• Nie Znaleziono Wyników

ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC

N/A
N/A
Protected

Academic year: 2021

Share "ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC"

Copied!
16
0
0

Pełen tekst

(1)

Differential Inclusions, Control and Optimization 27 (2007 ) 7–22

ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC

CONTROL PROBLEMS

Walter Alt

Friedrich-Schiller-Universit¨ at Jena Institute for Applied Mathematics

D–07740 Jena, Germany Nils Br¨ autigam

Friedrich-Alexander-Universit¨ at Erlangen-N¨ urnberg Institute for Applied Mathematics

D–91058 Erlangen, Germany and

Arnd R¨ osch

Johann Radon Institute for Computational and Applied Mathematics (RICAM), A–4040 Linz, Austria

Abstract

We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretiza- tions with piecewise constant controls we derive error estimates in the maximum norm.

Keywords: Linear quadratic optimal control problems, elliptic equa- tions, finite element approximations, error estimates.

2000 Mathematics Subject Classification: 49K20, 49M25, 65N30.

(2)

1. Introduction

The paper discusses the one-dimensional elliptic optimal control problem (CP1) min J(z, u) = 1

2 Z

T

0

|z(t) − z

d

(t)|

2

+ ν |u(t)|

2

dt s.t.

−¨z(t) + Az(t) = Bu(t) + e(t) for a.a. t ∈ [0, T ] , z(0) = z(T ) = 0 ,

a ≤ u(t) ≤ b for a.a. t ∈ [0, T ] ,

where u ∈ L

2

(0, T ; R

m

), z, z

d

∈ W

22

(0, T ; R

n

), e ∈ L

(0, T ; R

m

), A ∈ R

n×n

is positive semidefinite, B ∈ R

n×m

and a, b ∈ R

m

, a < b.

Hinze [6] and Meyer/R¨osch [8] consider multidimensional elliptic control problems and derive error estimates in the L

2

-norm for finite element dis- cretizations. We consider only one-dimensional problems, however, we deal with vector-valued controls and states. Based on the ideas of Sendov/Popov [10] we derive error estimates in the L

-norm, and we prove a convergence result according to Meyer/R¨osch [8].

The following notations are used. By X(0, T ; R

n

) we denote a space of functions on [0, T ] with values in R

n

. By L

2

(0, T ; R

n

) we denote the Hilbert space of square-integrable functions with the usual scalar product (·, ·) and the corresponding norm k · k

2

. By L

(0, T ; R

n

) we denote the space of essentially bounded functions with norm k · k

, by W

pk

(0, T ; R

n

) the space of absolutely continuous functions which are k times differentiable a.e. on [0, T ] and whose k-th derivative belongs to L

p

(0, T ; R

n

). The norm of a function z ∈ W

21

(0, T ; R

n

) is defined by kzk

1,2

= kzk

22

+ k ˙zk

22



12

. By W

p,0k

(0, T ; R

n

) we denote the space of functions z ∈ W

pk

(0, T ; R

n

) satisfying the boundary conditions z(0) = z(T ) = 0. For a matrix A ∈ R

n×n

we use the matrix norm kAk = sup

|x|=1

|Ax|, where | · | denotes the Euclidian norm of a vector in R

n

.

2. Optimality conditions

In the case of one-dimensional domains considered here the state equation

(1) −¨z(t) + Az(t) = y(t) for a.a. t ∈ [0, T ] ,

z(0) = 0 , z(T ) = 0 ,

(3)

is equivalent to its variational formulation

(2) ( ˙z, ˙v) + (Az, v) = (y, v) ∀v ∈ V

0

= W

2,01

(0, T ; R

n

)

(see e.g., Br¨autigam [2]). By S : L

2

(0, T ; R

n

) → W

2,01

(0, T ; R

n

) we denote the continuous linear operator which assigns to each y ∈ L

2

(0, T ; R

n

) the unique solution z = S(y) of (2). With the aid of the operator S, Problem (CP1) can be equivalently written in the form

(CP2) min F (u) = J(S(Bu + e), u) s.t. u ∈ U

ad

,

where U

ad

= {u ∈ L

2

(0, T ; R

m

) | a ≤ u(t) ≤ b for a.a.t ∈ [0, T ]}.

Problem (CP2) has a unique solution ¯ u which is characterized by the pointwise variational inequality

(3) 

B

T

p(t) + ν ¯ ¯ u(t) 

T

(u − ¯u(t)) ≥ 0 ∀u ∈ U

for a.a. t ∈ [0, T ], where U = {u ∈ R

m

| a ≤ u ≤ b}, ¯p = S

(¯ z − z

d

) = S(¯ z − z

d

) is the solution of the adjoint equation, and ¯ z = S(B ¯ u + e) is the solution of (2). Equation (3) implies that ¯ u(t) is the projection of −

1ν

B

T

p(t) ¯ onto [a, b], i.e.,

(4) u(t) = P r ¯

[a,b]



− 1

ν B

T

p(t) ¯



(compare e.g. Malanowski [7]). This further implies ¯ u ∈ W

1

(0, T ; R

m

).

3. Discretization of the state equation

For discretizations of Problem (CP2) we use a finite element discretization of the state equation. To this end we define a mesh size h = T /N for N ≥ 2 and a uniform grid

(5) G = {t

i

= ih | i = 0, . . . , N}

on [0, T ]. In the variational equation (2) we replace the space V

0

by the

finite-dimensional subspace V

h,0

of continuous, piecewise linear functions v

h

(4)

on the grid G satisfying the boundary conditions v

h

(0) = v

h

(T ) = 0. In this way we obtain the finite element discretization

(6) ( ˙z, ˙v

h

) + (Az, v

h

) = (y, v

h

) ∀v

h

∈ V

h,0

of the state equation.

The functions v

h(j)

, j = 1, . . . , N − 1, defined by

(7) v

h(j)

(t) =

 

 

 

 

t − t

j−1

h , t ∈ [t

j−1

, t

j

] t

j+1

− t

h , t ∈ [t

j

, t

j+1

]

0, else,

form a basis of V

h,0

.

By S

h

: L

2

(0, T ; R

n

) → V

h,0

we denote the continuous linear operator which assigns to each y ∈ L

2

(0, T ; R

n

) the unique solution z

h

= S

h

(y) of (6).

The operators S

h

are stable in the following sense:

Theorem 1. There are nonnegative constants c

1

and c

2

independent of h such that

kS

h

(y)k

2

≤ c

1

kyk

2

∀y ∈ L

2

(0, T ; R

n

) , and

kS

h

(y)k

≤ c

2

kyk

∀y ∈ L

(0, T ; R

n

) . P roof. The inequalities directly follow from (6) with v

h

= z

h

.

Estimates for the discretization error S(y) − S

h

(y) play a crucial role in the proof of error estimates for discretizations of Problem (CP2). For es- timates in the L

2

-norm we use the Aubin-Nitsche-Lemma (compare Aubin [1], Nitsche [9], Ciarlet [4]).

Lemma 2. For an arbitrary y ∈ L

2

(0, T ; R

n

) the error estimate kS(y) − S

h

(y)k

2

≤ c kyk

2

h

2

holds with a constant c ≥ 0 independent of y and h.

For error estimates in the L

-norm Sendov/Popov [10] state a result for

scalar equations (see [10], Theorem 7.8). The following extension to systems

of equations has been proved in Br¨autigam [2].

(5)

Theorem 3. Let y ∈ L

(0, T ; R

n

). Then the error estimate kS(y) − S

h

(y)k

≤ c kyk

h

2

holds with a constant c ≥ 0 independent of y and h.

4. Semi-discretization of the control problem

We consider the following discretization of Problem (CP2), where only the state variables are discretized:

(CP3) min F

h

(u) = J(S

h

(Bu + e), u) s.t. u ∈ U

ad

.

As in the case of Problem (CP2) it is well-known that Problem (CP3) has a unique solution ¯ u

h

which is characterized by the pointwise variational inequality

(8) 

B

T

p ¯

h

(t) + ν ¯ u

h

(t) 

T

(u − ¯u

h

(t)) ≥ 0 ∀u ∈ U

for a.a. t ∈ [0, T ], where U = {u ∈ R

m

| a ≤ u ≤ b}, ¯ p

h

= S

h

(¯ z

h

− z

d

) = S

h

(¯ z

h

− z

d

) is the solution of the discretized adjoint equation and ¯ z

h

= S

h

(B ¯ u

h

+ e) is the solution of the discretized state equation (compare e.g., Malanowski [7], Tr¨oltzsch [11]).

Since the optimal control ¯ u is feasible for (CP3) we can use (8) to prove the following estimate in the L

-norm (see Hinze [6], Theorem 3.6):

k¯u − ¯u

h

k

≤ C h

k(S

− S

h

)(S(B ¯ u + e) − z

d

)k

+ h

2

kB¯uk

2

i .

Combining this result with Theorem 3 and using the fact that S

h

= S

h

and S

= S we obtain

Theorem 4. For the solution ¯ u to Problem (CP2) and the solution ¯ u

h

to Problem (CP3) the error estimate

k¯u − ¯u

h

k

≤ c h

2

holds with a constant c ≥ 0 independent of h.

(6)

5. Full discretization of the control problem

For a full discretization we use the grid G defined by (5) and we denote by U

h

the finite-dimensional space of piecewise constant polynomials on the grid G. Further we define

s

i

= 1

2 (t

i

+ t

i+1

) , i = 0, . . . , N − 1 . In this way we obtain the fully discretized problem (CP4) min F

h

(u) = J(S

h

(Bu + e), u)

s.t. u ∈ U

ad

∩ U

h

.

As in the case of Problems (CP2) and (CP3) it is well-known that Prob- lem (CP4) has a unique solution ¯ u

h

which is characterized by the pointwise variational inequality

(9) 

B

T

p ¯

h

(s

i

) + ν ¯ u

h

(s

i

) 

T

(u − ¯u

h

(s

i

)) ≥ 0 ∀u ∈ U

for i = 0, . . . , N − 1, where U = {u ∈ R

m

| a ≤ u ≤ b}, ¯p

h

= S

h

(¯ z

h

− z

d

) = S

h

(¯ z

h

− z

d

) is the solution of the discretized adjoint equation and ¯ z

h

= S

h

(B ¯ u

h

+ e) is the solution of the discretized state equation.

For y ∈ L

2

(0, T ; R

n

) we define Y (t) =

Z

t 0

y(s) ds , t ∈ [0, T ] .

In view of estimates for the discretization error P

h

u − ¯u ¯

h

we need the fol- lowing auxiliary result.

Lemma 5. Let y ∈ L

2

(0, T ; R

n

) and let z

h

= S

h

(y) be the solution of (6).

Then we have

(10) kz

h

k

≤ c kY k

1

with some constant c ≥ 0 independent of y.

P roof. We denote by z

0h

∈ V

h,0

the solution of (6) for A = 0. Then Z

T

0

( ˙z

h0

(t) + Y (t))

T

˙v

h

(t) dt = 0 ∀v

h

∈ V

h,0

.

(7)

Choosing the basis functions v

h

= v

(j)h

, j = 1, . . . , N − 1, defined by (7), we obtain

− z

h0

(t

j+1

) − 2z

0h

(t

j

) + z

0h

(t

j−1

)

h + 1

h Y

j−1

− 1

h Y

j

= 0 , for j = 1, . . . , N − 1, where

Y

j

= 1 h

Z

tj+1

tj

Y (t) dt , j = 0, . . . , N − 1 .

This shows that the derivative of the continuous, piecewise linear function w

h

defined by

w

h

(t

j

) = −z

h0

(t

j+1

) + z

h0

(t

j

) − Y

j

, j = 0, . . . , N − 1 ,

vanishes. Hence, with some constant q we have w

h

≡ q on [t

0

, t

N−1

], i.e., z

h0

(t

j+1

) − z

h0

(t

j

) + Y

j

= q , j = 0, . . . , N − 1 ,

From z

0h

(0) = z

h0

(T ) = 0 we obtain

0 = z

h0

(T ) = h

N−1

X

j=0

z

0h

(t

j+1

) − z

h0

(t

j

)

h = N q −

N−1

X

j=0

Y

j

,

and therefore

q = 1 N

N−1

X

j=0

Y

j

= 1 N

Z

T 0

Y (t) dt .

Again with z

0h

(0) = 0 this implies

z

0h

(t

i

) = h

i−1

X

j=0

z

h0

(t

j+1

) − z

h0

(t

j

)

h = iq −

i−1

X

j=0

Y

j

=  i

N − 1  X

i−1

j=0

Y

j

+ i N

N−1

X

j=i

Y

j

,

(8)

for i = 1, . . . , N − 1. This further implies

|z

h0

(t

i

)| ≤

N−1

X

j=0

|Y

j

| , i = 1, . . . , N − 1 .

Using the boundary conditions z

h0

(0) = z

h0

(T ) = 0 again we obtain

kz

h0

k

N−1

X

j=0

|Y

j

| ≤ Z

T

0

|Y (t)| dt = kY k

1

.

Observing that z

h

− z

0h

solves the discretized variational equation ( ˙z, ˙v

h

) + (Az, v

h

) = (Az

h0

, v

h

) ∀v

h

∈ V

h,0

it finally follows from Theorem 1 that

kz

h

k

≤ kz

h

− z

h0

k

+ kz

h0

k

≤ c

2

kAk kz

h0

k

+ kz

h0

k

≤ (c

2

kAk + 1) kY k

1

, which proves the assertion.

In the following, we use the notation BV (0, T ; R

m

) for the linear space of functions u : [0, T ] → R

m

of bounded variation and V

τσ

(u) for the variation of the function u on the interval [τ, σ]. Further, we define z

h

(u) = S

h

(Bu+e) and we approximate a control function u by the piecewise constant function P

h

u defined by

(P

h

u)(t) = u(s

i

) ∀t ∈ [t

i

, t

i+1

[ , i = 0, . . . , N − 1 .

Lemma 6. Let ¯ u be the solution to Problem (CP2), and suppose that ˙¯ u ∈ BV (0, T ; R

m

). Then

(11) kz

h

(¯ u) − z

h

(P

h

u)k ¯

≤ c (V

0T

( ˙¯ u) + k ˙¯uk

) h

2

, with some constant c ≥ 0 independent of ¯u and h.

P roof. The piecewise linear function z

h

(¯ u) − z

h

(P

h

u) ∈ V ¯

h,0

solves the discretized variational equation (6) for y = B(¯ u − P

h

u). Therefore, with ¯

Y (t) = B Z

t

0

(¯ u − P

h

u)(s) ds ¯

(9)

it follows from Lemma 5 that

kz

h

(¯ u) − z

h

(P

h

u)k ¯

≤ c

1

kY k

1

= c

1

N−1

X

i=0

Z

ti+1

ti

|Y (t)| dt .

By the definition of Y we have Y (t) = Y (t

i

) + B

Z

t ti

(¯ u − P

h

u)(s) ds ¯ ∀t ∈ [t

i

, t

i+1

] . and therefore

(12)

N−1

X

i=0

Z

ti+1

ti

|Y (t)| dt =

N−1

X

i=0

Z

ti+1

ti

Y (t

i

) + Z

t

ti

B(¯ u − P

h

u)(s) ds ¯ dt.

Because of Y (0) = 0 the first term on the right hand side of (12) can be estimated by

Z

ti+1

ti

|Y (t

i

)| ds = h

i−1

X

j=0

Y (t

j+1

) − Y (t

j

)  = h

i−1

X

j=0

Z

tj+1

tj

Y (t) dt ˙

≤ h kBk

i−1

X

j=0

Z

tj+1

tj

u(t) − ¯u(s ¯

j

) dt

≤ h kBk

i−1

X

j=0

Z

h2

0

(¯ u(s

j

+ t) − ¯u(s

j

)) − (¯u(s

j

) − ¯u(s

j

− t) dt

≤ h kBk

N−1

X

j=0

Z

h2

0

Z

t

0

| ˙¯u(s

j

+ s) − ˙¯u(s

j

+ s − t)| ds dt .

Assuming ˙¯ u ∈ BV (0, T ; R

m

) we obtain Z

ti+1

ti

|Y (t

i

)| ds ≤ h

3

4 kBk

N−1

X

j=0

V

ttjj+1

( ˙¯ u) = h

3

4 kBk V

0T

( ˙¯ u) , and therefore

(13)

N−1

X

i=0

Z

ti+1

ti

|Y (t

i

)| dt ≤ T

4 kBk V

0T

( ˙¯ u) h

2

.

(10)

The second term on the right hand side of (12) can be estimated by

N−1

X

i=0

Z

ti+1

ti

Z

t ti

(¯ u − P

h

u)(s) ds ¯ dt ≤

N−1

X

i=0

Z

ti+1

ti

Z

ti+1

ti

|(¯u − P

h

u)(s)| ds dt ¯

= h

N−1

X

i=0

Z

ti+1

ti

|¯u(s) − ¯u(s

i

)| ds ≤ h k ˙¯uk

∞ N−1

X

i=0

Z

ti+1

ti

|s − s

i

| ds

≤ h k ˙¯uk

∞ N−1

X

i=0

h

2

4 = T

4 k ˙¯uk

h

2

. Together with (12) and (13) we obtain

Z

T

0

|Y (t)| dt ≤ T

4 kBk (V

0T

( ˙¯ u) + k ˙¯uk

) h

2

. Choosing c =

T4

kBk we get (11).

Defining p

h

(u) = S

h

(S

h

(Bu + e) − z

d

) we obtain from Lemma 6:

Corollary 7. Let ¯ u be the solution to Problem (CP2), and suppose ˙¯ u ∈ BV (0, T ; R

m

). Then

(14) kp

h

(¯ u) − p

h

(P

h

u)k ¯

≤ c

1

(V

0T

( ˙¯ u) + k ˙¯uk

) h

2

and

(15) k¯ p − p

h

(P

h

u)k ¯

≤ c

2

(kB¯u + ek

+ kz

d

k

+ V

0T

( ˙¯ u) + k ˙¯uk

) h

2

with nonnegative constants c

1

and c

2

independent of ¯ u and h.

P roof. The estimate (14) is an immediate consequence of Theorem 1 and Lemma 6. Since

k¯ p − p

h

(P

h

u)k ¯

≤ k¯ p − p

h

(¯ u)k

+ kp

h

(¯ u) − p

h

(P

h

u)k ¯

the second estimate (15) follows from Theorem 3 and (14).

Now we prove a result on discrete convergence of the optimal controls, which

is similar to that of Theorem 2.3 in Meyer/R¨osch [8]. However, Assump-

tion (A3) used in [8] is replaced by a weaker assumption that the derivative

of the optimal control ˙¯ u has bounded variation.

(11)

Theorem 8. Let ¯ u be the solution to Problem (CP2), ¯ u

h

the solution to the discretized Problem (CP4) and suppose ˙¯ u ∈ BV (0, T ; R

m

). Then

(16) k¯u

h

− P

h

uk ¯

2

≤ c (kB¯u + ek

+ kz

d

k

+ V

0T

( ˙¯ u) + k ˙¯uk

) h

2

with a constant c ≥ 0 independent of ¯u and h.

P roof. Let p

h

(u) = S

h

(z

h

(u)−z

d

) be the solution of the discretized adjoint equation and z

h

(u) = S

h

(Bu + e) the solution of the discretized state equa- tion. Based on the optimality conditions for Problems (CP2) and (CP4) we obtain with the help of the same arguments as in Meyer/R¨osch [8]

ν k¯u

h

− P

h

uk ¯

22

≤ (P

h

p − p ¯

h

(¯ u

h

), B(¯ u

h

− P

h

u)) . ¯ For the right hand side we find

(P

h

p − p ¯

h

(¯ u

h

), B(¯ u

h

− P

h

u)) = (p ¯

h

(P

h

u) − p ¯

h

(¯ u

h

), B(¯ u

h

− P

h

u)) ¯ +(¯ p − p

h

(P

h

u), B(¯ ¯ u

h

− P

h

u)) ¯ +(P

h

p − ¯p, B(¯u ¯

h

− P

h

u) . ¯

The first and third term on the right hand side can be estimated according to Meyer/R¨osch [8], Section 4. For the second term we obtain from (15)

(¯ p − p

h

(P

h

u), B(¯ ¯ u

h

− P

h

u)) ¯

≤ kBk k¯ p − p

h

(P

h

u)k ¯

2

k¯u

h

− P

h

uk ¯

2

≤ ˜ck¯u

h

− P

h

uk ¯

2

(kB¯u + ek

+ kz

d

k

+ V

0T

( ˙¯ u) + k ˙¯uk

) h

2

with a constant ˜ c ≥ 0 independent of h. Now we can proceed in the same way as in Meyer/R¨osch [8], Section 4.

Example 9. In order to illustrate the result of Theorem 8, we consider the same problem as in Hinze [6], Section 4.2, for which the optimal solution is known. In this problem, we choose T = 1, z

d

≡ 2, ν = 0.1, a = −∞, b = 2.5( √

2 − 1), and e(t) = −2 + t

2

− t − min(−

1ν

(t

2

− t), b). The optimal control is

u(t) = min(− ¯

1ν

(t

2

− t), b) .

(12)

Figure 1 shows the optimal control ¯ u and the discrete optimal control ¯ u

h

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 1 1.5 2 2.5

t

Figure 1. Controls ¯ u (thin line) and ¯ u

h

(thick line).

Based on the projection formula (4) we use the solution ¯ u

h

of the discretized Problem (CP4) to define a new control ˜ u ∈ U

ad

by

(17) u = P r ˜

[a,b]



− 1

ν B

T

S

h

(S

h

(B ¯ u

h

+ e) − z

d

)

 .

Meyer/R¨osch [8] have shown a superconvergence estimate for this control in the L

2

-norm. We prove a corresponding result using the L

-norm.

Theorem 10. Let ¯ u be the solution to Problem (CP2), ¯ u

h

the solution to the discretized Problem (CP4), and suppose ˙¯ u ∈ BV (0, T ; R

m

). If ˜ u is defined by (17), then we have

(18) k¯u − ˜uk

≤ c (kB¯u + ek

+ kz

d

k

+ V

0T

( ˙¯ u) + k ˙¯uk

) h

2

with a constant c ≥ 0 independent of ¯u and h.

P roof. With the notations of Theorem 8 we have

k¯ p − p

h

(¯ u

h

)k

≤ k¯ p − p

h

(P

h

u)k ¯

+ kp

h

(P

h

u) − p ¯

h

(¯ u

h

)k

.

(13)

For the first term on the right hand side we obtain from Corollary 7 k¯ p − p

h

(P

h

u)k ¯

≤ c

1

(kB¯u + ek

+ kz

d

k

+ V

0T

( ˙¯ u) + k ˙¯uk

) h

2

. For the last term we have by Theorem 1, Lemma 2, and Theorem 8

kp

h

(P

h

u) − p ¯

h

(¯ u

h

)k

≤ ˜c

2

kP

h

u − ¯u ¯

h

k

2

≤ c

2

(kBu + ek

+ kz

d

k

+ V

0T

( ˙¯ u) + k ˙¯uk

) h

2

. Combining these estimates and using the fact that the operator P r

[a,b]

is Lipschitz continuous, we get the desired result.

Example 11. In order to illustrate the result of Theorem 10 we consider the same problem as in Example 9. Figure 2 shows the function

w = − 1

ν B

T

S

h

(S

h

(B ¯ u

h

+ e) − z

d

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 1 1.5 2 2.5

t

Figure 2. Control ˜ u (thick line) and function w (thin line).

(14)

and the control ˜ u = P r

[a,b]

(w) defined by (17). Column 3 of Table 1 and Figure 3 show the linear order of convergence w.r.t. the mesh size h of the error k¯u − ¯u

h

k

, while columns 4 and 5 of Table 1 and Figure 4 show quadratic convergence w.r.t. the mesh size h of the error k¯u − ˜uk

.

h F

h

(¯ u

h

) k¯u − ¯u

h

k

k¯u − ˜uk

k¯u − ˜uk

/h

2

1/3 2.6535 1.0355 0.2532 2.2787

1/4 2.5621 0.9382 0.1550 2.4797

1/6 2.4654 0.6952 0.0686 2.4712

1/10 2.4017 0.4502 0.0248 2.4843 1/20 2.3710 0.2375 0.0062 2.4953 1/50 2.3618 0.0980 9.9840 · 10

−4

2.4963 1/100 2.3604 0.0495 2.4985 · 10

−4

2.4985

Table 1. Error as a function of mesh size h.

0 0.05 0.1 0.15 0.2 0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h

Figure 3. Error k¯u − ¯u

h

k

as a function of mesh size h.

(15)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0

0.05 0.1 0.15 0.2 0.25 0.3 0.35

h

Figure 4. Error k¯u − ˜uk

as a function of mesh size h.

References

[1] J.P. Aubin, Behaviour of the error of the approximate solution of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods, Ann. Scoula Norm. Sup. Pisa 21 (1967), 599–637.

[2] N. Br¨ autigam, Diskretisierung elliptischer Steuerungsprobleme, Ph.D. Thesis, Jena 2006.

[3] N. Br¨ autigam, Discretization of Elliptic Control Problems by Finite Elements, Technical Report, Jena 2006.

[4] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North Holland 1987.

[5] C. Großmann and H.-G. Roos, Numerik partieller Differentialgleichungen, Teubner 2005.

[6] M. Hinze, A Variational Discretization Concept in Control Constrained Opti- mization: The Linear-Quadratic Case, Computational Optimization and Ap- plications 30 (2005), 45–61.

[7] K. Malanowski, Convergence of Approximations vs. Regularity of Solutions for Convex, Control-Constrained Optimal Control Problems, Appl. Math. Optim.

8 (1981), 69–95.

(16)

[8] C. Meyer and A. R¨ osch, Superconvergence Properties of Optimal Control Prob- lems, SIAM J. Contr. Opt. 43 (2004), 970–985.

[9] J.A. Nitsche, Ein Kriterium f¨ ur die Quasioptimalit¨ at des Ritzschen Verfahrens, Numerische Mathematk 11 (1968), 346–348.

[10] B. Sendov and V.A. Popov, The Averaged Moduli of Smoothness, Wiley- Interscience 1988.

[11] F. Tr¨ oltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg 2005.

Received 27 February 2006

Cytaty

Powiązane dokumenty

Nawet więc te całkiem zewnętrzne oznaki wskazują, że jego lite­ racki życiorys układał się inaczej niż losy poetów „Współczesności” (mimo że przez

Keywords: water infrastructure planning; flood risk management; adaptive water management; policy analysis; decision support; serious gaming; climate change;

Jeżeli powyższy obowiązek będzie reali- zowany prawidłowo, a więc jeżeli sąd będzie baczył, aby świadek ujawniał jedynie te dane osobowe, które stanowią okoliczności istotne

Obserwator znajdujący się dokładnie na biegunie Ziemi zaobserwował, że wschód Słońca nastąpił w punkcie horyzontu wyznaczonym przez kierunek południka Greenwich.. W

W ra- mach nowej polityki transformacji energetycznej, zaproponowano wiele inicjatyw w zakresie rozwoju energetyki odnawialnej, zbli¿aj¹c siê do niemieckiej wizji transfor-

[r]

Key words: Finite element methods, Hydro-Mechanical coupling, a posteriori error analysis, Error indicator, Adaptive mesh, Code