• Nie Znaleziono Wyników

The random of lacunary statistical on χ 2 over p-metric spaces defined by Musielak

N/A
N/A
Protected

Academic year: 2021

Share "The random of lacunary statistical on χ 2 over p-metric spaces defined by Musielak"

Copied!
18
0
0

Pełen tekst

(1)

Mathematics

and Applications

JMA No 38, pp 133-150 (2015)

COPYRIGHT by Publishing Department Rzesz´c ow University of Technology P.O. Box 85, 35-959 Rzesz´ow, Poland

The random of lacunary statistical on χ 2 over p-metric spaces defined by Musielak

N. Subramanian, R. Babu, P. Thirunavukkarasu

Abstract: Mursaleen introduced the concepts of statistical conver- gence in random 2-normed spaces. Recently Mohiuddine and Aiyup de- fined the notion of lacunary statistical convergence and lacunary statis- tical Cauchy in random 2-normed spaces. In this paper, we define and study the notion of lacunary statistical convergence and lacunary of sta- tistical Cauchy sequences in random on χ2over p− metric spaces defined by Musielak and prove some theorems which generalizes Mohiuddine and Aiyup results.

AMS Subject Classification: analytic sequence, double sequences, χ2 space, Musielak - modulus function, Random p− metric space, Lacunary sequence, Statistical conver- gence

Keywords and Phrases: 40A05,40C05,40D05

1 Introduction

The concept of statistical convergence play a vital role not only in pure math- ematics but also in other branches of science involving mathematics, especially in information theory, computer science, biological science, dynamical systems, geo- graphic information systems, population modeling, and motion planning in robotics.

The notion of statistical convergence was introduced by Fast and Schoenberg inde- pendently. Over the years and under different names statistical convergence has been discussed in the theory of fourier analysis, ergodic theory and number the- ory. Later on it was further investigated by Fridy , ˘Sal´at , C¸ akalli , Maio and Kocinac , Miller , Maddox , Leindler , Mursaleen and Alotaibi , Mursaleen and Edely , and many oth- ers. In the recent years, generalizations of statistical convergence have appeared in the study of strong integral summability and the structure of ideals of bounded con- tinuous func- tions on Stone- ˘Cech compactification of the natural numbers. Moreover statistical convergence is closely related to the concept of convergence in probability.

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued

(2)

single sequences, respectively.

We write w2 for the set of all complex sequences (xmn), where m, n ∈ N, the set of positive integers. Then, w2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [2]. Later on, they were investigated by Hardy [3], Moricz [6], Moricz and Rhoades [7], Basarir and Solankan [1], Tripathy [8], Turkmenoglu [9], and many others.

We procure the following sets of double sequences:

Mu(t) :=n

(xmn) ∈ w2: supm,n∈N|xmn|tmn < ∞o , Cp(t) :=n

(xmn) ∈ w2: p − limm,n→∞|xmn− l|tmn= 1 f or some l ∈ Co , C0p(t) :=n

(xmn) ∈ w2: p − limm,n→∞|xmn|tmn= 1o , Lu(t) :=n

(xmn) ∈ w2:P m=1

P

n=1|xmn|tmn < ∞o , Cbp(t) := Cp(t)T Mu(t) and C0bp(t) = C0p(t)T Mu(t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m, n ∈ N and p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for all m, n ∈ N; Mu(t) , Cp(t) , C0p(t) , Lu(t) , Cbp(t) and C0bp(t) reduce to the sets Mu, Cp, C0p, Lu, Cbp and C0bp, respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. G¨okhan and Colak [11,12] have proved that Mu(t) and Cp(t) , Cbp(t) are complete paranormed spaces of double sequences and gave the α−, β−, γ− duals of the spaces Mu(t) and Cbp(t) . Quite recently, in her PhD thesis, Zelter [13] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences.

Mursaleen and Edely [14] have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Ces`aro summable double sequences. Altay and Basar [15] have defined the spaces BS, BS (t) , CSp, CSbp, CSrand BV of double sequences consisting of all dou- ble series whose sequence of partial sums are in the spaces Mu, Mu(t) , Cp, Cbp, Crand Lu, respectively, and also examined some properties of those sequence spaces and de- termined the α− duals of the spaces BS, BV, CSbp and the β (ϑ) − duals of the spaces CSbpand CSrof double series. Basar and Sever [16] have introduced the Banach space Lq of double sequences corresponding to the well-known space ℓq of single sequences and examined some properties of the space Lq. Quite recently Subramanian and Misra [17] have studied the space χ2M(p, q, u) of double sequences and gave some inclusion relations.

The class of sequences which are strongly Ces`aro summable with respect to a modulus was introduced by Maddox [5] as an extension of the definition of strongly Ces`aro summable sequences. Cannor [18] further extended this definition to a def- inition of strong A− summability with respect to a modulus where A = (an,k) is

(3)

a nonnegative regular matrix and established some connections between strong A−

summability, strong A− summability with respect to a modulus, and A− statistical convergence. In [19] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [20]-[21], and [22] the four dimensional matrix transformation (Ax)k,ℓ =P

m=1

P

n=1amnkℓ xmn was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For a, b, ≥ 0 and 0 < p < 1, we have

(a + b)p≤ ap+ bp (1.1)

The double seriesP

m,n=1xmnis called convergent if and only if the double sequence (smn) is convergent, where smn=Pm,n

i,j=1xij(m, n ∈ N).

A sequence x = (xmn)is said to be double analytic if supmn|xmn|1/m+n < ∞. The vector space of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is called double gai sequence if ((m + n)! |xmn|)1/m+n→ 0 as m, n → ∞.

The double gai sequences will be denoted by χ2. Let φ = {allf initesequences} . Consider a double sequence x = (xij). The (m, n)th section x[m,n] of the sequence is defined by x[m,n] =Pm,n

i,j=0xijij for all m, n ∈ N ; where ℑij denotes the double sequence whose only non zero term is a (i+j)!1 in the (i, j)th place for each i, j ∈ N.

Let M and Φ are mutually complementary modulus functions. Then, we have:

(i) For all u, y ≥ 0,

uy ≤ M (u) + Φ (y) , (Y oungs inequality)[See[10]] (1.2)

(ii) For all u ≥ 0,

uη (u) = M (u) + Φ (η (u)) . (1.3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) (1.4)

Lindenstrauss and Tzafriri [4] used the idea of Orlicz function to construct Orlicz sequence space

M =n

x ∈ w :P

k=1M|x

k| ρ

< ∞, f or some ρ > 0o , The space ℓM with the norm

kxk = infn

ρ > 0 :P

k=1M|x

k| ρ

≤ 1o ,

becomes a Banach space which is called an Orlicz sequence space. For M (t) = tp(1 ≤ p < ∞) , the spaces ℓM coincide with the classical sequence space ℓp.

A sequence f = (fmn) of modulus function is called a Musielak-modulus function.

A sequence g = (gmn) defined by

(4)

gmn(v) = sup {|v| u − (fmn) (u) : u ≥ 0} , m, n = 1, 2, · · ·

is called the complementary function of a Musielak-modulus function f . For a given Musielak modulus function f, the Musielak-modulus sequence space tf is defined as follows

tf =n

x ∈ w2: If(|xmn|)1/m+n→ 0 as m, n → ∞o , where If is a convex modular defined by

If(x) =P m=1

P

n=1fmn(|xmn|)1/m+n, x = (xmn) ∈ tf. We consider tf equipped with the Luxemburg metric

d (x, y) = supmn

n inf

P m=1

P n=1fmn

|xmn|1/m+n mn



≤ 1o If X is a sequence space, we give the following definitions:

(i)X= the continuous dual of X;

(ii)Xα=a = (amn) :P

m,n=1|amnxmn| < ∞, f or each x ∈ X ; (iii)Xβ=a = (amn) :P

m,n=1amnxmnis convegent, f oreach x ∈ X ; (iv)Xγ =n

a = (amn) : supmn≥ 1

PM,N

m,n=1amnxmn

< ∞, f oreachx ∈ X o; (v)let X beanF K − space ⊃ φ; then Xf =n

f (ℑmn) : f ∈ Xo

; (vi)Xδ =n

a = (amn) : supmn|amnxmn|1/m+n< ∞, f oreach x ∈ Xo

;

Xα.Xβ, Xγ are called α − (orK ¨othe − T oeplitz)dual of X, β − (or generalized − K ¨othe − T oeplitz) dual of X, γ − dual of X, δ − dual of X respectively.Xαis defined by Gupta and Kamptan [10]. It is clear that Xα⊂ Xβand Xα⊂ Xγ, but Xβ⊂ Xγ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}

for Z = c, c0and ℓ, where ∆xk= xk− xk+1for all k ∈ N.

Here c, c0and ℓdenote the classes of convergent,null and bounded sclar valued single sequences respectively. The difference sequence space bvp of the classical space ℓp is introduced and studied in the case 1 ≤ p ≤ ∞ by Ba¸sar and Altay and in the case 0 < p < 1 by Altay and Ba¸sar in [15]. The spaces c (∆) , c0(∆) , ℓ(∆) and bvp are Banach spaces normed by

kxk = |x1| + supk≥1|∆xk| and kxkbvp= (P

k=1|xk|p)1/p, (1 ≤ p < ∞) .

(5)

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

Z (∆) =x = (xmn) ∈ w2: (∆xmn) ∈ Z

where Z = Λ2, χ2 and ∆xmn = (xmn− xmn+1) − (xm+1n− xm+1n+1) = xmn− xmn+1− xm+1n+ xm+1n+1for all m, n ∈ N. The generalized difference double notion has the following representation: ∆mxmn= ∆m−1xmn−∆m−1xmn+1−∆m−1xm+1n+

m−1xm+1n+1, and also this generalized difference double notion has the following binomial representation:

mxmn=

m

X

i=0 m

X

j=0

(−1)i+jm

im j



xm+i,n+j.

2 Definition and Preliminaries

Let n ∈ N and X be a real vector space of dimension w, where n ≤ w. A real val- ued function dp(x1, . . . , xn) = k(d1(x1), . . . , dn(xn))kp on X satisfying the following four conditions:

(i) k(d1(x1), . . . , dn(xn))kp = 0 if and and only if d1(x1), . . . , dn(xn) are linearly de- pendent,

(ii) k(d1(x1), . . . , dn(xn))kp is invariant under permutation, (iii) k(αd1(x1), . . . , dn(xn))kp= |α| k(d1(x1), . . . , dn(xn))kp, α ∈ R

(iv) dp((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · · xn)p+ dY(y1, y2, · · · yn)p)1/pfor 1 ≤ p < ∞; (or)

(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · · xn), dY(y1, y2, · · · yn)} , for x1, x2, · · · xn∈ X, y1, y2, · · · yn ∈ Y is called the p product metric of the Cartesian product of n metric spaces is the p norm of the n-vector of the norms of the n sub- spaces.

A trivial example of p product metric of n metric space is the p norm space is X = R equipped with the following Euclidean metric in the product space is the p norm:

k(d1(x1), . . . , dn(xn))kE = sup (|det(dmn(xmn))|)

= sup

d11(x11) d12(x12) ... d1n(x1n) d21(x21) d22(x22) ... d2n(x1n)

. . .

dn1(xn1) dn2(xn2) ... dnn(xnn)

where xi= (xi1, · · · xin) ∈ Rn for each i = 1, 2, · · · n.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be com- plete with respect to the p− metric. Any complete p− metric space is said to be p−

Banach metric space.

(6)

Let X be a linear metric space. A function w : X → R is called paranorm, if (1) w (x) ≥ 0, for all x ∈ X;

(2) w (−x) = w (x) , for all x ∈ X;

(3) w (x + y) ≤ w (x) + w (y) , for all x, y ∈ X;

(4) If (σmn) is a sequence of scalars with σmn → σ as m, n → ∞ and (xmn) is a sequence of vectors with w (xmn− x) → 0 as m, n → ∞, then w (σmnxmn− σx) → 0 as m, n → ∞.

A paranorm w for which w (x) = 0 implies x = 0 is called total paranorm and the pair (X, w) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [23], Theorem 10.4.2, p.183).

By the convergence of a double sequence we mean the convergence on the Pring- sheim sense that is, a double sequence x = (xmn) has Prinsheim limit L (denoted by P − limx = L) provided that given ǫ > 0 there exists n ∈ N such that |xmn− L| < ǫ.

We shall write more briefly as P − convergent.

The double sequence θrs= {(mr, ns)} is called double lacunary sequence if there exist two increasing of integers such that

m0= 0, ϕr= mr− mr−1→ ∞ as r → ∞ and n0= 0, ϕs= ns− ns−1→ ∞ as s → ∞.

Notations: mrs= mrns, hrs= ϕrϕ¯s, θrsis determined by

Irs= {(m, n) : mr−1< m ≤ mrand ns−1< n ≤ ns} , qr= mmr

r−1, ¯qs= nns

s−1 and qrs= qrs.

The notion of λ− double gai and double analytic sequences as follows: Let λ = (λmn)m,n=0 be a strictly increasing sequences of positive real numbers tending to infinity, that is

0 < λ00< λ11< · · · and λmn→ ∞ as m, n → ∞

and said that a sequence x = (xmn) ∈ w2 is λ− convergent to 0, called a the λ− limit of x, if µmn(x) → 0 as m, n → ∞, where

µmn(x) = 1 ϕrs

X

m∈Irs

X

n∈Irs

(∆m−1λm,n− ∆m−1λm,n+1

m−1λm+1,n+ ∆m−1λm+1,n+1) |xmn|1/m+n.

The sequence x = (xmn) ∈ w2 is λ− double analytic if supuvmn(x)| < ∞. If limmnxmn= 0 in the ordinary sense of convergence, then

limmn

1 ϕrs

X

m∈Irs

X

n∈Irs

m−1λm,n− ∆m−1λm,n+1− ∆m−1λm+1,n+ ∆m−1λm+1,n+1



((m + n)! |xmn− 0|)1/m+n

= 0.

(7)

This implies that

limmnmn(x) − 0| = lim

mn

1 ϕrs

X

m∈Irs

X

n∈Irs

m−1λm,n− ∆m−1λm,n+1

−∆m−1λm+1,n+ ∆m−1λm+1,n+1 ((m + n)! kxmn− 0k)1/m+n = 0.

which yields that limuvµmn(x) = 0 and hence x = (xmn) ∈ w2 is λ− convergent to 0.

Let I2− be an admissible ideal of 2N×N, θrs be a double lacunary sequence, f = (fmn) be a Musielak-modulus function and

X, k(d (x1) , d (x2) , · · · , d (xn−1))kp be a p−metric space, q = (qmn) be double analytic sequence of strictly positive real numbers. By w2(p − X) we denote the space of all sequences defined over

X, k(d (x1) , d (x2) , · · · , d (xn−1))kp

. The following inequality will be used through- out the paper. If 0 ≤ qmn≤ supqmn= H, K = max 1, 2H−1 then

|amn+ bmn|qmn ≤ K {|amn|qmn+ |bmn|qmn} (2.1) for all m, n and amn, bmn∈ C. Also |a|qmn ≤ max

1, |a|H

for all a ∈ C.

In the present paper we define the following sequence spaces:

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

= n

r, s ∈ Irs:h fmn



mn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≥ ǫo

∈ I2

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

= n

r, s ∈ Irs:h fmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≥ Ko

∈ I2,

If we take fmn(x) = x, we get

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

= n

r, s ∈ Irs:h

mn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≥ ǫo

∈ I2,

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

= n

r, s ∈ Irs:h

mn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≥ Ko

∈ I2,

(8)

If we take q = (qmn) = 1, we get

2f µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

= n

r, s ∈ Irs:h fmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpi

≥ ǫo

∈ I2

,h

Λ2f µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

|

= n

r, s ∈ Irs:h fmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpi

≥ Ko

∈ I2,

In the present paper we plan to study some topological properties and inclusion relation between the above defined sequence spaces.

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

and

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

which we shall discuss in this paper.

3 Main Results

3.1 Theorem

Let f = (fmn) be a Musielak-modulus function, q = (qmn) be a double analytic sequence of strictly positive real numbers, the sequence spaces

h

χ2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

andh

Λ2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

are linear spaces.

Proof: It is routine verification. Therefore the proof is omitted.

3.2 Theorem

Let f = (fmn) be a Musielak-modulus function, q = (qmn) be a double analytic sequence of strictly positive real numbers, the sequence space

2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

(9)

is a paranormed space with respect to the paranorm defined by g (x) = inf

nhfmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o . Proof: Clearly g (x) ≥ 0 for

x = (xmn) ∈h

χ2qf µ, k(d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

Since fmn(0) = 0, we get g (0) = 0.

Conversely, suppose that g (x) = 0, then infnh

fmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o

= 0.

Suppose that µmn(x) 6= 0 for each m, n ∈ N. Then

mn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp → ∞.

It follows that

h fmn



mn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn1/H

→ ∞ which is a contradiction. Therefore µmn(x) = 0. Let

hfmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn1/H

≤ 1 and

hfmn

kµmn(y) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn1/H

≤ 1 Then by using Minkowski’s inequality, we have

hfmn

kµmn(x + y) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn1/H

≤ h fmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn1/H

+h fmn

kµmn(y) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn1/H . So we have

g (x + y) = infnh fmn



mn(x + y) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o

≤ infnh fmn

kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o + infnh

fmn

kµmn(y) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o Therefore,

(10)

g (x + y) ≤ g (x) + g (y) .

Finally, to prove that the scalar multiplication is continuous. Let λ be any complex number. By definition,

g (λx) = infnh fmn

kµmn(λx) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o . Then

g (λ x) = infn

((|λ| t)qmn/H :h fmn

kµmn(λx) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o where t = |λ|1 . Since |λ|qmn ≤ max (1, |λ|supqmn) , we have

g (λ x) ≤ max (1, |λ|supqmn) infn

tqmn/H:h fmn

kµmn(λx) , (d (x1) , d (x2) , · · · , d (xn−1))kpiqmn

≤ 1o This completes the proof.

3.3 Theorem

(i) If the Musielak modulus function (fmn) satisfies ∆2− condition, then hχ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI

θrs

= h

χ2qµg , kµuv(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

. (ii) If the Musielak modulus function (gmn) satisfies ∆2− condition, then

2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

= h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

Proof: Let the Musielak modulus function (fmn) satisfies ∆2− condition, we get hχ2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2

θrs

⊂ (3.1)

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

To prove the inclusion

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

⊂ h

χ2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

,

(11)

let

a ∈h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs. Then for all {xmn} with

(xmn) ∈h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

we have

X

m=1

X

n=1

|xmnamn| < ∞. (3.2)

Since the Musielak modulus function (fmn) satisfies ∆2− condition, then

(ymn) ∈h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

, we get

X

m=1

X

n=1

ϕrsymnamn

mλmn(m + n)!

< ∞.

by (3.2). Thus

rsamn) ∈h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

= h

χ2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

and hence

(amn) ∈h

χ2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2

θrs

. This gives that

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

⊂ h

χ2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

we are granted with (3.1) and (3.3)

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

= h

χ2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

(12)

(ii) Similarly, one can prove that

2qµg , kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI θrs

⊂ h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

if the Musielak modulus function (gmn) satisfies ∆2− condition.

3.4 Proposition

If 0 < qmn< pmn< ∞ for each m and m, then

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

⊆ h

Λ2pf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2

θrs

Proof: The proof is standard, so we omit it.

3.5 Proposition

(i) If 0 < inf qmn≤ qmn< 1 then

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

⊂ h

Λ2f µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

.

(ii) If 1 ≤ qmn≤ supqmn< ∞, then

2f µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

⊂ h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

Proof: The proof is standard, so we omit it.

(13)

3.6 Proposition

Let f = fmn 

and f′′= fmn′′ 

are sequences of Musielak functions, we have

2qfµ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

\ hΛ2qf′′µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

⊆ h

Λ2qf+f′′µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

Proof: The proof is easy so we omit it.

3.7 Proposition

For any sequence of Musielak functions f = (fmn) and q = (qmn) be double analytic sequence of strictly positive real numbers. Then

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

⊂ h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

. Proof: The proof is easy so we omit it.

3.8 Proposition

The sequence spaceh

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

is solid Proof: Let x = (xmn) ∈h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

, (i.e)

supmn

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

< ∞.

Let (αmn) be double sequence of scalars such that |αmn| ≤ 1 for all m, n ∈ N × N.

Then we get

sup

mn

2qf µ, kµmn(αx) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

≤ sup

mn

h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

. This completes the proof.

(14)

3.9 Proposition

The sequence spaceh

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

is mono- tone

Proof: The proof follows from Proposition 3.8.

3.10 Proposition

If f = (fmn) be any Musielak function. Then

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

⊂ h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp∗∗iI2 θrs

if and only if supr,s≥1ϕϕrs∗∗

rs < ∞.

Proof: Let

x ∈h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

and

N = supr,s≥1ϕrs ϕ∗∗rs < ∞.

Then we get

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp∗∗rsiI2

θrs

= Nh

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕprsiI2 θrs

= 0.

Thus x ∈h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp∗∗iI2 θrs

. Conversely, suppose that

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI Nθ

⊂ h

Λ2quf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp∗∗iI2 θrs

and

x ∈h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

. Then

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

< ǫ,

(15)

for every ǫ > 0. Suppose that supr,s≥1ϕϕ∗∗rs

rs = ∞, then there exists a sequence of members (rsjk) such that limj,k→∞

ϕjk

ϕ∗∗jk = ∞. Hence, we have hΛ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕprsiI2

θrs

= ∞.

Therefore

x /∈h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp∗∗iI2 θrs

, which is a contradiction. This completes the proof.

3.11 Proposition

If f = (fmn) be any Musielak function. Then

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

= h

Λ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕp∗∗iI2 θrs

if and only if

sup

r,s≥1

ϕrs

ϕ∗∗rs < ∞, sup

r,s≥1

ϕ∗∗rs ϕrs > ∞.

Proof: It is easy to prove so we omit.

3.12 Proposition

The sequence space

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

is not solid

Proof: The result follows from the following example.

Example: Consider

x = (xmn) =

1 1 ... 1 1 1 ... 1

. . .

1 1 ... 1

∈h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

.

(16)

Let

αmn=

−1m+n −1m+n ... −1m+n

−1m+n −1m+n ... −1m+n .

. .

−1m+n −1m+n ... −1m+n

 ,

for all m, n ∈ N. Then

αmnxmn∈/ h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

. Hence

2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

is not solid.

3.13 Proposition

The sequence space h

χ2qf µ, kµmn(x) , (d (x1) , d (x2) , · · · , d (xn−1))kϕpiI2 θrs

is not monotone

Proof: The proof follows from Proposition 3.12.

Competing Interests: Authors have declared that no competing interests ex- ist.

Acknowledgement: The authors thank the referee for his careful reading of the manuscript and comments that improved the presentation of the paper.

References

[1] M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad.

Math., 21(2) (1999), 193-200.

[2] T.J.I’A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd. ,New York, (1965).

[3] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.

[4] J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.

[5] I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos.

Soc, 100(1) (1986), 161-166.

(17)

[6] F.Moricz, Extentions of the spaces c and c0from single to double sequences, Acta.

Math. Hung., 57(1-2), (1991), 129-136.

[7] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.

[8] B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.

[9] A.Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1), (1999), 23-31.

[10] P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York , 1981.

[11] A.G¨okhan and R.C¸ olak, The double sequence spaces cP2 (p) and cP B2 (p), Appl.

Math. Comput., 157(2), (2004), 491-501.

[12] A.G¨okhan and R.C¸ olak, Double sequence spaces ℓ2 , ibid., 160(1), (2005), 147- 153.

[13] M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu Univer- sity Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.

[14] M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J.

Math. Anal. Appl., 288(1), (2003), 223-231.

[15] B.Altay and F.BaS¸ar, Some new spaces of double sequences, J. Math. Anal.

Appl., 309(1), (2005), 70-90.

[16] F.BaS¸ar and Y.Sever, The space Lp of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.

[17] N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).

[18] J.Cannor, On strong matrix summability with respect to a modulus and statis- tical convergence, Canad. Math. Bull., 32(2), (1989), 194-198.

[19] A.Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289-321.

[20] H.J.Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29-60.

[21] ———-, A Generalization of multiple sequences transformation, Duke Math. J., 4, (1938), 343-358.

(18)

[22] ———-, Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293-297.

[23] A.Wilansky, Summability through Functional Analysis, North-Holland Mathe- matical Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).

DOI: 10.7862/rf.2015.11 N. Subramanian

email: nsmaths@yahoo.com Department of Mathematics, SASTRA University,

Thanjavur-613 401, India

R. Babu- corresponding author email: babunagar1968@gmail.com Department of Mathematics, Shanmugha Polytechnic College, Thanjavur-613 401, India P. Thirunavukkarasu

email: ptavinash1967@gmail.com

P.G. and Research Department of Mathematics, Periyar E.V.R. College (Autonomous)

Tiruchirappalli–620 023, India.

Received 4.07.2014

Cytaty

Powiązane dokumenty

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [20] and subsequently several au- thors have discussed various aspects of the theory and

have defined the almost strong regularity of matrices for double sequences and applied these matrices to establish a core theorem and introduced the M −core for double se- quences

Abstract: In the present paper we introduced some seminormed difference sequence spaces combining lacunary sequences and Musielak- Orlicz function M = (M k ) over n-normed spaces

Abstract: We generalized the concepts in probability of rough Ces` aro and lacunary statistical by introducing the difference operator ∆ α γ of fractional order, where α is a

They investigated the arithmetic properties of Q A and, in particular, they proved the following theorem:..

In this paper, (r„) denotes a Rademacher sequence independent of all other random variables under consideration.. It was conjectured by

Complex extreme point, complex strict convexity and complex uniform convexity of complex Banach space are natural generalizations of extreme point, strict

ROCZNIKI PQLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXIV (1984)M. Hence in this case p is