^ со(|s|).

We prove

Theorem 1. I f / еЩ Ь р, g e L p, then (a) u e C ^ i R l ) ,

(b) (A — c2)2u(x, у) = 0 in the domain R+, 00

2 у f со (s)

(c) M x(f, g;y) ^ - c o ( y ) + - - j - d s + ky for у > 0,

n к J s

' У

where k = %c\\f\\p +~\ \g\\p.

P ro o f. Applying the Holder-Minkowski inequality, it is easy to verify that the following integrals

f / (5) Щ D; (yK0 (cr)) is, I f (5) Щ Щ (y r - ‘ K , (cr)) ds, j ÿ (s) D™ D«s (yK 0 (cr)) ds

R R R

are almost uniformly convergent in R \ for arbitrary non-negative integers m, n.

Hence, by the formulas ([4])

(3) 2v

K,+ M = j K , + 1 (t)+KM, =

we get (a) and (b).

We shall prove that (c) is true. In view of the properties of the convolution ([1]) the function и (/, g ; о, y) e Lp for every y > 0. Moreover,

\ \ § f ( s ) y K 0(cr)ds\\p ^ \\f\\p j y K 0(cQ)ds,

R R

Il f g (s) y K 0{cr) ds\\p ^ Hfifllp f y K 0 (cq) ds,

k R

where g2 = s2 + y 2.

By the formula ([7])

(4) t 2m+1 (t 2 + z2) - n/2 K„ (at2 + z2) dt —m —1 n m i v r>

0

(3)

where m > — 1, a > 0, z > 0, and n = 0, 1, . we have

Solution o f the Riquier problem 193

y K 0{cQ)ds = — ye cy, y > 0.

Hence

and

1

2n c2 y ( s ) y K 0(cr)ds

R

1 2 71

Further, by (4), we obtain 1 n and

g( s) yK0(cr)ds ^ 2 ^ У 1 рУ> У > ° -

cyr 1 K 1 (cr)ds — e cy, у > 0,

(/, 9 \ У) < u ( f , g ; o , y ) ~ - If (o)cyr 1 K ^ c ^ d s

R

^ - 1

К U ( s ) - f ( o Y \ c y r 1 K 1 (cr) ds + 2k

+ \\Л\Р\е~су- Ц

f(s) y K 0(cr) ds

R

1

2tu g(s) y K 0(cr)ds + \ \ f \ \ P \ e - c y - l \

< A + [ic\ \ f\ \ p + -^\\g\\p )y, у > 0,

■2c where

A — — n 1 f

[ / (s) - / (o)] cyr К ! (cr) ds We remark that

A — —

n U ( o - s ) - f { o ) ~ ] c y Q 1 K 1 (cg)ds

U (o - s) - 2 / (o) + / (o + s)] eye 1 /Ci (eg) ds

13 — Prace Matematyczne 27.1

(4)

By Holder-Minkowski inequality we get

A - I II/ (o ■- s) - 2f (O) + / (O + 5)11, ye - 1 K t (CQ) ds 0

^ - c

тс a>(s)yg 1 K 1(cg)ds, у > 0.

Using the formula ([4])

(5) ^ ,_4 2vT ( v + 1/2) j‘ cos zt ^

K v(z) /— J i2y + 1/2 dt

2 ч / TC we have K^^icg) ^ (eg) ; hence

A € у j‘co(s) у 'co(s) у <u(s) ds ^

TC J Q1 о

ds — I —y- ds, у > 0.

TC J s У

From the inequality

(6)

we get

cu(As) ^ (Л + l) 2co(s)

^(s) , ^ Г (s+y):

0

ds ^

} ф 2 + У2)ds(o(y) ^ 2<u(y) and

/1 ^ - со ( у ) 4—

тс

у С со (s) ds

TC J S' y and finally (c).

Theorem 2. I f f e L p, g e H ^ L p , then (a) н е С » (Я 2+),

(b) (A — c2)2u(x, y) = 0 in /? + , 00

(c) M 2(f, g; У) < - ю ( у ) + - U ^ d s + ^ y , y > 0 ,

TC TC J s

y

wlier^ fcj = i c 3 ||/|L + tsl|W

(5)

Solution o f the Riquier problem 195

Pr oof . From formulas (3) it follows that u(f, g; x, y) = I f ( s ) c 4 y K 0(cr)ds

2k

+ 2k 1 yK t ( cr) ~ c2yK o(cr)']ds,

hence, by the proof of Theorem 1 we get the assertion of Theorem 2.

3. Now we consider the case where g(s) = 0 for every s e R . Let u(f; x, y) = u(f, 0; x, y) = 1

2k f {s )[2 c r 1 y K ^ c ^ + c2 yKoicrftds.

From Theorem 1 we get

Theorem 3. I f f e H 2 L p, then

|u (/; o, y) - f{ o) \ \p ^ -co{y) + - j ° ^ d s + i c \ \ f \ \ py

K K s

f o r y > 0.

In the sequel we consider (in a sense) the inverse problem to the problem of Theorem 3. First we prove a theorem of the Hardy-Littlewood type.

Theorem 4. I f f eH 2 L p, then

d2u(f; o, y) dx"

^ ^ { y ) л

< 5 - 2 - , у > 0.

У

Pr o o f . Using formulés (3), we get d2u ( f ; x , y ) 1

dx2 2k ' f ( s^ 2c y (x ~ s> r К з (cr) + c У ( x - s f r 2 К 2{cr)

— 2c2yr 2K 2(cr) — c2yr 1 K l (cr)]ds

f ( x - s ) [2 c 3 ys2 Q- 2 K 3 (CQ) + c4 ys2 Q “ 2 К2 (CQ) 2k

- 2 c2yg 2 K 2( c g ) - c 2yg 1 K ^ c g f t d s .

(6)

It is easy to verify, by formula (4), that

j [2c3 ys2 g~3K 3 (eg) + c4ys2 g ~2K 2(cg)- 2c2yg ”2 K 2(cg) R

— c3 y g~ 1 К i (eg)] (is = 0, hence

00

d2u( f ; x, y) _ = 1 Г [ / ( x + s ) _ y w + / ( x _ s ) ] [2c 3 y s 2 e - 3 K 3 < c e )

OX 2 л J

0

+ c4 ys2 e “ 2 K 2( c e ) - 2 c 2.ye"*K2( c e ) - c 3y e “ 1K 1(ce)]</s.

Further, by Holder-Minkowski inequality and (6) we get

< ^ J <»(■*) [|2c3 ys2 ^ 3 K 3(cg) + c4 ys2g 2 K 2{cg) о

— 2c2y g ~ 2K 2(cg) — c3y g ~ 1 (c^)|]ds co(y)

"" 2яу2 о

+2c2y g ~ 2К 2(cg) + c3у д ”1 K t (cgjjds.

Applying formula (4) and (3) we can calculate that

GO

J (s + y)2 [2c3 ys2 g~3K 3 (eg) + c4 ys2 g~ 2 K 2 (eg) о

+ 2c2 y g ~ 2 K 2(cg) + c3 y g ” 1 K 1 (cgf\ds = ке~су(6 + 4еу + c2 у 2)

+ 6с2 у 2 К 2(cy).

It follows from formula (5 ) that c2 y 2 K 2(cy) ^ 2 for у > 0, c > 0. Since e~cy(6 + 4cy + c2 y 2) ^ 6 for у > 0, c > 0, then

d2u(f; o, y) ax2 which ends the proof of Theorem 4.

Using the results of paper [3], by Theorem 4 we get

Th e o r e m 5. Let f e L p. I f

I N /; °> k)-/(o)llp < a>(y),' у > о,

then l

co2(f, t) ^ M t 2

j

° ~ ^ d s , 0 < f < i ,

j (s + y)2 [2c3ys2£ 3 K 3(cg) + c4ys2 g 2K 2(cg) d2u(f; o, y)

ôx2

(7)

Solution o f the Riquier problem 197

where co2{f, t) denotes the second modulus o f smoot heness o f the function f and M is a positive number independent o f t.

References

[1] P. L. B u tz e r , R. J. N e s s el, Fourier analysis and approximation, vol. I, New York and London 1971.

[2] V. I. G o r b a ic u k , Conditions of solvability of the Riquier problem for the biharmonic equation in the half-plane and limiting properties o f its solution (in Russian), Dokl. Akad.

Nauk Ukrain. SSR Ser. A, no. 7, Kiev 1983.

[3] —, Direct and converse theorems o f approximation by solutions o f boundary problems for some elliptic equations (in Russian), Approximation Theory of Functions, Proc. of Int.

Conf., Moscow 1977.

[4] N. N. L e b e d e v , Special functions and their applications (in Polish), PWN, Warsaw 1957.

[5] A. F. T im an, Approximation theory o f functions o f a real variable (in Russian), Moscow 1962.

[6] E. W a c h n ic k i, On the Riquier problem for the equation (A — c2)2u(x, у) = 0 in the half­

space, Rctcznik Naukowo-Dydakt. WSP w Krakowie, fasc. 51, Krakow 1974.

[7] G. W a ts o n , A treatise on the theory o f Bessel functions, Cambridge 1962.

Cytaty

Powiązane dokumenty

In recent, years, several bounds of eigenvalues, norms and determinants for solutions of the continuous and discrete Riccati equations have been separately

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE XXII (1981) ROCZNIK1 POLSKIEGO TOWARZYSTWA MATEMATYCZNEGOJ. Séria I: PRACE MATEMATYCZNE

We apply the Bernstein method... The proofs are similar, but more

Boundary problems for the homogeneous iterated Helmholtz equation in a certain unbounded domain of.. the Euclidean

We shall give the proof

Equip the harmonic oscillator with a damper, which generates the friction force proportional to the movement velocity F f = −c dx dt , where c is called the viscous damping

[1] Bielecki, A., Sur certaines conditions necessaires et suffisantes pour l’unicité des solutions des systèmes d’équations differentielles ordinaires et des équations au

We present the generalisation of our earlier notes [3] and [4] in which we considered the problem of existence of a solution for a paratingent equation with deviated