15 SEP. 1972

### Nt2,-2t1

ARCHe-ABSTRACT

and a log region where

p oix 5Y

### #9-Lab. yr.

### Scheepsbouwkunde

DATUM: I 9 0 . 1973

### ,i

### llcieschool

sche Hogeschoo_{,}

### Technsche

o Doo,iumgEsri,E,### Ek4ft

VELOCITY DISTRIBUTION AND FRICTION FACTORS

i/i2ttreAL-IN FLOWS WITH DRAG REDUCTION

_{i}

Michael Poreh and Yona Dimant

Technion - Israel Institute of Technology

Faculty of Civil Engineering

A simple descriptive model, based _{on van Driest's mixing length}

### e=

ky[1 - exp(-y+/A+)] with a variable damping_{parameter A+, is }

pro-posed to reFrasent the effect of linear _{macromolecules in dilute }

solu-tions on the wall region in boundary layer flows. Measurements used

to support an elastic sublayer model for _{drag reduction are shown to}
be in better agreement with the proposed model. A relation between A+

and parameters of the polymer solution _{and the flow identified by Virk}

(1971), is derived for the range where Virk's correlations are valid.

The maximum drag reduction appears to be associated with an asymptotic

value of A+. INTRODUCTION

The ability of minute quantities _{of high molecular weight polymers}

to reduce the turbulent skin friction and thus to decrease the drag of

underwater bodies, 'has excited _{many investigations of the phenomenon of}

drag reduction. Theoretical efforts _{to explain the mechanism of drag} _{}

re-duction, have not been very successful, _{probably because drag reduction}

is affected by an interaction

between the molecules and the

timia-dependent, non-linear turbulent flow near the edge of the viscous
subla-yer. On the other hand, experimental and semi-empirical _{studies have }

suc-ceeded in

### documenting

_{many features of simple drag reduction flows and}

describing them in approximate phenomenological _{models.}

The earlier descriptions of such flows _{employed a two-layer model}

to describe the mean velocity profile _{(Meyer 1965, Elata et al 1965);}

a viscous sublayer where

U

_{=y}

_{(1)}

2

where An = 5.75, B = 5.5, u+ = u/V , y+ = yV /v and V _{is the shear}

n _6

velocity. The term Au', which describes the upward shift of _{the log}

profile in the conventional law of the wall representation, _{was }

empi-rically related to the shear velocity and polymer _{characteristics by}

the equations ' .* * * *

### Au=alog0.7p7_1; V > V

_{cr}

. . cr
* *
Au = 0 ; V. < V'
cr
where
### Vr

_{c}is the shear velocity at the onset of drag reduction

_{and a}

is a concentration dependent parameter.

Virk and Merrill (1969) correlated measurements of the onset of drag reduction in "thin" solvents by the semi-empirical relation

(Ref14)_{cr} =

### 2VI

(/R g) (4)Where R is the polymer radius of gyration in dilute solutions, _{Q a}

non-dimensional constant characteristic to the polymer species-splvent

combination, R is the radius of the pipe, Re the Reynolds number

based on the mean velocity and diameter, and f Fanning's _{friction}

coefficient.

Integration of u+ over the area of the pipe yields _{an expression}

for the friction coefficient f. At high Reynolds numbers _{and small to}

moderate values of Au _{the contribution of the'sublayer to'the }

integ-* *

ral of u+ is negligible, yielding for V> _{Vcr the equation}

1/2 _{*} _{*}

### 1/T=aillog(Ref

) - b + a log(V /V### )/VI

_{(5)}

cr

Where _{an =} 4.0 and b = 0.4. Plotted on Prandtl coordinates, f-14

versus Ref2, Eq.(5) gives straight lines which intersect the _{}

Newto-nian line (a = 0) at (Ref1/2) _{, where V} _{= V}

cr. This result has been

cr

supported by numerous independent pressure-loss _{measurements at large}

Reynolds numbers for small values of Au+. The data deviates _{from Eq.(5)}

at large values of Au+, where Au seems to reach a maximum value

(Seyer and Metzner 1969, Whittist et al 1968) as well as near (Refia)

cr'

where a smooth transition from the Newtonian _{curve to the polymer }

solu-tion curve is observed.

The effect of the transition region between the viscous _{sublayer}
and the log region, was first considered by Poreh _{and Paz (1968). The}
velocity in this zone was approximated by the _{following log law}

3

+ + + +

U = yl

ln(Y /Y1 )4. Y1+

### where y1,the

"thickneseOf the viscous sublayer, was assumed to be proportional to the "thickness" yj+ in the lwo-layer model:

y +-.0.43 (7)

-and the value of y,+ was determined by the .intersection of _{Eqs.}

J

(1) and (2). When Au = 0 and y,+= 11.6 Eq. _{(6) reduces to}

u= 5.0 in 17-1.- 3.05 (8)

which had been used by von Karman to describe the buffer zone in
Newtonian flows. The model has been used successfully _{to relate}
heat transfer characteristics to friction losses in dilute polymer
solutions. The effect of the buffer zone on the friction coefficient
was found, however, to be negligible.

Recently, Virk (1971) proposed a new 3-layer model _{to describe}

the velocity distribution in drag reducing fluids. He termed the

transition between the viscous sublayer and the _{log region - elastic}

sublayer and proposed to describe it by a universal logarithmic law

u= Am in y + Bm _{(9)}

where Ant = 11.7 and B _{= -17.0. The "edge" of the viscous sublayer}
yv+ is given by the intersection of Eqs. _{(1) and (9). The "edge" of}

the elastic sublayer, is given by the intersection _{of Eqs.} _{(9) and}

(2). The relation between Au+ and the _{thickness of the elastic layer}

is given by

Au+= _{(Am}_{m} A )1n(Y /Y ).

.n

### e

v+, +A

(10)

Thus, when Au+ becomes small the elastic sublayer _{deminishes. Except}

+ +

for small values of R (R = RV /v) and the large values of Au +, the

contributions of both the viscous and elastic layers _{to the integral}

of u+ are small (see table 3, Virk (1971) _{). In these cases, the }

det-ails of the sublayer are insignificant and Virk's _{model gives the same}
friction coefficient as the model of Meyer and _{Elata. Virk termed this}

case - the polymeric regime,. _{(Note that the last term in Virk's }

fric-tion factor relafric-tion for this regime, Eq. (12) in Virk (1971), is

iden-+

tical to Au in Eq. (10).

4

In the other extreme case where the elastic sublayer becomes large and the contribution of the log region to the integral of u+ is negligible, the friction coefficient is described by a universal

law obtained by integration of (9),

l/f = 19.0 log(Ref ) - 32.4 (11)

Equation (11), termed the maximum drag reduction asymptote, descri-bes reasonably well the maximum values of drag reduction obtained in many investigations at small values of R.

A very similar, but slightly more complicated 3-layer model, has

been offered independently by Tomita (1970).

Virk's analysis of data in the polymeric regime has yielded an

additional contribution. He has correlated semi-empirically the depen-dence of the slope of the straight lines in Prandtl's coordinates, which are described by Eq.(5), to identifiable polymeric parameters.

Defining a fractional slope increment A in Pram:Wits coordinate

sys-tem, which is proportional to a in Eq.(2), A =

(S-Ss

### US =

a/,/g7- (12)p s

where

Sp is the slope with polymers and S = An = 4.0 is the Newtonian

slope, Virk showed that

1h 3h.

A = a/iTT = K(J(C/M) N (13)

Where

### (ir

is Avogadro's number 6.02 x 1023, C concentration as a weightfraction, M molecular weight, N number Of backbone chain links and K a characteristic constant of the species-solvent combination. The para-meter A appears as well in an expression which Virk derived

theoreti-cally for the turbulent strain energy of the macromolecules.

Virk's correlations describe a large volume of the data in the polymeric regime and in the maximum drag reduction regime. It should be noted, however, that the correlations proposed for the two regimes are not related. The equations proposed for the polymeric regime are

unaffected by the details of the elastic sublayer, whereas Eqs, (9)

and (11) proposed for the maximum drag reduction regime, are indepen-dent of the polymer propoerties; Thus, it appears to the authors that

the correlations do not prove the exittance of an elastic sublayer,

in character from the corresponding layer _{in a Newtonian fluid. We}

shall show that this transitional _{zone in dilute polymer solutions}

is similar to the conventional buffer sone in a Newtonian fluid by

deriving the entire velocity profile in _{the wall region for both}

cases using Van Driest's mixing length model.

ky [1 - exp(-1,+/A+)] _{(14)}

letting A+ be a function of the _{polymer-solvent properties and the}

shear. The model which gives a continuous velocity distribution can

be

### easily,

_{applied to other boundary layer flows and to problems of}

heat transfer and diffusion.

A MODEL FOR CALCULATING THE MEAN VELOCITY _{DISTRIBUTION}

In analogy to the damping of harmonic _{oscillations near a wall,}
van Driest (1958) proposed that the turbulent mixing _{length near a}

wall be described by Eq. _{(14) where A+= 26 is} _{a dimensionless }

univer-sal constant for smooth boundaries and k =

_{2.3/An}

_{= 0.4. There is some}

doubt whether A and

Bn are truly Reynolds number independent. Coles

(1954) for instance, suggests that An slightly increases at low Reynolds
numbers. Accordingly,the shear stress in _{a turbulent pipe flow, given}

by T=p(v+(2Idu/dyl)du/dy, _{can be described by the equation:}

T1-= (1

_{k2y1-21de/dy+1[1}

_{-}

_{exp(-y+/A+)fide/dy+}

(15)

*2

where T+= _{T/Tw} and T = pV _{.Equation (15) may also be written} _{as}

dy+

2T

-1 _{+ 4k2y+2[1 - exp(- y+/A+)]2.Tt}

(16)

In order to find the mean velocity _{profile, van Driest Used the}

_{}

cons.-tant'shear approximation, namely

### T = Tv,

or T+_{= 1. Denoting the }

velo-city obtained in this manner by

### lit

_{one can write that}

duo 2

(17)

1 + + 4k y4.2 [1 - exp(-y+/20")]2

Integration of Eq. _{(17) gives for large values of y} _{the log law}

uo _{= k-1 in y++ B (Eq.2) where the value of B is}

Very close to the wall, where exp(-y+/A+) =1, the _{solution of Eq.}

(17) is uo+ = y+ (Eq.1). A comparison with _{measurements in Newtonian}

fluids (van Driest 1958) shows that the velocity profile obtained from Eq.(17) is in good agreement with measurements in the sublayer,

buffer zone and the log region in zero pressure gradient boundary
layers and pipe flows. A deviation of the data from _{the log law is}

observed in the outer region of the flows.

We have already seen that the effect of drag _{reducing additives}

is to change the value of B in the log law. _{It is therefore natural}

to examine the possibility of describing the _{velocity distribution in}

such flows by the integral of Eq.(17) with _{values of A+ larger than 26.}
We have also seen that the contribution of _{the velocities in the }

vis-cous sublayer and the buffer zone to the calculation of the _{friction}

or drag coefficient in the polymeric regime is small. _{Thus the proposed}

model would be useful only if it _{can describe the velocity distribution}
near and in the maximum drag reduction regime. Now, the maximum drag

reduction regime corresponds to large values _{of Al- and small values of}

R+,

and one sees from Eq.(17) its asymptotic solution _{for small values}

+ +

of R /A _{is given by u+= y+. Since we do not expect the velocity at any}

point in the pipe to exceed the velocity given _{by the parabolic }

distri-bution in a laminar flaw,

+ +

u= y (1 - y+/2R+), (18)

one has to disqualify this solution. The reason for the failure of this

solution is of course the assumption T = T1,7_{whichis valid only close to}

the wall. We shall show later that although the _{error introduced by this}

assumption in Newtonian flows is small, it is _{large for small values of}

e/A./.. In view of _{this difficulty, we shall modify} _{van Driest's solution}
by taking into account the variation of the shear _{stress in the pipe as}
well as the different character of the flow _{near the center of the pipe.}

The proposed model for drag reducing flows in pipes _{assumes that}
the velocity distribution is composed of two parts

+

-u = -ul

### +u2

_{(19)}

The first part, describing the law of the wall, is _{given by the solution}

dui+ dy+

7

2(1

### 7 y

/R )*A computer program for the calculations of u+ and f is available on

request from the authors.

(20)

1 + 1/1+ 4k2y+ (1 - eicp(-1,+/A+)] (1 - y+/R+)

It is easy to see that the limit of Eq.(20) for _{small values of 111-/A+}

is

dui

### /dy

_{=}1 - y /R-I-

### 4

(21)

which describes the parabolic velocity _{distribution (18).} _{This result}

implies that

_{u2+,}

_{which is zero near the wall, has to vanish}

_{identically}

for small values of R+/A+. In other words, the deviation from the law

of the wall has to decrease _{as the region where the damping is effect_ve}

increases. This condition is satisfied by _{the following equation} _{}

pro-posed for ul+.

+

- cos(Tril-/e)][1 - expf-.2e/er (22)

U2 = 2K

where 11 = 0.67 is a universal constant for pipe _{flows. The value of II}

has been determined so that the Newtonian _{friction factor at Re = 5-105}
would satisfy Eq.(5) with a = 0, an = 4.0 and bn = 0.4. Note that for

large values of le/A+, which is always the case if A+ = 26, the

exponen-tial _{term in Eq.(22) vanishes and u2+ becomes identical} _{to Coles'}
Wake Function.

Undoubtedly, many other schemes can be used to describe the

dev-iation of the velocity profile _{near the center of the pipe from ul+and}

its dependence on A+. As _{we shall see later the relative contribution}

of u2+ is very small and thus _{any consistent model which complies with}

the

_{boundary conditions would be}

### satisfactory. The choice of Coles'

WakeFunction is justified mainly for _{convenience in future applications of}

the model to boundary layer flows.

DISCUSSION AND COMPARISON WITH EXPERIMENTAL _{DATA}

A clear distinction between the _{new model and the}

_{constant}

_{shear}

approximation used by van Driest, is the _{dependence of the velocity}

profile on R.f. Both u1+ and u2+ _{are functions of 12+ and it is riot}

possible to describe u+ as _{a function of y+ and A+ alone. We have }

plo-+ +

tted in Fig.1 numerically computed distributions _{of ul, u} _{and u0+ for}

+ *

A = 26 and A = 300 . We see.that the various velocity

curves for R+= _{10.000 are practically the same at small, valuesof}

The maximum difference between u+ and ul is about 5% for

A = 26 at the center of the pipe and only half of it for A= 300.
This indicates of course that the contribution _{of the u2} _{is }
rela-tively small. Another interesting observation is that the

differen-ces _{at this value of R+, between u+ and uo+} _{can be hardly noticed.}
They are better distiguished in Fig.2 where _{velocity defects u+} _{}

-max

u+max- u1 andand u+max - uo+ are plotted: Note that at center of the

+ +

pipe du /dy = 0 whereas duo+/dy+ # 0.

We have also shown in Fig.1 the distribution _{of u+ for R+= 1000}

and R+= 100. We see that the differences _{between the velocity profiles}

for R+= 10.000 and R+=1000 are small. Practically _{the same profile is}

also obtained in the Newtonian case. for R+= 100; however, the velocity

distribution for

### le=.

100 and A+= 300 does not coincide_{any more with}

the other profiles which have larger values _{of le/A+. The velocity}

distributions according to the various models for

### le=

100 are plottedseparately in Fig.3. We see from this figure that the _{difference }

bet-+ +

ween u and uo _{for A+= 300, is large. Note that the velocity u+} _{near}
the wall merges with the parabolic equation u+= y+_{(1 - y+/2R+) whereas}

uo is tangent to the u+= y+ curve and goes Above the parabolic profile.

We have also plotted in this figure Virk's _{ultimate profile (Eq. 9).}

Virk's profile is quite close to 12+ but it _{also gives at one region}

slightly larger velocities than in a laminar pipe flow.

Measured velocity distribution _{are compared with the calculated}

profiles of u+ in Figs. 4 _{- 7. The values of A+ were chosen arbitrarily}

(The data is taken from Virk (1971), Fig.3, _{using the same symbols to}

denote the various entries.) The _{agreement with the data is very good.}
In particular the velocity profiles in _{the maximum drag reduction}

_{}

re-gime, Figs. 6 and 7, describe the _{measurements much better than the}

FRICTION FACTORS AND RELATION TO POLYMETIC _{PROPERTIES}

The dependence of the friction factor f-1/2 on RefV2 _{as a function}

of A, has been obtained numerically and plotted in Fig.8. One _{sees}
that at large values of Ref 112 _{the variation of f-112 for constant }

val-ues of A+ is described by a logarithmic _{law. The Newtonian case A+= 26}

1/2

coincides with the line describing _{the equation f} _{= 4.0 log Ref} 2_Q,4
Integration of the theoretical limit of Eq.(19) for small values of

R+/A+ gives _{the laminar friction law.}

f = 16/Re _{(23)}

Several data points appearing in _{Fig. 1 of Virk (1971),} _{near}

Ref1/2= _{200(e= 70),} _{are quite close to Eq.(23). However, the available}
data at larger values of RefV2 indicate that the values of A+ obtained
so far in dilute polymer solutions _{are bound by}

201= 350.

At the polymeric regime, _{as defined by Virk, an approximate }

rela-tion between e'and the polymeric properties can be found using Virk's
correlations. At large values of Ref, where the friction factor
cur-ves for different values of A+ are described by _{parallel lines, Au+ is}
uniquely related to A+. From Fig.8 it was found that at this range

+ +

.

### Au+/a

= 40log(A-/An + 4) - 28

At small values of Ref° the _{relation between Au+ and A+ depends on the}
values of Ref, however, if Au+(A+) is _{measured along straight lines}
originating at Ref1/2> _{1000 and having slopes which do not exceed the}
slopes recorded in actual measurements, the deviation from Eq.(24) is

less than 5%. The re from Eq.(3) and for V > tion of Au+ (24)

lation between A+ and the shear stress can now be obtained

* *

. _{This equation is composed of two expressions; for V <}

Vcr

Vcr It is suggested that a better description of the varia-is obtained by the single equation

* *

Au+= _{(a/4) log(1 + (V /V} _{)41.}

### cr

* _{*}

Equation (25) deviates from Eq.(3a) at V > 2V _{by less than 3% and}

* * cr *

is practically zero for V< V

r/2. The values of Vcr according to Eq. c

(25) should be determined by _{the}

_{intersection}

_{of the straight line}

(3a) with the Newtonian profile, _{which is exactly the procedure used}

10

by Virk. It follows from Eqs.(24 _{and (25) that}

+ + *

5(1 + (V "*

### )J

kiatisovii 4dr (26)

where a is related to the polymer _{properties by Eq.(13).}

We have used Eqs.(26) and (12) _{to calculate the variation} _{of}

C1/2 versus Ref1/2

for _{solutions of the polymers} _{AP-30 and Guar Gum.}

(Estimated values of the critical _{shear and molecular properties} _{are}

given by Whitistt et al (1968) _{And Virk (1971),table 5). The}

calculated

curves for the three solutions,and _{curves for constant values of A+}

are compared with the ,measurements of _{Whitistt et al (1968) in Figs:}

*

9 - 12. At small and moderate values of V* /Vcr the agreement _{between}

the data and the theoretical calculations (solid lines) seems to be

satisfactory even for small values _{of Ref. The agreement is}

not

sur-prising as it merely reflects the adequacy of Virk's correlations and
the slight improvement due to the use of the continuous equation _{(25)}

rather than equations (3a) and (3b). _{The phenomenon of maximum drag}

reduction, however, appears _{now in a different light. One}

sees that

* *

when V /Vcr becomes large, the data deviates from Eq.(26) and _{seem to}
be correlated with curves of constant A+.The measurements in _{the }

concen-trated polyox solutions and the _{smaller pipe-diameters seem to be} _{bound}

by the curve A+ = 350, which is _{close to Virk's maximum drag reduction}

asymptote in the range RefV2 < 1000. _{However, the deviation from the}

lines _{which are calculated using Virk's}

polymeric regime correlations,

and the approach to the maximum value of eldo not occur only _{near the}
maximum drag reduction asymptote. It appears that for each _{solution,}
there exists a maximum value of A+ _{(or au+) approximately independent}
of the pipe diameter. Only when R+ _{is small the} _{curves coincide in}

_{a}

limited region with Virk's maximum _{drag reduction asymptote}

(11).This
evidence is not manifested in Virk's model which predicts drag _{}

reduc-tion values

### of

_{the order of 90% for very large shear rates. It is also}

interesting to note that the measurements of drag reduction with
alum-inium distearate in an _{organic solvent shown in Fig. 12}

(McMillan et

al, 1971) exceed the maximum drag reduction curve and _{appear to reach}

11

In the absence of a theoretical model _{for drag reduction mechanism}

there is no way at present to determine _{whether the asymptotic value of}

A is determined by properties _{of the particular polymers used,} _{}

expe-rimental limitations, a dependence of drag reduction on the existance
of a minimum level of turbulence necessary to deform the macromolecules
in solution, degradation _{or other causes.}

CONCLUSIONS

It has been shown that the effect of linear macromolecules in
dilute solutions on the flow in the wall region, can be described by
van Driest's mixing length model with _{a variable damping parameter A+.}
If the Reynolds number of the flow R _{large, the constant shear}

approximation used by van Driest _{can be used. When R4711+ is not large,}
it is necessary to take into consideration the variation of the shear

stress with the distance from the wall. _{The velocity distribution in}

the outer region is modified in this case using Coles' Wake Function multiplied by a factor. The factor decreases as the damping action of the molecules increases. Although the model does not explain the dam-ping mechanism it suggests a similarity between flows with and without

polymers _{which is not present in the elastic sublayer model. The model}

does not explain the nature of the maximum _{drag reduction asymptote}
either, however, it is pointed out that the maximum drag reduction

curves for a given polymer might be associated with _{a maximum value of}

the damping parameter A+. REFERENCES

Coles, D. J. of Appl..Math. & Physics. (ZAmP) _{Vol.5 No.3, 1954.}
Elata, C., Lehrer, J. _{& Kahanovitz. 1966, Israel J. Tech. 4, 87.}

McMillan, M.L., Hershey, H.C. & Baxter, _{R.A. 1971. "Drag reduction"}

Chem. Eng. Prog. Symposium Series, 111, _{67, 27.}

Meyer, W.A. 1966, A.I.Ch.E.J. 12., 522.

Poreh, M. & Paz, U. 1968, Inter. J. _{Heat Mass Transfer, 11, 805.}
Tomita, Y. 1970, Bull. J.S.M.E. 13, 935.

van Driest, E.R. 1965, J. Aero. Sci. 23, 1007.

Virk, P.S. & Merrill, E.M. 1969, Viscous _{Drag Reduction (Ed. C. S. Wells)}

Plenum Press.

Virk, P.S. 1971, J. Fluid Mech. 45, 417.

Whitistt, N.F., Harrington, L.J. _{& Crawford, H.R. 1968. Clearing}

I 1 1 1 1 I I I 1 1 1 1 1 1 1 1 I 1 1

### 1111

1 1 1 1 1 1 1 1 10 102 103 104 Fig.1Velocity distributions according to the various models(A+=

40

1.1.30

10

### 0.2

### 0.3

### 0.4

### 0.5 0.6

### 0.8

### 1.0

### YYR+

Fig.2 Defect velocities in the various models (124-= 10000, 11+= 26).

60 50 Y.(1-

### ir)

1 I 1 1 1 1 11 R.2100### VIRK'S ULTIMATE

### PROFILE

### Lit

### -I

ell 300 11+ 226### III

113 + +Fig.5 _{Velocity distributions for R+= 1890.}

10

### 102y+

10360 50 40

### U,

30 20 10### _u+=y+(1-Y/2R+)

PRESENT MODEL A+ = 335### ./

### /

### ./K-VIRK'S

### MODEL'

### A:26

### R+=600

-DATA 103 Fig.6Velocity distributions for 114-=-600

Fig.7

Velocity distributions for

### e=

270

### 10

4 0 2 0 10 ^ 16 Re 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1

### / 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1### 1/2A+ = 350

1/f### = 19.0 logio(Re. f1/2) 32.4

00-275### 250

225 -2C0 175### 150

V2_ 1 f### 4.0 logio (Re

f1/2### ) 0.4

### A+=26

125### 00

90 -so 50-40### 30-III

I I### till

I I### II, Li.'

I I I### ,,..1

I I I I I### III

### 102103

### Re

f1/2### 104

### Fig.8

### Friction factor curves as a function of e

70_ 60 ..11

### 105

106 3 0 1 f1"240 35 30 1 25 20 15 10 5 10 . 40 35 30 25 1 20 15 10 5 02 law I I I

### I III!

I 1 I 11- ITT### AP-30

0.18" ID 0.416" ID### Eq.( 26)

1### II

### T 7I,

1 ill .../...LO3g0...1 T326705 I ..VT

### / 7

''...;."'' ...4'...''''' 2252(5) ...**- .... _....".### ...'"--7 ,...;.,2,

.../...### ..../0

21750### I/

### ::-1,'°''''.

...'s_{1152°5}

### //7 </'

### .°.*'''...''''...100

### <---/

### hi

18### /

### 7 ...a...;4..-

### ...:..,...- /is_

### ,

### 7

.... -_{...3.,....- _-.-:,-}---- 18

### /

. ---,..-- ---..;,..-- ,.,..-:...- 50### /

### ,/:...j.

.../' .../.../ 26 ..- ....---",### .---...---/,

### 7

_{..---- -%}

### Op/

### %

### 7,

,---10 W.P.P.M. 1 1 1 1 11111 1 1 1 11111 1 1 1 1 1111 MM.### Fig.9

### Measurements of friction coefficients

T VT1 T I V

### AP-30

50 W.P.P.M.### 0.1e ID

### 1.624 ID

Eq.(26)### NOV

1 1 1 11111 1 TflTTfl TA-30 1j3661 _ 200 -125 100 --"*" 90 50 26 1 I I 11111 1 1 1 1 1111 105 103 104 Relerf"### Fig. 10

### Measurements of friction coefficients

105

goo

I 1 11 1 1 1 11

10 102 103

### 40

35 15 10 5 -### AP-30100 W.RP.M

A### 0.41e ID

### 1.624

ID 6.0.### 1111ITT1

T I T 00' , 1 1111111I

_{I/1111"i}

### iic:

_{,131O'}

### /

### ,..

275 -_,....-"..-.°### /1,

,...,### 40/3,..

..:::....:...,-;....217050 ...;',...--** --- 152°5### /

### /

___...### /

### /

### //1

.### /...-!...

### 18

-_, ---_{...100}-I

## /

...;...%...- 670°### ii //

### *_.,..'<_,,-

--___...-30### /* -'----

40### I /

### / ---/

---., --":..--- ..,..-..../ 26 ...- ...::...-1 1111111 ma 1 1### 111111,

### Eq.(26)

los 3 10### Rig

Fig.11 Measurements of friction coefficients

Fig.12 measurements of friction coefficients

10 102 io3