• Nie Znaleziono Wyników

Cursus tijdreeksanalyse

N/A
N/A
Protected

Academic year: 2021

Share "Cursus tijdreeksanalyse"

Copied!
233
0
0

Pełen tekst

(1)

b l z . 1 . I n l e i d i n g 1 2 . D e f i n i t i e v a n f o u t e n 3 3 . S c h a t t e n v a n g e m i d d e l d e n e n v a r i a n t i e s 5 3 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 5 3 . 2 B e r e k e n i n g s m e t h o d e 9 4 . S c h a t t e n v a n k a n s d i c h t h e i d s f u n k t i e s 10 , 4 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 10 4 . 2 B e r e k e n i n g s m e t h o d e 1'^ 5 . S c h a t t e n v a n c o r r e l a t i e f u n k t i e s 15 5 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 17 5 . 2 B e r e k e n i n g s m e t h o d e 2 6 5 . 2 . 1 D i r e k t e s c h a t t i n g v a n c o r r e l a t i e f u n k t i e s 2 6 5 . 2 . 2 I n d i r e k t e s c h a t t i n g v a n c o r r e l a t i e f u n k t i e s 2 8 6 . H e t s c h a t t e n v a n s p e c t r a 3 2 6 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n : a l g e m e e n 3 2 6 . 2 S p e c t r a l e s c h a t t e r s v i a d e i n d i r e k t e m e t h o d e 4 2 6 . 2 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 4 2 6 . 2 . 2 B e r e k e n i n g s m e t h o d e '^8 6 . 3 S p e c t r a l e s c h a t t e r s v i a d e d i r e k t e m e t h o d e 5 0 6 . 3 . 1 De r u w e p e r i o d o g r a m s c h a t t e r s 5 0 6 . 3 . 1 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 5 0 6 . 3 . 1 . 2 B e r e k e n i n g s m e t h o d e 5 6 6 . 3 . 2 D e g e m o d i f i c e e r d e p e r i o d o g r a m s c h a t t e r s 5 8 6 . 3 . 2 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 5 8 6 . 3 . 2 . 2 B e r e k e n i n g s m e t h o d e 6 2 6 . 3 . 3 D e g e m i d d e l d e p e r i o d o g r a m s c h a t t e r s 6 3 6 . 3 . 3 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 6 3 6 . 3 . 3 . 2 B e r e k e n i n g s m e t h o d e 6 7 6 . 3 . 3 . 3 O v e r l a p p e n d e r e e k s e n 6 7 6 . 3 . 3 . 4 D e k e u z e v a n d e d e e l r e e k s l e n g t e 6 8 6 . 3 . 4 De a f g e v l a k t e s p e c t r a l e s c h a t t e r s 6 9

(2)

6 . 3 . 4 . 2 B e r e k e n i n g s m e t h o d e • • • 7 2 6 . 4 B e t r o u w b a a r h e i d s i n t e r v a l l e n v o o r s p e c t r a l e s c h a t t e r s 73 6 . 5 H e t g e b r u i k v a n s p e c t r a a l - a n a l y s e p r o g r a m m a t u u r 76 6 . 6 V o o r b e e l d e n 79 7 . H e t s c h a t t e n . v a n k r u i s s p e c t r a 9 1 7 . 1 I n l e i d i n g 9 1 7 . 2 S t a t i s t i s c h e e i g e n s c h a p p e n 9 3 7 . 2 . 1 De i n d i r e k t e m e t h o d e 9 3 7 . 2 . 2 D e d i r e k t e m e t h o d e 9 4 7 . 2 . 3 A l i g n m e n t • 9 4 7 . 3 B e r e k e n i n g s m e t h o d e 9 8 7 . 3 . 1 De i n d i r e k t e m e t h o d e . . . 9 8 7 . 3 . 2 De d i r e k t e m e t h o d e 9 8 8 . S c h a t t e r s v a n c o h e r e n t i e f u n k t i e s . . 1 0 0 8 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n • • • • 1 0 0 8 . 2 B e r e k e n i n g s m e t h o d e • 1 0 3 9 . H e t s c h a t t e n v a n o v e r d r a c h t s f u n k t i e s 1 0 5 9 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n 1 0 5 9 . 2 B e r e k e n i n g s m e t h o d e 1 1 3 1 0 . V e r g e l i j k i n g e n i n d i r e k t e e n d i r e k t e m e t h o d e 1 1 9 1 1 . H e t s c h a t t e n v a n e x t r e m a 1 2 1 1 1 . 1 I n l e i d i n g 1 2 1 1 1 . 2 S t a t i s t i s c h e e i g e n s c h a p p e n v a n s p e c t r a l e m o m e n t e n 1 2 1 1 1 . 3 B e r e k e n i n g s m e t h o d e v a n s p e c t r a l e m o m e n t e n . . . 1 2 4 1 2 . T i j d r e e k s m o d e l l e n e n v o o r s p e l l i n g e n 4 vr

(3)

6 . 3 . 4 . 2 B e r e k e n i n g s m e t h o d e 7 2 6 . 4 B e t r o u w b a a r h e i d s i n t e r v a l l e n v o o r s p e c t r a l e s c h a t t e r s 73

6 . 5 H e t g e b r u i k v a n s p e c t r a a l - a n a l y s e p r o g r a m m a t u u r 7 6

(4)

a c o n s t a n t e ; o n d e r g r e n s d a t a - r a n g e A J . A ^ y ( r h ) , e v e n d e e l v a n k r u i s c o r r e l a t i e f u n k t i e b b o v e n g r e n s d a t a - r a n g e b . . b i a s ( o n z u i v e r h e i d ) v a n B b a n d b r e e d t e ; b a c k s h i f t - o p e r a t o r B g e q u i v a l e n t e b a n d b r e e d t e B g e q u i v a l e n t e b a n d b r e e d t e h o r e n d b i j G ^ ( f ) B g e q u i v a l e n t e b a n d b r e e d t e v a n W ( f ) B ^ e q u i v a l e n t e b a n d b r e e d t e v a n W ( f ) B ^ ' e q u i v a l e n t e b a n d b r e e d t e v a n W ( f ) B ^ B j 5 . y ( r h ) , o n e v e n d e e l v a n k r u i s c o r r e l a t i e f u n k t i e B { . . } b i a s f o u t c c o n s t a n t e ; g e s t a n d a a r d i s e e r d e b a n d b r e e d t e c c o r r e c t i e f a k t o r O c ^ 5 C j c o n s t a n t e s C ^ ( k ) , C „ ( T ) a u t o c o v a r i a n t i e f u n k t i e C j j y ( f ) c o ï n c i d e n t - s p e c t r u m ( c o - s p e c t r u m ) C ( k ) k r u i s c o v a r i a n t i e f u n k t i e d d i f f e r e n t i e - o r d e i n A R / M A - m o d e l dj^ e i n d p u n t i ^ i n t e r v a l d ( t ) , d - ^ ( t ) d a t a v e n s t e r d ^ ( t ) r e c h t h o e k i g d a t a v e n s t e r d j ( t ) c o s i n u s t a p e r D d i f f e r e n t i e - o r d e s e i z o e n - A R / M - m o d e l D ( f ) F o u r i e r g e t r a n s f o r m e e r d e v a n d ( t ) OO D ( g ) _ J f ( k ) W ( f - g ) d f D " ' - ( f ) F o u r i e r g e t r a n s f o r m e e r d e v a n d - ' - ( t ) D ^ ( f ) F o u r i e r g e t r a n s f o r m e e r d e v a n d ^ ( t ) D J ( f ) F o u r i e r g e t r a n s f o r m e e r d e v a n d j ( t ) e ^ ( £ ) ü - s t a p s - v o o r s p e l f o u t e . d . f . e q u i v a l e n t d e g r e e o f f r e e d o m E . . v e r w a c h t i n g s w a a r d e v a n f f r e q u e n t i e f ^ c u t - o f f f r e q u e n c y f | ^ d i s k r e t e f r e q u e n t i e - w a a r d e f ^ l.hf

(5)

f^y^ N y q u i s t - f r e q u e n t i e g i n t e g r a t i e v a r i a b e l e *^x(^k-^ ' •'^^^^ s p e c t r a l e s c h a t t e r G x ( f ) e e n z i j d i g s p e c t r u m G- j^ ( f ) r u w e p e r i o d o g r a m s c h a t t e r G ^ ( f ) g e m o d i f i c e e r d e p e r i o d o g r a m s c h a t t e r G ^ C p ) g e m i d d e l d e p e r i o d o g r a m s c h a t t e r G ^ ( p ) a f g e v l a k t e s p e c t r a a l s c h a t t e r G ^ ( p ) r u w e p e r i o d o g r a m s c h a t t e r v o o r i ^ d e e l r e e k s G ^ C p ) g e m o d i f i c e e r d e p e r i o d o g r a m s c h a t t e r v o o r i ^ d e e l r e e k s G ^ y ( f ) e e n z i j d i g k r u i s s p e c t r u m ^ x y ^ ^ k ^ ^ ^ ^ e s p e c t r a l e s c h a t t e r h d i s k r e e t t i j d i n t e r v a l , b e m o n s t e r i n g s i n t e r v a l h ( t ) i m p u l s r e s p o n s f u n k t i e H ( f ) o v e r d r a c h t s f u n k t i e H ^ ( p ) s u b s t i t u u t v o o r G ^ C p ) , G ^ ( p ) , G ^ C p ) o f G^^Cp) H ( f ) I g a i n f u n k t i e i i n t e g e r I a a n t a l s p e c t r a l e s c h a t t e r s j / - 1 ' k i n t e g e r K a a n t a l i n t e r v a l l e n o v e r d a t a r a n g e ; a a n t a l a u t o c o r r e l a t i e s ^ O 1 i n t e g e r L a a n t a l b e m o n s t e r i n g e n i n e e n d e e l r e e k s ; M / A m m a x i m u m a a n t a l l a g s ; s t e e k p r o e f g e m i d d e l d e ; i n t e g e r my^ k ^ s p e c t r a l e m o m e n t M m a x i m a l e l a g ; a a n t a l d e e l r e e k s e n Mj^ a a n t a l o v e r l a p p e n d e d e e l r e e k s e n n a a n t a l v r i j h e i d s g r a d e n n ( t ) r u i s n ^ , U j a a n t a l v r i j h e i d s g r a d e n N a a n t a l w a a r n e m i n g e n N £ a a n t a l w a a r d e n i n i ^ i n t e r v a l N a a n t a l w a a r d e n i n i n t e r v a l x ± 2 W 2C N.^ a a n t a l t o e g e v o e g d e n u l l e n z p i n t e g e r ; o r d e v a n A R - p r o c e s p ( x ) k a n s d i c h t h e i d s f u n k t i e p ( x , y ) s i m u l t a n e k a n s d i c h t h e i d s f u n k t i e

(6)

P P ( x , W ) P ( x , W x ; y , W y ) P r o b [. .] q Q Q ( f ) r r . - x y R r R C( r h ) R x y ( ^ ) s ^ x S2 S , ( f ) S , ( f ) i , ( f ) t T T ' T m a x T T ^ x ' '-K,y u u( t ) U t V v a r v d W ( T ) W o r d e v a n A R - s e i z o e n - o p e r a t o r a u t o c o r r e l a t i e m a t r i x k a n s v e r d e l i n g s f u n k t i e s i m u l t a n e k a n s v e r d e l i n g s f u n k t i e k a n s d a t o r d e v a n M A - p r o c e s o r d e v a n M A - s e i z o e n - o p e r a t o r ; t o e t s i n g s g r o o t h e i d p o s t m a n t e a u l a c k o f f i t t e s t q u a d r a t u u r - s p e c t r u m ( q u a d - s p e c t r u m ) l a g n u m m e r ; i n t e g e r s c h a t t i n g v o o r k r u i s c o r r e l a t i e c o ë f f i c i ë n t R ^ ( r h ) : s c h a t t e r v o o r a u t o c o r r e l a t i e f u n k t i e a u t o c o r r e l a t i e f u n k t i e s c h a t t i n g v o o r c y c l i s c h e a u t o c o r r e l a t i e f u n k t i e k r u i s c o r r e l a t i e f u n k t i e s e i z o e n - p e r i o d e s t a n d a a r d a f w i j k i n g s t e e k p r o e f v a r i a n t i e t w e e z i j d i g e r u w e s p e c t r a l e s c h a t t e r t w e e z i j d i g s p e c t r u m t w e e z i j d i g e c o n t i n u e v o r m v a n G^^Cf) t w e e z i j d i g e c o n t i n u e v o r m v a n G ^ ( f ) t w e e z i j d i g k r u i s s p e c t r u m t i j d v a r i a b e l e m e e t d u u r d e e l r e e k s l e n g t e e f f e k t i e v e r e g i s t r a t i e l e n g t e e f f e k t i e v e d e e l r e e k s l e n g t e p e r i o d e v a n d e l a n g z a a m s t e c o m p o n e n t E A t ^ i n t e g r a t i e - v a r i a b e l e i n g a n g s s i g n a a l w i t t e r u i s p r o c e s i n t e g r a t i e v a r i a b e l e v a r i a n t i e v a n v e r d u n n i n g s f a k t o r v e n s t e r f u n k t i e k l e i n i n t e r v a l

(7)

W ( f ) s p e c t r a a l v e n s t e r W ( f ) s p e c t r a a l v e n s t e r h o r e n d b i j G ^ C p ) W ( f ) s p e c t r a a l v e n s t e r h o r e n d b i j | x ( f ) W j ( f ) s p e c t r a a l v e n s t e r h o r e n d b i j c o s i n u s t a p e r W ( f ) s p e c t r a a l v e n s t e r Y l D ( f ) h W j ^ ( f ) r e c h t h o e k i g s p e c t r a a l v e n s t e r W ^ , W k l e i n e i n t e r v a l l e n x ( t ) t i j d s a f h a n k e l i j k e v a r i a b e l e X j ^ d a t a w a a r d e n x ^ d i s k r e t e w a a r n e m i n g e n r e e k s X j . t e b e s c h r i j v e n p r o c e s X] ^ ( t ) s t o c h a s t i s c h p r o c e s x i ( r h ) p u n t e n u i t i ^ d e e l r e e k s { x ( t ) } s t o c h a s t i s c h p r o c e s r e ë l e d e e l v a n X ^ ( f , T ) X J i m a g i n a i r e d e e l v a n X j ^ ( f , T ) X ] ; ( p ) r e ë l e d e e l v a n X ^ ( p ) X J ( p ) i m a g i n a i r e d e e l v a n X - ^ ( p ) x i ( p ) F o u r i e r c o m p o n e n t v o o r i ^ d e e l r e e k s g e d e f i n i e e r d d o o r ( 7 . 2 5 ) X^^, X ( k ) F o u r i e r c o m p o n e n t X ( f j ^ , T ) d i s k r e t e F o u r i e r g e t r a n s f o r m e e r d e v a n x ^ X ( p ) F o u r i e r c o m p o n e n t g e d e f i n i e e r d d o o r ( 6 . 5 0 ) X - ^ ( p ) F o u r i e r c o m p o n e n t v o o r i ^ d e e l r e e k s X ^ ( p ) F o u r i e r c o m p o n e n t g e d e f i n i e e r d d o o r ( 6 . 5 9 ) y ( t ) t i j d s a f h a n k e l i j k e v a r i a b e l e d i s k r e t e w a a r n e m i n g e n r e e k s { y ( t ) } s t o c h a s t i s c h p r o c e s Y-^ r e ë l e d e e l v a n Y ] ^ ( f , T ) Y j i m a g i n a i r e d e e l v a n Y - ^ ( f , T ) Y i ; ( p ) r e ë l e d e e l v a n Y ^ ( p ) Y ^ ( p ) i m a g i n a i r e d e e l v a n Y - ' - ( p ) Y - ' - ( p ) F o u r i e r c o m p o n e n t v o o r i ® d e e l r e e k s g e d e f i n i e e r d d o o r ( 7 . 2 6 ) Y-^, Y ( k ) F o u r i e r c o m p o n e n t Y ( f , T ) F o u r i e r g e t r a n s f o r m e e r d e v a n y ( t ) z s t a n d a a r d n o r m a a l v e r d e e l d e v a r i a b e l e z ( t ) t i j d s a f h a n k e l i j k e v a r i a b e l e ^ n ^ n + l Y n Zy_, Z ( k ) F o u r i e r c o m p o n e n t

(8)

Z ( f , T ) F o u r i e r g e t r a n s f o r m e e r d e v a n z ( t ) a s m o o t h i n g p a r a m e t e r ; o n b e t r o u w b a a r h e i d 3 c o r r e c t i e f a k t o r y ^ . ^ y i f ) c o h e r e n t i e f u n k t i e 6 ( t ) d e l t a f u n k t i e A b e m o n s t e r i n g s i n t e r v a l A f 1 / T A f ' 1 / ( N + ^^)h; ' / T ' e g e n o r m a l i s e e r d e r u i s f o u t c-^ g e n o r m a l i s e e r d e b i a s f o u t g e n o r m a l i s e e r d e s t a n d a a r d f o u t 6 l o o p t i j d , v e r t r a g i n g ; p a r a m e t e r M A ( 1 ) - p r o c e s 6 ^ M A - c o ë f f i c i ë n t 9 ^ y ( f ) a r g u m e n t v a n G ^ y ( f ) 8 ( B ) M A . - o p e r a t o r 9 ( B ^ ) M A - s e i z o e n - o p e r a t o r g e m i d d e l d e w a a r d e v a n x V a a n t a l v r i j h e i d s g r a d e n V p a a n t a l e . d . f . v a n G ^ ( p ) V p a a n t a l e . d . f . v a n G x ( p ) V p a a n t a l e . d . f . v a n G ^ ( p ) V p a a n t a l e . d . f . v a n G ^ ( p ) T T ( B ) g e w i c h t e n g e n e r e r e n d e f u n k t i e P j ^ , p ( k ) c o r r e l a t i e c o ë f f i c i ë n t p ^ y ( T ) k r u i s c o r r e l a t i e c o ë f f i c i ë n t O s t a n d a a r d a f w i j k i n g T t i j d v e r s c h u i v i n g (j) A R ( 1 ) - p a r a m e t e r A R - c o ë f f i c i ë n t ( j ) ( B ) A R - o p e r a t o r ( j ) ( f ) f a s e $ v a r i a b e l e $ ( B ^ ) A R - s e i z o e n - o p e r a t o r C h i - k w a d r a a t v a r i a b e l e m e a n - s q u a r e - v a l u e I | J ( B ) g e w i c h t e n g e n e r e r e n d e f u n k t i e V d i f f e r e n t i e - o p e r a t o r ? s c h a t t e r v o o r . c o m p l e x t o e g e v o e g d e v a n .

(9)

1 . I n l e i d i n g I n d i t t w e e d e d e e l v a n d e k u r s u s g a a n w e o n s b e z i g h o u d e n m e t d e t i j d r e e k s a n a l y s e . E e n t i j d r e e k s i s e e n r e a l i s a t i e v a n e e n s t o c h a s t i s c h p r o c e s e n d e t i j d r e e k s a n a l y s e b e o o g t o p g r o n d v a n é é n z o ' n r e a l i s a t i e u i t s p r a k e n t e d o e n o v e r h e t o n d e r l i g g e n d e p r o c e s . We d o e n d i t d o o r k a r a k t e r i s t i e k e g r o o t h e d e n v a n h e t p r o c e s t e b e r e k e n e n , z o a l s d e g e m i d d e l d e w a a r d e , d e v a r i a n t i e , d e c o r r e l a t i e f u n k t i e , e t c . W i l m e n d e z e k a r a k t e r i s t i e k e g r o o t h e d e n e x a k t b e r e k e n e n , d a n m o e t e n a l l e m o g e l i j k e u i t k o m s t e n v a n h e t p r o c e s b e k e n d z i j n , d i t w i l z e g g e n h e t h e l e e n s e m b l e . We h e b b e n e c h t e r s l e c h t s é é n r e a l i s a t i e , o v e r e e n b e p e r k t e t i j d s d u u r , z o d a t we s l e c h t s s c h a t t i n g e n v o o r d e g e n o e m d e k a r a k t e r i s t i e k e g r o o t h e d e n k u n n e n b e r e k e n e n . D e z e s c h a t t i n g e n h e b b e n a l l e e n d a n b e t e k e n i s , i n d i e n e n s e m b l e - g e m i d d e l d e n e n t i j d g e m i d d e l d e n a a n e l k a a r g e l i j k z i j n . D a a r o m b e p e r k e n w e o n s t o t e r g o d i s c h e p r o c e s s e n , w a a r v o o r d i t i m m e r s g e l d t . I n d e p r a k t i j k b e t e k e n t d i t d a t w e a a n n e m e n d a t h e t p r o c e s d a t w e b e s c h o u w e n e r g o d i s c h i s . I n h o o f d s t u k 2 w o r d e n e e r s t v e r s c h i l l e n d e s o o r t e n f o u t e n g e d e f i n i e e r d : d e s t a n d a a r d f o u t , d e b i a s - f o u t e n d e r o o t - m e a n - s q u a r e ( r m s ) f o u t , e n d e g e n o r m a l i s e e r d e v e r s i e s e r v a n . V e r v o l g e n s w o r d t a a n g e g e v e n h o e v e r s c h i l l e n d e k a r a k t e r i s t i e k e g r o o t h e d e n g e s c h a t k u n n e n w o r d e n . V a n d e z e s c h a t t e r s w o r d e n d e s t a t i s t i s c h e e i g e n s c h a p p e n g e g e v e n , z o a l s h u n s y s t e m a t i s c h e f o u t , v i a d e b i a s ( o n z u i v e r h e i d ) e n h u n t o e v a l l i g e f o u t , v i a d e v a r i a n t i e . V e r v o l g e n s w o r d t a a n g e g e v e n h o e d e b e r e k e n i n g s m e t h o d e i s . We b e h a n d e l e n g e m i d d e l d e n e n v a r i a n t i e s ( h o o f d s t u k 3 ) , k a n s d i c h t h e i d s f u n k t i e s ( h o o f d s t u k 4 ) , c o r r e l a t i e f u n k t i e s ( h o o f d s t u k 5 ) e n s p e c t r a ( h o o f d s t u k 6 ) . V o o r d e s p e c t r a w o r d e n v e r s c h i l l e n d e s c h a t t e r s g e g e v e n , n a m e l i j k s c h a t t e r s v i a d e i n d i r e k t e m e t h o d e e n v i a d e d i r e k t e m e t h o d e . B i j d e d i r e k t e m e t h o d e z i j n n o g t e o n d e r s c h e i d e n : r u w e p e r i o d o g r a m s c h a t t e r s , g e m o d i f i c e e r d e p e r i o d o g r a m s c h a t t e r s , g e m i d d e l d e p e r i o d o -g r a m s c h a t t e r s e n a f -g e v l a k t e s p e c t r a a l s c h a t t e r s . K r u i s s p e c t r a k o m e n i n h o o f d s t u k 7 a a n d e o r d e , t e r w i j l i n h o o f d s t u k 8 e n 9 c o h e r e n t i e f u n k t i e s r e s p e k t i e v e l i j k o v e r d r a c h t s f u n k t i e s w o r d e n b e h a n d e l d . I n h o o f d s t u k 10 w o r d t v e r v o l g e n s e e n v e r g e l i j k i n g g e m a a k t t u s s e n d e d i r e k t e e n i n d i r e k t e b e r e k e n i n g s m e t h o d e v o o r c o r r e l a t i e f u n k t i e s

(10)

e n s p e c t r a l e f u n k t i e s . E x t r e m a k o m e n i n h o o f d s t u k 11 a a n d e o r d e . I n h o o f d s t u k 12 t e n s l o t t e w o r d t i n g e g a a n o p t i j d r e e k s m o d e l l e n e n v o o r s p e l l e n . S p e c i a l e a a n d a c h t w o r d t h i e r g e g e v e n a a n d e a u t o r e g r e s s i e v e m o d e l l e n e n d e m o v i n g a v e r a g e m o d e l l e n , o o k w e l B o x - J e n k i n s - m o d e l l e n g e n o e m d , o m d a t d e z e z o ' n g r o t e r o l s p e l e n b i j d e B o x ~ J e n k i n s - m e t h o d e . D e z e m e t h o d e w o r d t o o k i n d i t h o o f d s t u k 12 b e h a n d e l d . M e t b e t r e k k i n g t o t v o o r s p e l l i n g e n w o r d e n v e r s c h i l l e n d e s m o o t h i n g - p r o c e d u r e s g e g e v e n , a l s m e d e d e w i j z e w a a r o p m e t b e h u l p v a n d e B o x - J e n k i n s - m e t h o d e k a n w o r d e n v o o r s p e l d .

(11)
(12)

2. D e f i n i t i e van f o u t e n

The accuracy o f parameter estimates based u p o n sample values can be described b y a mean square e r r o r defined as

mean square e r r o r = E[{é - <^y] P- ' f ) where Ó is a n estimator f o r O . E x p a n d i n g E q u a t i o n (2.-1) yields

E[{i> - 0)2] = E[ié - E[é] + E[é] - 0)2]

= E[{é - E m f ] + 2E[{é - E[é])(E[é] - O ) ]

+ £[(£[0] - 0

)2]

N o t e t h a t the m i d d l e t e r m i n the above expression has a f a c t o r equal to zero, n a m e l y ,

E[é - Em] = Em - E[é] = 0

Hence the mean square e r r o r reduces t o

mean square e r r o r =

£[(0 -

E[é]Y] +

£[(£[0]

- O)^] (2.2) I n w o r d s , the mean square e r r o r is the sum o f t w o parts. The first p a r t is a variance t e r m w h i c h describes the r a n d o m p o r t i o n o f the e r r o r .

V a r [ O ] = E[i^ - s m f ] = Em] - E ' m (2,3) a n d the second p a r t is the square o f a bias t e r m w h i c h describes the

syste-m a t i c p o r t i o n o f the e r r o r ,

b^é] = E[b^m] = E[{Em - 0)2] (2.4)

T h u s the mean square e r r o r is the s u m o f the variance o f the estimate plus the square o f the bias o f the estimate, t h a t is

£[(0 -

0)2] = V a r [ O ] + b^é] (2,5)

I t is generally m o r e convenient t o describe the e r r o r o f an estimate i n terms w h i c h have the same engineering units as the parameter being estimated. T h i s can be achieved b y t a k i n g the positive square r o o t s o f the e r r o r terms i n E q u a t i o n s (z.-h) t h r o u g h (2.5). T h e square r o o t o f E q u a t i o n (2.5) yields the standard d e v i a t i o n f o r the estimate, called the standard error ( o r random error) as f o l l o w s

standard e r r o r = = ^E[^^] - £ 2 [ 0 ] (a.6) T h e square r o o t o f E q u a t i o n (2A) gives the bias error directly as

bias e r r o r = ö[Ó] = £ [ * ] - O (-2,7) T h e square r o o t o f the s u m o f the squared errors, as given by E q u a t i o n (2.5),

defines the root mean square (rms) e r r o r as

rms error = V£[(6 - 0)2] = Va2[0] + b^ê] (2.Q)

A s a f u r t h e r convenience, i t is o f t e n desirable t o define the e r r o r o f a n estimate i n terms o f a f r a c t i o n a l p o r t i o n o f the q u a n t i t y being estimated. T h i s is done by d i v i d i n g the e r r o r by the q u a n t i t y being estimated t o o b t a i n a

(13)

normalized error. F o r <1) 0, the n o r m a h z e d s t a n d a r d , bias, a n d r m s errors are given b y n o r m a l i z e d standard e r r o r = = = (S.QSI) O (D n o r m a h z e d bias e r r o r = ej, = ^ ^ ^ ^ = ^^^^ — \ (Q.Q b) 0) O n o r m a l i z e d r m s e r r o r = e = = ( 2 . q ^

N o t e t h a t the n o r m a l i z e d standard e r r o r is o f t e n called the coefficient of

variation.

I n the f o l l o w i n g chapter6,the errors associated w i t h p a r a m -eter estimates are derived i n terms o f the quantities defined b y E q u a t i o n

(2.9). G i v e n the s a m p l i n g d i s t r i b u t i o n s o f the estimators, these quantities can

be extended t o confidence i n t e r v a l statements

W i t h the exception o f spectral density a n d f r e q u e n c y response f u n c t i o n estimates, a n o r m a l i t y a s s u m p t i o n f o r the s a m p l i n g d i s t r i b u t i o n o f the p a r a m -eter estimates is usually acceptable w h e n the n o r m a l i z e d r m s e r r o r is s m a l l . Spectral density a n d f r e q u e n c y response f u n c t i o n estimates require special c o n s i d e r a t i o n because the n o r m a l i z e d r m s e r r o r f o r these estimates is o f t e n relatively large i n practice. A l o n g w i t h the d e r i v a t i o n o f e r r o r s , the consistency o f t h e various parameter estimates, is investigated.

(14)

3 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n

(15)

3_. S c h a t t e n v a n gemiddelden en v a r i a n t i e s

3.1 Stati.sti.sehe eigen.schappen

Mean Values

Suppose that a single sample t i m e h i s t o r y r e c o r d x(t) f r o m a s t a t i o n a r y (ergodic) r a n d o m process {x{t)} exists over a finite t i m e T. T h e m e a n value o f {x(t)} can he estimated by

fi.=

^r^iO

dt ( 5 J ) I Jo

T h e t r u e mean value is

fix = E[x(t)] (1^1)

a n d is independent o f t since {x(t)} is stationary. T h e expected value o f the estimate fix is

Elflx] = E i r x ( t ) d t ^ = i rE[x(t)] d t = ^ r,,^^ d t = ( 3 . 5 )

i Jo J T Jo T Jo

since expected values c o m m u t e w i t h linear operations, as given b y E q u a t i o n ( 3 . g o ) . Hence fix is a n unbiased estimate o f fi^, independent o f T. Since fi^

is unbiased, the mean square e r r o r o f the estimate fi^ is equal t o the v a r i a n c e . V a r [fix] = E[ifix - f i x f ] = E[fix'] - ix^' ( 5 . 4 ) where f r o m E q u a t i o n ( S . l ) ,

E[fi:\ = ~ r rE[xiO x(r,)] dr, di (3.Ö") T Jo Jo

N o w the a u t o c o r r e l a t i o n f u n c t i o n Rxi^) o f a stationary r a n d o m process

{x{t)} is defined b y

RX(T) = E[x{t) x{l + r)] ( 5 . 6 )

F r o m the stationary hypothesis, R^ir) is independent o f t, a n d a n even f u n c t i o n o f T w i t h a m a x i m u m at T = 0, I t w i l l be assumed t h a t RJT) is c o n t i n u o u s a n d finite f o r a l l values o f T , a n d t h a t a l l p e r i o d i c components i n Rx{r) have been r e m o v e d at the onset. T h e autocovariance f u n c t i o n Q ( T ) is defined by

CJT) = Rxir) - fC ( 5 . ? )

I t turns o u t t h a t whenever (x^ ^ 0, i t is m o r e convenient t o w o r k w i t h Q ( T )

t h a n w i t h Rj^r). I t w i l l be assumed t h a t Q ( T ) satisfies the properties so as to m a k e {x(t)} ergodic.

I n terms o f the autocovariance f u n c t i o n ^ ( T ) , the variance (mean square e r r o r ) f r o m E q u a t i o n s ( 3 . 4 ) and ( 5 . 5 ) becomes

V a r [fix] = V f ^ C i , ? - f ) dri di = T C , ( T ) dr di

(16)

T h e last expression occurs by reversing the orders o f i n t e g r a t i o n between T a n d f a n d c a r r y i n g o u t the f i n t e g r a t i o n . T h i s changes the l i m i t s o f i n t e -g r a t i o n f o r T a n d i as s h o w n i n the sketch b e l o w so t h a t CJT) dr di Jo J -CJr) di dr 0 Jo '0 fT CJT) di dr + J-T J - T '0 f-T = (T + r) CJ,T) dr+ ( T - T ) CJr) dr J-T Jo = (T - \r\) CJr) dr J-T N o w o n l e t t i n g T tend to i n f i n i t y , E q u a t i o n ( 3 . S } becomes l i m T V a r [fix] = T-*aa CJr) dr<co

(3

.9)

s i n c e { x( t ) } i s e r g o d i c ,, w h i c h p r o v i d c s t h a t Q ( T ) a n d T CJr) are absolutely integrable over (—00, 00) to j u s t i f y passage t o the Hmit inside the i n t e g r a l sign. I n p a r t i c u l a r . E q u a t i o n ( 3 . 9 ) shows t h a t f o r large T, where

|T| « T, the variance is given by

CJr) dr i&.iO)

Hence w h e n the integral is finite-valued. V a r [/<J approaches zero as T approaches i n f i n i t y , p r o v i n g t h a t fi^ is a consistent estimate o f fx^.

Example 3.1. Variance o f M e a n Value Estimates o f B a n d w i d t h L i m i t e d

W h i t e Noise. Consider the i m p o r t a n t special case where {a:(;)} is b a n d -w i d t h l i m i t e d -w h i t e noise -w i t h a mean value fx^ 9^ 0. Assume the p o -w e r spectral density f u n c t i o n is

1

G J f ) = ^ + f x J d { f ) Q < f < B B

= 0 f > B (3,11)

where B is the b a n d w i d t h . T h e associated autocovariance f u n c t i o n CJr) is given by

CJr)

Jo

Jo

G J f ) cos 2iTfr df - ixx

^ 1 , . smlrrBr = — cos 2rrfr df

Jo B 2rrBr

(3,1a)

N o t e t h a t CJO) = 1 a n d t h a t CJr) = 0 f o r T = 1/25. T h u s p o i n t s 1/25 apart are u n c o r r e l a t e d . ( T h e y w i l l be statistically independent i f {x(t)} is Gaussian.) F o r this case. E q u a t i o n (S.AO) yields the result

V a r [ ^ J ^ i

r ( ^ j l ^ ) d r

= - ^ (3.15)

TLOOX 27TBr J 2BT

T h i s is the variance o f mean value estimates o f b a n d w i d t h l i m i t e d w h i t e noise w i t h b a n d w i d t h B a n d s a m p l i n g t i m e T. E q u a t i o n ('5.13) requires t h a t

T be sufficiently large so t h a t E q u a t i o n ( 5 , i p ) can replace E q u a t i o n ( S . ó ' ) .

(17)

F o r CJO) 1, E q u a t i o n (3.-15) w o u l d be

C . ( 0 ) aJ Var [/JJ

IBT 2BT

Hence, w h e n /x^ 0, the n o r m a l i z e d mean square e r r o r is given b y

, V a r [ f i x ] 1

£ = •

fXx' 2BT\fi

(-1

T h e square r o o t o f E q u a t i o n (3. •14) gives the normalized rms error e, w h i c h includes o n l y a r a n d o m e r r o r t e r m since the bias e r r o r is zero.

Mean Square Values

let x{t) be a single sample t i m e h i s t o r y record f r o m a s t a t i o n a r y (ergodic) r a n d o m process { « ( / ) } . T h e mean square value o f {«(?)} can be estimated by t i m e averaging over a finite t i m e i n t e r v a l T as f o l l o w s .

Y J = - r x \ t ) dt ( 3 . I S ) T Jo

T h e t r u e mean square value is

= E[x\t)] {5.ib)

a n d is independent o f / since {x(t)} is stationary. T h e expected value o f the estimate WJ is

E[Wx'] = - rE[xXt)] dt = - r ^ x ^ dt = (3.17)

T Jo T Jo

A

Hence WJ^ is an unbiased estimate o f T , . ^ , independent o f T. T h e m e a n square e r r o r here is given b y the variance

. V a r [YJ] = E[{WJ - W j f ] = E[YJ] - Y j

^ ''^iE[x\i) x\r])] - Y x ' ) drj di (3.1(9) ^ eT

^ r

Jo Jo

A s s u m e n o w t h a t {x{t)} is a Gaussian r a n d o m process w i t h mean value fXx 9^ 0. T h e n the expected value i n E q u a t i o n ( j . i ö ) takes the special f o r m

E[x%i) x%r])] = 2iRxKv - f ) - l^J) + "^J (5•^9)

F r o m the basic r e l a t i o n s h i p i n E q u a t i o n ( 5 . 7 ) ,

(18)

Hence

V a r [WJ] = l i riR.Xv - 0 - l^') dv

T Jo Jo

= 2 r _ | r | \ , _^ , ^ ^ ( ^ ^ ^ ( 3 ^ ^ )

T J -T\ TJ

F o r large T, where | T | « T, the variance becomes

V a r [WJ] ( C / ( r ) + 2 ^ / C , ( T ) ) ( 3 . 1 7 )

T J—oo

T h u s YJ is a consistent estimate o f since V a r [YJ] w i l l a p p r o a c h zero as

T approaches i n f i n i t y assuming CJ(T) a n d CJr) are absolutely integrable

over (— 00, co)

Example 3 . 2 . Variance o f M e a n Square Value Estimates o f B a n d w i d t h L i m i t e d Gaussian W h i t e Noise. Consider the i m p o r t a n t special case o f b a n d w i d t h l i m i t e d Gaussian w h i t e noise where

c.« = c , o , ( ^ ' )

F o r this case, E q u a t i o n (3.ax) shows t h a t

V a r [ T ; ] ^ ^ + ^ / . . ^ C . ( 0 ) (3.1^)

T h i s is the variance o f mean square value estimates o f b a n d w i d t h l i m i t e d Gaussian w h i t e noise w i t h b a n d w i d t h B a n d s a m p l i n g t i m e T. E q u a t i o n (3.24) requires t h a t T be sufficiently large so t h a t E q u a t i o n (z.Ti) can replace E q u a t i o n ( s . i l ) . Satisfactory c o n d i t i o n s i n practice are T ^ 10 | T | a n d

BT> 5.

F o r /Lix= 0, E q u a t i o n (Z.^if) becomes

BT BT

Hence w h e n /x^^O, the n o r m a l i z e d mean square e r r o r is given b y V a r [ T / ] _

V a r [ ^ ^ _ L ( 3 . ^ ^ Y J BT

T h e square r o o t o f E q u a t i o n (3.26) gives the n o r m a l i z e d rms e r r o r e. N o t e t h a t this result also represents the n o r m a l i z e d rms error o f variance estimates w h e n = 0. F u r t h e r note t h a t , as f o r m e a n value estimates, e includes o n l y a r a n d o m e r r o r t e r m since the bias e r r o r is zero.

(19)

3.2 Berekeningsmethode

C A L C U L A T I O N O F T H E M E A N V A L U E . T h e sample m e a n value is given by

where N is t h e n u m b e r o f data samples a n d >:„ are the data values. T h e q u a n t i t y rn calculated here is a n unbiased estimate o f the mean value /x.

B e r e k e n i n g v a n mean square v a l u e en v a r i a n t i e .

Een s c h a t t e r , van de mean square v a l u e wordt berekend v i a :

(3.28) en de v a r i a n t i e met: s N-1 N (3.29) n=1

(20)

4 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n

(21)

S c h a t t e n van k a n s d i c h t h e i d s f u n k t i e s

4.1 s t a t i s t i s c h e eigenschappen

Consider a p r o b a b i l i t y density measurement o f a single sample time h i s t o r y r e c o r d x(t) f r o m a stationary (ergodic) r a n d o m process {.^•(0}• T h e p r o b a b i l i t y t h a t x{t) assumes p a r t i c u l a r a m p l i t u d e values between x — {Wl2) and X + (Wjl) d u r i n g a t i m e i n t e r v a l T m a y he estimated b y

P[x, W] = P r o b

1

T

T i ' T

(AA)

where A^^ is the t i m e spent by x(t) i n this a m p h t u d e range d u r i n g the / t h entry i n t o the range, a n d 73^ = 2 ^^i- T h e r a t i o TJTis the t o t a l f r a c t i o n a l p o r t i o n o f the t i m e spent b y x{t) i n the range [x - (W/2), x + iWI2)]. I t s h o u l d be n o t e d t h a t T^ w i l l usually be a f u n c t i o n o f the a m p l i t u d e x. T h i s estimated p r o b a b i l i t y P[x, W] w i l l a p p r o a c h the true p r o b a b i l i t y P{x, W] as T ap-proaches i n f i n i t y . M o r e o v e r this estimated p r o b a b i l i t y is an unbiased esti-mate o f the true p r o b a b i l i t y . Hence

P[x, W] = E[P[x, W]] = l i m P[x, W] = l i m —* T-K» T^m T T h e p r o b a b i l i t y density f u n c t i o n p{x) is defined b y , , ,. P[x, W] ,. P[x, W] ,. , pix) = h m — - = h m - ^ - ^ — ' = h m p(x) ir->o W r - o o W T^oo fF—o ir-*o where P[x, W] W T T I F ( 4 . 3 )

is a sample estimate o f p(x). I n terms o f the p r o b a b i h t y density f u n c t i o n p(x), the p r o b a b i l i t y o f the t i m e h i s t o r y x(t) f a l l i n g between any t w o values aJi a n d x^ is given b y P r o b [xi<,x<, x^ I n p a r t i c u l a r P\x, W] = P r o b ••iZ Jxi p(x) dx ( 4 - 5 ) W W' ('a:+(JF/2) K f ) ^ ? f ( 4 . 6 ) Ja:-(jr72)

(22)

T h e n , f r o m E q u a t i o n (4. A ) , E[P[x, W]] P[x, W] 1 , , , , E[p{x)] = = = - p(i) di (4.7 ) W W W Jx~(w/2) T h u s f o r most p(x), ElPix)] ^ pix) (4.Q ) p r o v i n g t h a t p{x) is generally a biased estimate o f p{x).

T h e mean square e r r o r o f the estimate p{x) is calculated f r o m E q u a t i o n (2.6) b y

E[(p(x) - p i x ) f ] = V a r [pix)] + b'[p{x)] M ) where V a r [p{x)] is the variance o f the estimate as defined b y

V a r [pix)] = E[(p(x) - E[pix)]f] ( ^ . f o ) and b[p(x)] is the bias o f the estimate as d e f i n e d b y

b[p(x)] = E[p{x) - p(x)] (AM ) Variance of the Estimate

T o evaluate the variance o f an estimate p{x), i t is necessary t o k n o w the statistical properties o f the t i m e intervals A?, w h i c h comprise T^. U n f o r t u -nately, such t i m e statistics f o r a r a n d o m process are very d i f f i c u l t t o o b t a i n . H o w e v e r , the general f o r m o f a n a p p r o p r i a t e variance expression f o r p(x) can be established b y the f o l l o w i n g heuristic argument.

F r o m E q u a t i o n (4.4 ) , the variance o f ^ ( a ; ) is given b y

V a r [p(x)] = V a r [P(x, W)] (A-n)

where P{x, W) is the estimate o f a p r o p o r t i o n P{x, W). T h e variance f o r a p r o p o r t i o n estimate based u p o n N independent sample values is given b y ,

V . r l A » . » ' ) ] - ^ " - " ' ' " - ' ' ' ^ ' " ' "

S u b s t i t u t i n g E q u a t i o n (^.-15) i n t o E q u a t i o n (4.12), a n d assuming P(a;, W) ^ Wp{x) « 1, the variance o f p r o b a b i l i t y density estimates m a y be a p p r o x i -m a t e d b y

V a r [p{x)] ^ (4.14) NW

where is still t o be d e t e r m i n e d . N o w f r o m the t i m e d o m a i n s a m p l i n g t h e o r e m , a sample r e c o r d x(t) o f b a n d w i d t h B a n d

(23)

length T can be completely reproduced w i t h N = IBT discrete values. O f course, the N discrete values w i l l n o t necessarily be statistically independent. Nevertheless, f o r any given stationary (ergodic) r a n d o m process, each sample r e c o r d w i l l represent n = Njc^ independent sample values (degrees o f f r e e d o m ) , where c is a constant. Hence f r o m E q u a t i o n ( ^ . l ^ ) ,

N a r [ p { x ) ] ^ - ^ ^ (4.15) 2BTW

The constant c is dependent u p o n the a u t o c o r r e l a t i o n f u n c t i o n o f the data and the samphng rate. F o r continuous b a n d w i d t h l i m i t e d w h i t e noise, e x p e r i m e n t a l studies mdicate c 0.3. I f the b a n d w i d t h l i m i t e d w h i t e noise is d i g i -tized t o N = 2BT discrete values, the e x p e r i m e n t a l studies indicate c = 1.0 as w o u l d be expected f r o m the results o f E q u a t i o n (3.12 ) .

Bias of the Estimate

A n expression w i l l n o w be derived f o r the bias t e r m o f E q u a t i o n (4.11). I n terms o f the true p r o b a b i l i t y density f u n c t i o n . E q u a t i o n ( 4 . ? ) shows t h a t

Elp(x)] = ^^ p{i)di (4.1b)

By expanding p{i) i n a T a y l o r series a b o u t the p o i n t ^ = a n d r e t a i n i n g only the first three terms,

p{i) « p{x) + {i-x) p'{x) + P'\x) (4.17.)

F r o m the t w o relations fx+lWIi) and I t f o l l o w s t h a t { i - x ) d i = 0 ( 4 . i ö a ) Jx-(Wli) Ja x+lW/2) ( t _ „\1 w 3 ( ^ ^ d f = - ^ ( 4 . i ö b ) x-{wi2.) 2 24 W2 E[p{x)]^p{x) + —p"{x) (4.ic^)

T h u s a first order a p p r o x i m a t i o n f o r the bias t e r m is given b y

b[p{x)]<=^'^p"{x) (4.ao)

(24)

Normalized rms Error

T h e t o t a l mean square e r r o r o f the p r o b a b i l i t y density estimate p(x) is given b y E q u a t i o n ( 4 . g ) as the s u m o f the variance defined i n E q u a t i o n

(A-i'o) a n d the square o f the bias defined i n E q u a t i o n (A-io). T h a t is,

Hence, the n o r m a l i z e d mean square e r r o r is a p p r o x i m a t e d b y

, 2 ^ , E l 2BTWp(x) 576

'PM

.p(x)^

(A.H)

T h e square r o o t o f E q u a t i o n (^.'xa) gives the n o r m a h z e d rms e r r o r e. I t is clear f r o m E q u a t i o n ( 4 . 1 1 ) t h a t there are c o n f l i c t i n g requirements o n the w i n d o w w i d t h Win p r o b a b i l i t y density measurements. O n the one h a n d , a large value o f Wis desirable t o reduce the r a n d o m error. O n the other h a n d , a s m a l l value o f W is needed t o suppress the bias error. H o w e v e r , the t o t a l e r r o r w i h a p p r o a c h zero as 0 0 i f I F is restricted so that W-^-O a n d

WT-> 0 0 . I n practice, values of W < 0.2a^ w i l l usually l i m i t the n o r m a h z e d

bias e r r o r to less t h a n one percent. T h i s is t r u e because o f the p"(x) t e r m i n the bias p o r t i o n o f the e r r o r given b y E q u a t i o n (A ll)- P r o b a b i l i t y density f u n c t i o n s o f c o m m o n ( a p p r o x i m a t e l y Gaussian) r a n d o m data d o n o t dis-p l a y a b r u dis-p t o r shardis-p dis-peaks w h i c h are i n d i c a t i v e o f a large second derivative.

Joint Probability Density Estimates

J o i n t p r o b a b i h t y density estimates f o r a p a i r o f sample t i m e h i s t o r y records,

x(t) a n d y(i), f r o m t w o s t a t i o n a r y (ergodic) r a n d o m processes {x{t)} a n d {y(t)}, m a y be defined as f o l l o w s . A n a l o g o u s t o E q u a t i o n {AA ) , let

P[x,Wx;y,W,] = '^ (4.23)

estimate the j o i n t p r o b a b i l i t y t h a t x{t) is inside the a m p h t u d e i n t e r v a l centered at x w h i l e simultaneously y{t) is inside the a m p h t u d e i n t e r v a l Wy centered at y. T h i s is measured b y the r a t i o T^JT where T^^y represents the a m o u n t o f t i m e t h a t these t w o events coincide i n t i m e T. C l e a r l y , Tx,y w i l l u s u a l l y be a f u n c t i o n o f b o t h x a n d y. T h i s estimated j o i n t p r o b a b i h t y w i l l a p p r o a c h the t r u e p r o b a b i l i t y P[x, W^; y, Wy] as T approaches i n f i n i t y , n a m e l y ,

(25)

The j o i n t p r o b a b i l i t y density f u n c t i o n p{x, y) is n o w defined by

K . , y) = h m ^ l ^ i i ^ i i l ü ^ = Hm i ^ B . ^ ^ ^ = Hm p^x, y) (4..5)

Tr»-»o irx-*o n-i-^o

where

= (4..6)

WxW, TWxWy

Assume t h a t a n d Wy are sufficiently small so t h a t the bias errors are neghgible. T h e n the mean square error associated w i t h the estimate p{x, y) w i l l be given by the variance o f the estimate. A s f o r first-order p r o b a b i l i t y density estirnates, this quanHty is d i f f i c u l t to determine precisely by theoreti-cal arguments alone. H o w e v e r , by using the same heuristic arguments w h i c h p r o d u c e d E q u a t i o n (4<4), a general f o r m f o r the variance can be a p p r o x i mated. Specifically, f o r the special case where x{t) and y{t) are b o t h b a n d -w i d t h l i m i t e d -w h i t e noise -w i t h identical b a n d -w i d t h s B,

where c is an u n k n o w n constant.

4.2 Berekeningsmethode

Consider N data values {«„}, n = \,2,. . . ,N, f r o m a t r a n s f o r m e d record x{t) w h i c h is stationary w h h zero mean x. I t f o l l o w s f r o m E q u a t i o n (4-4 ) t h a t the p r o b a b i l i t y density f u n c t i o n o f x{t) can be estimated by

p{x) = (4.aÖ) NW

where I I ' is a n a r r o w i n t e r v a l centered at x a n d N^ is the n u m b e r o f data values w h i c h f a l l w i t h i n the range x ± Wjl. Hence an estimate ^(a;) is o b -tained d i g i t a l l y b y d i v i d i n g the f u l l range o f x i n t o an a p p r o p r i a t e n u m b e r o f equal w i d t h class intervals, t a b u l a t i n g the n u m b e r o f data values i n each class i n t e r v a l , a n d d i v i d i n g b y the p r o d u c t o f the class i n t e r v a l w i d t h I K a n d the sample size N. N o t e t h a t the estimate p{x) is n o t unique since i t clearly is dependent u p o n the n u m b e r o f class intervals a n d their w i d t h selected f o r the analysis.

A f o r m a l statement o f this procedure w i l l n o w be given. L e t K denote the n u m b e r o f class intervals selected t o cover the entire range o f the data values

(26)

f r o m a to b. T h e n the w i d t h o f each i n t e r v a l is given b y

w = ^ ( 4 ^ 9 )

and the end p o i n t o f the / t h i n t e r v a l is defined b y

di = a + iW i = 0,1,2, . . . ,K (u.^ N o t e t h a t do = a and dj^ = b. N o w define a sequence o f i i ^ + 2 numbers

{JVJ; / = 0, 1, 2, . . . , ^ + 1, b y the c o n d i t i o n s No = [ n u m b e r o f x such t h a t x < C/Q] TV^i = [ n u m b e r o f x such t h a t d^ <. x <. di]

Ni = [ n u m b e r o f x such t h a t < a; < di] ( A - ^ l )

TV^^ = [ n u m b e r o f x such that (^2^-1 < * ^ ^ i f ] N^^i = [ n u m b e r o f a; such t h a t x > rfj^]

T h i s procedure w i l l sort o u t the N data values o f x so t h a t the n u m b e r sequence {Ni} satisfies

JC+l

JV = 2 Ni (A -il)

One m e t h o d o f d o i n g this s o r t i n g o n a d i g i t a l c o m p u t e r is t o examine each value a;„; n = 1, 2, . . . , A'^, i n t u r n as f o l l o w s .

!• I f *n < a, a d d the integer one t o N^.

2. I f a < a;„ < b, c o m p u t e / = («„ — a)IW. T h e n , select / as the largest integer less t h a n o r equal to / , a n d a d d the integer one t o iV,.

3. I f .r„ > b, a d d the integer one to y V ^ + i .

F o u r o u t p u t f o r m s f o r the sequence {Ni} can be used. T h e first o u t p u t is the h i s t o g r a m , w h i c h is s i m p l y the sequence {AT,} w i t h o u t changes. T h e second o u t p u t is the sample percentage o f data i n each class i n t e r v a l defined f o r i = 0 , l , 2 , . . . , K + l , h y

Pi = P r o b [di_i <x<di] = j^ is.)

(27)

{pj} defined at the m i d p o i n t s o f the K class intervals i n [a, b] b y

T h e f o u r t h o u t p u t is the sequence o f sample p r o b a b i l i t y d i s t r i b u t i o n estimates { / ( ; ) } defined at the class i n t e r v a l end p o i n t s where / = 0, 1, 2 , . . . , X + 1, b y

P(i) = P r o b [ - 00 < a; < c/J = 2 A ' = ^ i ^ - ^ ^ ) 3=0 3=0

Joint Probability Density Functions

I t f o l l o w s f r o m E q u a t i o n (•^.z6) that the j o i n t p r o b a b i h t y density f u n c t i o n o f t w o stationary records x(t) a n d y{t) can be estimated f r o m digitized data by

p(x,y) = - ^ ^ ( 4 . 5 6 )

where W^. and Wy are n a r r o w intervals centered o n x and y, respectively, a n d N^y is the n u m b e r o f pairs o f data values w h i c h simultaneously f a l l w i t h i n these intervals. Hence a n estimate p(x, y) is o b t a i n e d b y d i v i d i n g the f u l l ranges o f x a n d y i n t o a p p r o p r i a t e numbers o f equal w i d t h class intervals f o r m i n g t w o d i m e n s i o n a l rectangular cells, t a b u l a t i n g the n u m b e r o f data values i n each cell, and d i v i d i n g b y the p r o d u c t o f the cell area WJVy and the sample size A''. C o m p u t e r procedures f o r s o r t i n g the data values i n t o a p p r o -p r i a t e cells are s i m i l a r t o those o u t l i n e d f o r -p r o b a b i l i t y density estimates.

(28)

5 . 1 S t a t i s t i s c h e e i g e n s c h a p p e n

5 . 2 B e r e k e n i n g s m e t h o d e

5 . 2 . 1 D i r e k t e s c h a t t i n g v a n c o r r e l a t i e f u n k t i e s 5 . 2 . 2 I n d i r e k t e s c h a t t i n g v a n c o r r e l a t i e f u n k t i e s

(29)

5 j S c h a t t e n v a n c o r r e l a t i e f u n k t i e s

_5jJ S t a t i s t i s c h e eigenschappen

Consider n o w t w o sample time h i s t o r y records x{t) a n d y{l), f r o m t w o stationary (ergodic) r a n d o m processes, {«(/)} and

{y(t)}.

T h e next statistical quantities o f interest are the stationary a u t o c o r r e l a t i o n f u n c t i o n s , RJr) and

Ry(r), and the cross-correlation f u n c t i o n 5^„(T). T O s i m p l i f y the f o l l o w i n g

d e r i v a t i o n , the mean values /x^ and /j.^ w i l l be assumed t o be zero. F o r con-tinuous data, x{t) and y{t), w h i c h exist o n l y over a t i m e i n t e r v a l T, the sample cross-correlation estimate Kyir) can be defined by

1 C^"' = x{t) y(t + r)dt 0 < T < T T T Jo (5.1 ) T - | T | J | r | — x\ T | J\rl ( t ) y ( t + T)dt - T < r < 0

T o a v o i d use o f absolute value signs, T w i l l be considered positive hence-f o r t h since a similar p r o o hence-f applies hence-f o r negative T. T h e sample a u t o c o r r e l a t i o n f u n c t i o n estimates -^^.(T) and ^ „ ( T ) are merely special cases w h e n the t w o records coincide. T h a t is,

^ ^ ( r ) =

r

« ( 0

x(t

+

T)dt

0 < T < T T T Jo

RJT) = — ^ 2 / ( 0

yit

+

r)dt

0 < T < T T r Jo

( f f . 2 )

Thus by a n a l y z i n g the cross-correlation f u n c t i o n estimate, one derives results w h i c h are also applicable t o the a u t o c o r r e l a t i o n f u n c t i o n estimates.

I f the data exist f o r t i m e T + T instead o f o n l y f o r time T, then an alter-native d e f i n i t i o n f o r Kyir) is

RM) = i r 4 0 y(t + r) dt 0<r<T ( 5 . 3 )

T Jo

T h i s f o r m u l a has a fixed i n t e g r a t i o n t i m e T instead o f a variable i n t e g r a t i o n t i m e as i n E q u a t i o n (5.1 ) , a n d is the w a y the c o r r e l a t i o n f u n c t i o n s have been defined previously. N o t e t h a t f o r either E q u a t i o n (5.1 ) or E q u a t i o n ( S . i ) , mean square estimates o f x{t) o r y{t) are merely special cases w h e n T = 0. F o r s i m p l i c i t y i n n o t a t i o n . E q u a t i o n ( 5 . 3 ) w i l l be used i n the f o l l o w i n g development instead o f E q u a t i o n (5,1 ) . T h e same final results are o b t a i n e d f o r b o t h d e f i n i t i o n s , assuming the data exists f o r t i m e T+r.

(30)

E[Kyir)] = i rE[xit)y(t + T)]dt T Jo

1 Jo

Hence ^ ^ „ ( T ) is an unbiased estimate of R^yir), independent o f T. The mean square error is given by the variance

V a r [RM)] = E[(AM) - R M ) f ] = E [ R M ] - R j ( r )

(E[x(u) y{u + T ) X{V) y{v + T ) ] - R j { r ) ) dv du

(5.5) A t this p o i n t , i n order t o s i m p l i f y the later m a t h e m a t i c a l analysis and t o agree w i t h many physical cases o f interest, i t w i l l be assumed t h a t the r a n d o m processes {«(?)} a n d {y(t)} are j o i n t l y Gaussian f o r any set o f fixed times. T h i s restriction m a y be r e m o v e d b y substituting certain i n t e g r a b i l i t y c o n -d i t i o n s o n the non-Gaussian parts o f the r a n -d o m processes w i t h o u t altering

i n any essential way the results t o be derived. W h e n {«(/)} a n d {yit)} are j o i n t l y Gaussian, i t f o l l o w s that {x{t)} and {y{t)} are separately Gaussian.

F o r Gaussian stationary r a n d o m processes w i t h zero mean values, the f o u r t h - o r d e r statistical expression is obtained

f o l l o w s .

E[x{u) y{u + T) X(,V) y{v + T ) ]

= RJir) + RJV - u) Ry(v - u ) + RM - u + r) RM - « - r )

( 5 . 6 ) Hence the variance expression m a y be w r i t t e n as

V a r [RM)\ = i f ^ ( ^ i * ^ - " ) Ry(^ - ") T Jo Jo

-b RM - " + 7-) RyJyV - " - r)) dv du

'l-^^yRJi)Ryii)

+ RM + r) Ryji - r)) di (5.7 )

T h e second expression occurs f r o m the first b y l e t t i n g i = v — u, di = dv, a n d then reversing the order o f i n t e g r a t i o n between | a n d u. N o w ,

^ Jo Jo ^

TJ

l i m T V a r [RM)] = T->oo

( R j i ) Ryii) + RM + r) RyJi - r)) di< CO

(5.9 ) assuming RJi)Ry{i) a n d Kyi^) Ryxi^) are absolutely integrable over

(—00, oo). T h i s proves t h a t RM) is a consistent estimate of RM)> a n d f o r

(31)

V a r [RM)] ' ^ i r ( U i ) U i ) + u a + r) R y j i - r)) di (5.g )

Several special cases o f E q u a t i o n (5.9 ) are w o r t h y o f note. F o r autocorre-l a t i o n estimates, E q u a t i o n ( 5 . ^ ) becomes

V a r [RJr)] ^ ^ r ( R M ) + K(i + r) RJi - r)) di (5.10)

I J—oo

A t the zero displacement p o i n t T = 0,

V a T [ R x m > ^ ^ r Rj'(i)di (6.11) 1 J—oo

T h e assumption t h a t U ^ ) approaches zero f o r large T shows t h a t

R M ) » U i + r) RJi - r) f o r r » 0 (5.12.)

Hence f o r large T,

Yar [ÊJr)] ^ ^ r R M ) di (5.13) 1 J — oo

w h i c h is o n e - h a l f the value o f E q u a t i o n ( S . H ) .

Example 5,1. Variance o f C o r r e l a t i o n Estimates o f B a n d w i d t h L i m i t e d W h i t e

Noise. F o r b a n d w i d t h l i m i t e d w h i t e noise w i t h a mean value /^^ = 0, a b a n d w i d t h B, a n d c o v e r i n g a t i m e i n t e r v a l T, the variance f o r a l l T is c o n -servatively given b y

V a r [RJr)] ^ { R M ) + (5.14)

T h i s reduces to E q u a t i o n (5.2.5) at the p o i n t T = 0. S i m i l a r l y , w h e n b o t h x{t) a n d y{t) are samples o f l e n g t h T f r o m b a n d w i d t h l i m i t e d w h i t e noise w i t h m e a n values = = 0 and i d e n t i c a l b a n d w i d t h s B, i t f o l l o w s t h a t

V a r [RM)] (RM Rv(0) +

U\r)) (SAS)

lol

E q u a t i o n (5.15) requires t h a t The sufficiently large such t h a t E q u a t i o n (5.9 )

can replace E q u a t i o n ( 5 . ? ) . Satisfactory c o n d i t i o n s i n practice are T> 10 \T\

and BT > 5.

F o r /x^ = fly = 0 a n d R^y 5^ 0, the n o r m a l i z e d m e a n square e r r o r is given b y

^ V a r [ÊM)] ^ M ( , + RMRJO)] ( 5 , , 6 )

R j ( r ) 2BT\ RJ(T) J

T h e square r o o t o f E q u a t i o n ( 5 . i b ) gives the n o r m a l i z e d rms e r r o r e, w h i c h includes o n l y a r a n d o m e r r o r t e r m since the bias e r r o r is zero i f the r e c o r d l e n g t h is longer t h a n T + r .

(32)

V o o r b e e l d 5 . 2 S t a t i s t i s c h e e i g e n s c h a p p e n , v a n g e m e t e n t u r b u l e n t e s c h u i f s p a n n i n g e n M . b . v . b i j v o o r b e e l d L a s e r - D o p p l e r m e t i n g e n k u n n e n i n e e n b e p a a l d p u n t i n e e n v l o e i s t o f t w e e s n e l h e i d s k o m p o n e n t e n u ( t ) ( i n s t r o o m r i c h t i n g ) e n v ( t ) ( l o o d r e c h t o p s t r o o m r i c h t i n g ) g e m e t e n w o r d e n . D e z e k o m p o n e n t e n z i j n t e s p l i t s e n i n e e n g e m i d d e l d e s n e l h e i d e n e e n f l u k t u a t i e t . g . v . t u r b u l e n t i e ( u ' r e s p . v ' ) . De t u r b u l e n t e s c h u i f s p a n n i n g i s d a n g e d e -f i n i e e r d a l s T = p u ' v ' ( 5 . 1 7 ) w a a r b i j d e h o r i z o n t a l e s t r e e p t i j d s m i d d e l i n g o v e r e e n i n p r i n c i p e o n -e i n d i g l a n g -e m -e -e t t i j d v o o r s t -e l t . O n d -e r d -e a a n n a m -e d a t u ( t ) -e n v ( t ) t -e b e s c h o u w e n z i j n a l s d e r e a l i s a t i e s v a n t w e e s t a t i o n a i r e e r g o d i s c h e p r o -c e s s e n { u ( t ) } e n { v ( t ) } m e t g e m i d d e l d e w a a r d e n e n y ^ i s x / p o p t e v a t t e n a l s d e k o v a r i a n t i e t u s s e n { u ( t ) } e n { v ( t ) } : J = E { ( u ( t ) - u ) ( w ( t ) - y ) } = C ( 0 ) ( 5 . 1 8 ) p — u — w u v m e t C ^ ^ ( 9 ) d e k r u i s k o v a r i a n t i e f u n k t i e t u s s e n { u ( t ) } e n { v ( t ) } , g e d e f i -n i e e r d a l s C , , ( 9 ) = E { ( u ( t + 0 ) - y „ ) ( v ( t ) - y ) } ( 5 . 1 9 ) u v u — w O m d a t T v o l g e n s ( 5 . 1 7 ) g e d e f i n i e e r d i s v o o r o n e i n d i g e m e e t t i j d T , t e r -w i j l i n d e p r a k t i j k m e t i n g e n v a n u ( t ) e n v ( t ) s l e c h t s e e n e i n d i g e l e n g t e h e b b e n , z a l o p b a s i s v a n d e z e m e t i n g e n h o o g u i t e e n s c h a t t i n g v a n T g e -m a a k t k u n n e n w o r d e n . D e z e s c h a t t i n g x k a n w o r d e n v e r k r e g e n m . b . v . d e a l s v o l g t g e d e f i n i e e r d e s c h a t t e r ƒ ( u ( t ) - m ^ ) ( v ( t ) - m ^ ) d t ( 5 . 2 0 ) o m e t 1 ^ m ^ = Y •/• u ( t ) ( 5 . 2 1 ) o e n

(33)

1 ^ = ^ ƒ v ( t ) d t ( 5 . 2 2 ) O M e r k o p d a t f e e n s t o c h a s t i s c h e v a r i a b e l e i s : d o o r d e e i n d i g e m e e t t i j d z a l d e u i t k o m s t v a n ( 5 . 2 0 ) v o o r e l k p a a r r e a l i s a t i e s u ( t ) e n v ( t ) v e r -s c h i l l e n d z i j n l I n v e r b a n d m e t d e n a u w k e u r i g h e i d s e i s e n w e l k e i n d e p r a k t i j k a a n g e m e t e n s c h u i f s p a n n i n g e n w o r d e n g e s t e l d , i s h e t v a n b e l a n g d e i n v l o e d v a n d e m e e t d u u r T o p z o w e l d e v a r i a n t i e a l s d e b i a s v a n T / p t e k e n n e n . D i t z a l h i e r o n d e r u i t g e w e r k t w o r d e n . A l l e r e e r s t w o r d t ( 5 . 2 0 ) g e s c h r e v e n a l s ƒ ( u ( t ) - y ^ ) ( v ( t ) - y ^ ) d t - ( y ^ - m ^ ) ( y ^ - m ^ ) ( 5 . 2 3 ) O D a n g e l d t E i l / p } = C ^ ^ ( O ) - E { ( y ^ - m ^ ) ( y ^ - m ^ ) } ( 5 . 2 4 ) z o d a t d e b i a s i n x g e l i j k i s a a n B { x } = - p E { ( y ^ - m ^ ) ( y ^ - m ^ ) } T T = - p E ƒ ( u ( t ) - y ^ ) d t . ^ ƒ ( v ( t ) - y ^ ) d t } o O T T = - p { — ƒ ƒ E { ( u ( t ) - y ) ( v ( s ) - y ^ ) d t d s } O O T T = - p { — ƒ ƒ C ( t - s ) d t d s } „ 7 U V T o o T = - ^ ( 1 - ^ ) C ^ ^ ( e ) d 0 ( 5 . 2 5 ) w a a r b i j i n d e l a a t s t e s t a p g e b r u i k i s g e m a a k t v a n d e z e l f d e t r a n s f o r m a -t i e a l s i n h o o f d s -t u k 3 , f o r m u l e ( 3 . 8 ) . F o r m u l e ( 5 . 2 5 ) k a n w o r d e n g e s c h r e v e n a l s T „ C ( 9 ) B { x } = - 1 ƒ ( 1 - i f L ) ^ d 0 ( 5 . 2 6 ) - T u v w a a r u i t b l i j k t d a t t e n g e v o l g e v a n d e e i n d i g e m e e t d u u r d e t u r b u l e n t e s c h u i f s p a n n i n g s y s t e m a t i s c h w o r d t o n d e r s c h a t . V o o r v o l d o e n d g r o t e T k a n ( 5 . 2 6 ) w o r d e n b e n a d e r d d o o r

(34)

^ «> C ( 9 ) -oo u v z o d a t d e r e l a t i e v e s y s t e m a t i s c h e f o u t w o r d t g e g e v e n d o o r ™ C ( 9 ) -oo u v M e r k o p d a t t e n e i n d e t e b e r e k e n e n d e g e h e l e k r u i s k o v a r i a n t i e f u n k t i e C ^ ^ ( 9 ) b e k e n d m o e t z i j n . D e v a r i a n t i e v a n T^/p k a n a l s v o l g t w o r d e n b e r e k e n d . U i t ( 5 . 2 3 ) v o l g t v a r { r / p } = v a r { A } + v a r { B } - 2 c o v { A , B } ( 5 . 2 8 ) m e t 1 A = - ƒ ( u ( t ) - y ^ ) ( v ( t ) - M ^ ) d t O ( 5 . 2 9 ) B = ( y ^ - m ^ ) ( y ^ - m ^ ) A a n g e t o o n d k a n w o r d e n d a t v o o r v o l d o e n d g r o t e T d e b i j d r a g e v a n v a r { A } a a n ( 5 . 2 8 ) o v e r h e e r s e n d i s . D a a r u ( t ) y ^ = v i ' ( t ) e n v ( t ) y ^ = v ' ( t ) z o -d a t E { u ' ( t ) } = E { v ' ( t ) } = O v o l g t u i t ( 5 . 5 ) T T v a r { A } = -L f f T O O ^ E { u ' ( t ) v ' ( t ) u ' ( s ) v ' ( s ) } - R ^ , ^ , ( 0 ) d t d s ( 5 . 3 0 ) D e f i n i e e r n u h e t s i g n a a l z ( t ) a l s h e t p r o d u k t v a n u ' ( t ) e n v ' ( t ) . D a n g e l d t R ^ ( t - s ) = E { u ' ( t ) v ' ( t ) u ' ( s ) v ' ( s ) } E { z ( t ) } = E { u ' ( t ) v ' ( t ) } = \ , ^ , ( 0 ) = C ^ ^ ( O ) ( 5 . 3 1 ) C ^ ( t - s ) = R ^ ( t - s ) - R ^ , ^ , ( 0 ) m e t R ( 9 ) e n C ( 9 ) d e a u t o k o r r e l a t i e r e s p , a u t o k o v a r i a n t i e - f u n k t i e v a n z z z ( t ) . S u b s t i t u t i e v a n ( 5 . 3 1 ) i n ( 5 . 3 0 ) g e e f t

(35)

T T v a r { A } = - ! - ƒ ƒ c ( t - s ) d t d s T o o T = Y / ( 1 - ^ c ^ ( 0 ) d e V o o r v o l d o e n d g r o t e T w o r d t d i t v a r { A } ^ - f C ( 0 ) d e X z —oo z o d a t 2 ° ° v a r { T } - ^ ƒ C ^ ( 0 ) d 0 ( 5 . 3 2 ) —oo M e r k o p d a t t e n e i n d e d e v a r i a n t i e i n t e b e r e k e n e n d e g e h e l e k o v a r i a n -t i e - f u n k -t i e v a n h e -t p r o d u k -t v a n u ' ( -t ) e n v ' ( -t ) b e k e n d m o e -t z i j n . N . B . D e z e k o v a r i a n t i e f u n k t i e d i e n t n i e t v e r w a r d t e w o r d e n m e t d e k r u i s -k o v a r i a n t i e - f u n -k t i e t u s s e n u ( t ) e n v ( t ) i A a n n e m e n d d a t i j( t ) e n v ( t ) G a u s s i s c h z i j u , v o l g t u i t ( 5 . 6 ) R ^ ( 0 ) = 2 R2, ^ , ( 0 ) + R ^ , ( 0 ) R ^ ( 0 ) z o d a t C J O ) = C ^ ^ ( O ) + ( 5 . 3 3 ) M e t ( 5 . 1 8 ) v o l g t d a n 2 " C ( 0 )

v a r l x } . f ( a X ^ ) / ^ ^^'^'^

P -oo z D e v a r i a n t i e i n x i s d u s k e n n e l i j k a f h a n k e l i j k v a n x z e l f . B e s c h o u w n u h e t v o l g e n d e k o n k r e t e g e v a l . I n e e n t u r b u l e n t e g r e n s l a a g b o v e n e e n g l a d d e b o d e m w o r d e n u ' ( t ) e n v ' ( t ) g e m e t e n o p e e n a f s t a n d y v a n d e b o d e m . D e g r e n s l a a g d i k t e i s 6 e n d e g e m i d d e l d e s n e l h e i d b u i t e n d e g r e n s l a a g i s . D o o r A n t o n i a e n v a n A t t a T l z i j n v o o r y = 0 , 0 8 6 ( d u s v l a k b o v e n d e b o d e m ) o n d e r a n -d e r e -d e v o l g e n -d e f u n k t i e s b e p a a l -d c . „ ( 0 ) u v ^ u v ^ O ) C J 0 ) ( z i e f i g u u r 5 . 1 , o n d e r s t e h e l f t ) ( z i e f i g u u r 5 . 1 , b o v e n s t e h e l f t ) C J O ) w a a r b i j 0 i s u i t g e d r u k t i n e e n h e d e n v a n ^j- s e c .

(36)

F i g . 5.1 G e n o r m a l i s e e r d e k r u i s k o v a r i a n t i e f u n k t i e t u s s e n u en v ( o n d e r s t e h e l f t ) en g e n o r m a l i s e e r d e a u t o k o v a r i a n t i e -f u n k t i e v a n h e t produkt u*v* (bovenste h e l -f t ) a l s f u n k t i e van Uj^6/6 ( o n t l e e n d aan ) •

U i t d i t f i g u u r v o l g e n d e b e n a d e r i n g e n C ( 0 ) 2 U , ^ = e . p { - ^ | e | ) ( 5 . 3 5 ) U V e n » c ( 0 ) . O z 1 S u b s t i t u t i e v a n ( 5 . 3 5 ) i n ( 5 . 2 7 ) g e e f t = - ( S / T U , ( 5 . 3 7 ) b 1 S u b s t i t u t i e v a n ( 5 . 3 6 ) i n ( 5 . 3 4 ) r e s u l t e e r t i n v a r { f } ^ 1 ( « - ^ ) D a a r t e v e n s g e s t e l d k a n w o r d e n ^ u = = ^ 1 p 2 2 T < = ^ 2 ^ . = - 2 p

(37)

m e t d e s c h u i f s p a n n i n g s s n e l h e i d e n c , e n c k o n s t a n t e n v o l g t v a r m . I ( , . c j c j 3 I z o d a t d e r e l a t i e v e t o e v a l l i g e f o u t i n d e s c h a t t i n g v a n x g e l i j k i s a a n De b e p a l e n d e g r o o t h e i d i n z o w e l d e r e l a t i e v e s y s t e m a t i s c h e a l s d e r e l a -t i e v e -t o e v a l l i g e f o u -t i s d u s 6 / U j T . D a a r 6 / U j d i m e n s i e s e c o n d e h e e f t , w o r d e n d e f o u t e n d u s b e p a a l d d o o r d e v e r h o u d i n g v a n e e n t i j d s c h a a l , d i e b e p a a l d w o r d t d o o r d e g r o o t s t e a a n -w e z i g e -w e r v e l s , e n d e m e e t t i j d . ( E i n d e v o o r b e e l d ) . T o t s l o t d i e n t t . a . v . h e t s c h a t t e n v a n k o v a r i a n t i e f u n k t i e s n o g h e t v o l -g e n d e t e w o r d e n o p -g e m e r k t . B i j d e i n t e r p r e t a t i e v a n g e s c h a t t e k o v a r i a n t i e - f u n k t i e s z a l v o o r i e d e r e X n i e t a l l e e n m e t d e v a r i a n t i e v a n d e s c h a t t e r C_ ( x ) , m a a r t e v e n s m e t d e k o v a r i a n t i e t u s s e n C ^ ( T ) e n d e d a a r n a a s t g e l e g e n s c h a t t e r s C ^ ( x + 0 ) r e k e n i n g m o e t e n w o r d e n g e h o u d e n . I n s o m m i g e g e v a l l e n k a n d e z e k o v a r i a n -t i e z o s -t e r k z i j n , d a -t e e n g e s c h a -t -t e k o v a r i a n -t i e - f u n k -t i e e e n o s c i l l e r e n d v e r l o o p b l i j f t v e r t o n e n , t e r w i j l d e w e r k e l i j k e k o v a r i a n t i e - f u n k t i e C (x) a l l a n g i s u i t g e d e m p t . D i t f e n o m e e n k a n s n e l a a n l e i d i n g g e v e n t o t h e t t r e k k e n v a n v e r k e e r d e k o n k l u s i e s . ( 5 . 3 8 )

(38)

5•2 Berekeningsmethode

T w o methods w i l l be discussed f o r the d i g i t a l c o m p u t a t i o n o f corre-l a t i o n f u n c t i o n estimates. T h e first m e t h o d is the standard a p p r o a c h o f e s t i m a t i n g the c o r r e l a t i o n f u n c t i o n b y direct c o m p u t a t i o n o f average p r o d -ucts a m o n g the sample data values. T h e second m e t h o d is the r o u n d a b o u t a p p r o a c h o f first c o m p u t i n g a p o w e r spectrum by direct F o u r i e r t r a n s f o r m procedures, and then c o m p u t i n g the inverse F o u r i e r t r a n s f o r m o f the p o w e r spectrum.

5.2.1 D i r e k t e s c h a t t i n g van c o r r e l a t i e f u n k t i e s

A u t o c o r r e l a t i e f u n k t i e

F o r A f d a t a values {x„}, n = 1,2, . . . , N, f r o m a t r a n s f o r m e d r e c o r d x(t) w h i c h is s t a t i o n a r y w i t h x = 0, the estimated a u t o c o r r e l a t i o n f u n c t i o n at the displacement rh is defined by the f o r m u l a

= RJrh) = '^Ix,-x„.,, r = 0 , 1 , 2, . . . , m ( 6 . 3 9 ) N r n=i

where r is the lag n u m b e r , m is the m a x i m u m lag n u m b e r , a n d R,. is the esti-mate o f the true value R^ at l a g r, c o r r e s p o n d i n g t o the displacement rh. N o t e t h a t the m a x i m u m l a g n u m b e r m is related t o the m a x i m u m t i m e displacement o f the estimate b y

T m a x = T,„ = mh ( 5 . 4 0 )

T h e sample a u t o c o r r e l a t i o n f u n c t i o n m a y also be defined at l a g r b y

2 i V - r

R, = RJrh) = - I x„x„^, r = 0 , 1 , 2, . . . , m ( 5 . 4 1 ) N n=l

where the d i v i s i o n b y remains constant instead o f c h a n g i n g t o A'' — r as i n E q u a t i o n ( 5 . 5 9 ) . Use o f this e q u a t i o n gives a biased estimate o f the a u t o -c o r r e l a t i o n f u n -c t i o n . H o w e v e r , f o r N large a n d m s m a l l w i t h respe-ct t o N, the values o b t a i n e d b y using E q u a t i o n (5.4)) d i f f e r very l i t t l e f r o m those o b -t a i n e d b y use o f E q u a -t i o n ( 5 . 3 9 ) .

Cytaty

Powiązane dokumenty

Obrót wartościami dewizowymi a dyspozycja mieniem za granicq — jako przestępstwa

Stochastische grootheden (waterstanden, grondparameters), dit zijn er ongeveer een stuk of 50, worden gekarakteriseerd door een verdelingstype (Normaal, Lognormaal, Gumbel, etc),

spired by Polish master of painting Wacław Kondek, OFF Galleria Project by the Urban Forms Foundation, public art located in a private backyard, 12 Pogonowskiego Street, Lodz,

The fourth group of movements, called by Philastrius heresies, deviates from the strict understanding of heresy as a doctrinal error and includes the moral issues related to the

61 Co prawda rejestry poborowe bardzo często podają zaniżone liczby łanów (co było podno- szone już wyżej – patrz przypis nr 22), jednak w przypadku Skrzyszowa rzeczywista

De ken- nis van de zee op bepaalde trajecten, de voor- spellingsmogelijkheid van naderende zee-om- standigheden op die trajecten en het gedrag van bet schip in zeegang

Wynika z tego w sposób oczywisty, że systematycznym założeniem dzieła życia Flietnera, które pod tytułem Pedagogika ogólna ukazało się do roku 1950 w Republice Federalnej

A system containing two auto-ionising levels diluted in two orthogonal continua and mutually coupled by a DC electric field is discussed. The long-time photoelectron