• Nie Znaleziono Wyników

1. Preliminaries. Denote by В* the space of all 27r-periodic functions / integrable in the Denjoy-Perron sense on the interval <0, 27

N/A
N/A
Protected

Academic year: 2021

Share "1. Preliminaries. Denote by В* the space of all 27r-periodic functions / integrable in the Denjoy-Perron sense on the interval <0, 27"

Copied!
9
0
0

Pełen tekst

(1)

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE X IX (1976)

P. P

ych

(Poznan)

The D en joy integral

in some approximation problems, IV

1. Preliminaries. Denote by В* the space of all 27r-periodic functions / integrable in the Denjoy-Perron sense on the interval <0, 27

t

). Consider the points æ for which

h

(1) (B*) J (f{œ + u ) —f{œ))dv, = o(h) {h->0 + ),

- h

and write

w(f,oc-, h)D = sup {—

0< t < h l 41

for any f e B*. Evidently, the function w(f,cc', h)D is non-decreasing in h and, by (1), w { f , x ; h

)D - > 0

( h 0 + ) almost everywhere.

Let 0 < t < 7u and let

t

(2) f x(t) =/(<» + « )+ /(я» -« )~ 2 /(ж ), Fx(t) = (B*) j f x(u)du.

0

(-£>*) J (f{<D + u)-f{a}))du

We have then

t

(3) \Fx(t)\ = |(D*) f (f{a> + u ) - f ( x ) ) d u \ < 2tw(f, X) t)D.

-t

In this paper we consider some linear operators defined by I)*-integral.

We give estimates of the rate of pointwise and mean convergence of these operators. In order to show th a t our results cannot be essentially improved we introduce the class B(Q) of all functions f e B * such th a t

w ( f , æ : h ) D

sup --- < 1 at a fixed w, o</i=ot В (Ji)

where Û is a non-negative and increasing real-valued function defined

on <0, 7i> with i2(0) = 0.

(2)

For 27t:-perio(lic and Lebesgue-integrable functions, in symbols fe L, the corresponding estimates will be given in terms of the expression

t

\ 1 Г

J i ) l = SUP Ьтг \f(x + u ) - f ( x ) \ d u 0 <t^h I J

used in [1]. Clearly, w{f, x\ h

)L - + 0

(h—> 0 + ) at every point x for which

h

f \f(x-\-u)—f( x ) \ d u = o ( h ) ( h 0 + ) . - h

Moreover, w(f, x\ h)D ^ w ( f , x; h)L.

In the sequel M x, M 2, ... will denote the suitable positive constants.

2. Pointwise polynomial approximation. Given any

f e

D*, we consider trigonometric polynomials

UJx-, f )

71

= - ( - # * ) f /(«){* +

J

— 7Г

'S

1

A^ao&k(t — x)}dt,

*=i

where the factors Яр* (k = 1, 2, ..., щ n = 1 , 2 , ...) are some real numbers.

W rite

ЯР = 1 (* — 0 , 1 , 2 , ...),

z u r } = Я Р -Я [% (к = 0 , 1, 2, ..., л - 1 ) , л я р = яр,

^ 2я р = М и) - M i l (* = о , 1 , . . . , и - 1 ) , ^1ЧЯ) = 4 4 Я 1 *яр = А Ч ^ - А Ч ^ и (к = 0 , 1 , . . . , ^ — 1 ), 21 «яр = 4 И).

We start with the following

T

heorem

1. Let f e D*. Suppose that for all n П

(4)

and fC— “ 0

(6) (» + 1 ) 2 '( * + 1)M*4*,I

fc=l

Then

(6) |17„ ( « ; / ) • iH3

W !

/

—/(#)| < --- > w ( /, a?; —

^ Л w + 1 Z

j

V

м

’ к k= 0 x P ro o f. Retain the notation (2) and set

(n = 0, 1 ,2 , .. .) .

ФкУ) ^ {(sin\ ( k + 1 ) «/sin\ t Y ).

(3)

Applying twice the Abel transformation, we get

ТС П

#»(®i Я - / 0 » ) = ^;(-z>*) / ^ л {к )со$ЩМ

&=i l

2

tc

Tf n

0 *=o ' л '

By partial integration ([3], p. 244) 1 n

P„(®! / ) - / ( * ) = — A4 % \m n \(k + l)TzY-

k=0

1 Tt n

- j

^ f F x(t) £ А Ч Р ъ (t)dt.

* О * = 1

I t is easy to see th a t

f e W K S T c f i + l ^ r 1 if «e(0,7ü/(» + l)> ,

and

n 3 » n

y 1 и ! 4я)1 + ~ j ^ ( f c + l)/J 4 » > sin(fc + l ) f

f t = l fc= 1 A := l

if ïe<7r/(w + l ) ,

тс

). These inequalities and (3) lead to '

79, IT 99.

1 2

tc

< w

|J»(")I ] ? \ A 2W \ + ~ ^ j |.F«(<)l|J^24“V*№

Л;=0 О &=1

W n

( / , * ; / *«>(/,®j « ь Ц > + 2Я(Л>*(г)

fc=o о fc=l !

n n n/(w+l)

<w(/,®î 7t)2,^,M !AP| + 2^l(ü + l)2M 24”)| J »(/,»; tb<ff +

A=0 &= 1 0

n

+ 7Г2^ И2я(^| J t~2w{ f , X ‘, t)Ddt +

к — 1 тт/(?г4-1)

л n

+ ^ J ас, Од I ^ (fc + 1) 42Aj^sin(fc + l)t

Tt/(M+1)

= I 4- Y + Z + 1 7 . n I n 1 n ^ " n

(4)

In view of (4),

г < М г тсЬ < т г т т ^ +

М 1

\ 1 \ / />®; - r r r ’ ^ + 1 /п

ТС

\

- У ( й + 1)2И*Л?>|«;(/,®;

ю + 1 \ n + l JD

п + 1 27Г

ft=l

I тс \ 2тсМг

v^i

П

/

тс

\

<2тг JfjW / , я; — —- ^ У.ю />®; т г г ,

\ w + 1 /Х> ^ + 1 \ D

п n+l I \ тс М

П+1 / \

Zn = 71 ^ *=i И24и)! J wl/,a?; 1 ' y ) 'D г ' тИ '

Т с М г V I / тг \

< —--- > w l f . æ : ---.

п + 1 Z

j

Г А; + 1 I d

Applying the Abel transformation to the sum in Wn we obtain

n _ n

(lc + l ) A

4

Psm(lc + l)t = (w + l ) J 2A<?> J T s i n ( i + l ) i +

*=i

+ ^ { ( к +

1

) ЛЧ ^ - ЛЧ ^ } ^ sin (г+ 1) if

*=1 г=1

37Г

T

71 — 1

k = \ k = 1

for #€<7т/(»г + 1), 7т). Therefore, by (4) and (5), Зт с Ц М .+ М ,)

w m<

2(w + l ) / t w ( f , a?; t)Ddt

n/(n+l)

3tc( M 1 - \ - M 2

2(w + l ) 7 K(f’e>rl Зтс(М1-\-312)

v n / тс

dt ^ 27 > w / , a?; -— - 2(^ + 1) ^ V fc + l / p Collecting the results we get the desired estimate (6) with Жа

= Н (2 + 9тс) Ж^ + З

тг

Ж,}.

Consider now the class D(Q). I t follows immediately from (6) that,, under the assumptions of Theorem 1,

sup I Un(ar, / ) —/(я?)I <

felJ(Q)

П n

-\-1

k = о

(5)

The last inequality, for some operators Un(æ;f), cannot be improved.

This is a consequence of our next result.

T

heorem

2. Suppose that zJ2A ^ > 0 {k = 0 , 1 and that П

1 У (Й + 1)М 24 ”>> Mt > 0 ( « = 0 , 1 , 2 , . . . ) . n -f 1'

k= 0

Then for all 2 we have sup I UJæ-, f ) - f ( œ )I >

feD(O) П + - 1 k= 2

Ё“Ш

' '

( Ms< м г).

P ro o f. Let g(t) = Q(\t — x j) if \t — æ\ < iz and g(t +

2

iz) = g(t). Then g

e I

)*. Moreover, for

0

< t < h < тс we have

« t

(D*) J [д{со + и) — g (æ)Jdu = J Q(\u\)du ^

2

t û ( h ) .

Consequently, w{g,ec\ h)D^ Q(h) and geD(Q). Next, sup \Un(œ; f ) - f ( œ ) \ > \Un(æ’, g ) - g ( æ )| = | ü n(ar, g)\

VD(Ü)

where

= i f a W ÿ A n t f ^ + ^ î m

tz J \ sm*t

0 k = 0 x 1 '

ü(t)t 2(sin|(fc+ l)/)2d/

k = 0 n/(n + 1)

g+hn

n n+1

f йт*~г(»™№+Щ 2 <я)

k = 0 г=1 in

n+l

n n

4 т г ^ ( и + l ) 2 J T + 4 “ ’ | У f i P ( * + i r 2 ^ q ,

k=0 i = l ' ' '

(г+1)я

n + l

A U = f (sin|(/i: + l ) t f

(г + 1)(/с+1)тг

2(n+l)

dt k-\-l l(fc+l)TI / sin

21

dt

~2(n + l)

(*+Ря

4(n + l)

k +

1

sin 2tdt > tz ( A: -(-1 )2

12 (n + 1)3

(6)

Since for all n > 2

И + 1

_ / г7С \ „ 7C /* 1 л ,

£ --- (г + 1 Г 2> ---- --- — Q(t)dt

U + 1 / 6(n + l) , J 1W

t2

(see [1], p. 28), we find th at

d-i)rc

n + 1

snp \Un(w, f) - f ( c c ) \ > 2

г

»(

й

) 15тг(п + 1)2

157

t

:2(^ + 1)

^ ( f c + l ) 2/ !2^ J

± û ( t ) d t

fc=0 n/(n+l)

w M+l . .

-^(fc + l)2zl24“> J fl(y)<B

-Мд У

й

7

157т2(тг + 1) ^ \г-| -1/

.-.and this completes the proof.

R e m a rk . If a function / is of class L, then ЗЖ, \~1 / П 7C \

Я - / И К —T T Л ад( ^ а?;1ГГТ' (я- = 0 ,1 , ...),

™ + l \ 7 c +

1

I l

provided th a t assumption (4) holds. In this case Theorem 2 remains valid for the class L{Q) consisting of all functions f e L such th a t

w (/, ®ï h)L . _ sup ---—--- < 1.

0<Л<тт iQ(^)

3. Approximation by Abel means. As well known, the Abel means -of Fourier series of fe D* can be w ritten in the integral form

7T

-Р Д * ;/) = — (-»*) f f M j z

1

—Г

2

2

rcos(t — æ)+r - dt

2

(0 < r < 1).

We first give an estimate for the difference P r (o>; / ) —/(&) at the Lebesgue-Denjoy points æ defined by (1).

T

heorem

3. I f fc D* and n = [1/(1 — r)] — 1, then

n l \

((7) \Pr{œ; f ) - f { x ) \ ^ M

6

{ l - r ) ^ w ^ f , æ i (0 < r < 1).

The inequality cannot be improved.

(7)

P ro o f. Using the symbols (2) and integrating by parts we obtain

1 - r 2 r . 1

РЛ *; /)-/< » > = ( * ) f f M j z 2r cos i +r , о

Tzl(n+1) n

r ( l —r2) j Г Г \

+ -( I + f ) * ’ m W = dt

1

— r 27

c

(1 + r)

1

—r

sin t

nl(n+l)

((1 — r f + 4rsin2|tf)2 dt 27

t

(1 + r)

In view of (3)

1

— r

F X(K) + A(r) + B(r).

2

n{ l +r )

( TZ \

(1 - r ) w ( f , X ‘, 7C)jr><(l- r ) nnd

W l+ r) r

u ( r ) K 7T (1 —Г)3 J ,

n/(n+l)

j i p » ( * ) i td*

2 r(l + r)

7Г ( 1 —

r)S

n/(n+l)

4

tc

2

<

3(1 —r) (w + l) 64тг2

wi f , a?; 47Г2

n + l J D 3(1 —г) (тг + 1)

J* t

2

w( f , a?;

Ê ( f t æ ;

i t ï )

*=o n

a - o J T ' - j / , . ; ^

whenever 0 < r < 1. Moreover, B(r) = 0 if 0 < r < % and

2 r(l — r2) r . . tz

^ :zr(i — r*) r

\ B ( r ) \ < —-—- J «>(/, 7

<

7T/(W + 1) (1 —Г2)тС3 ,

((1 — r)2 + 4rsin2^ ) 2

8r / t w( f , a?; i^dtf rc/(n+l)

(1 — Г2) TC2

8

r

П

+ 1

71

J d £ < - ^ 2( l - r ) ^ w | / , œ,

1 ^ k

=0 D

provided th a t % < r < 1. Collecting the results we get the estimate (7) with M

6

= (6 + 131712 )/ 6 .

In order to show th a t inequality (7) cannot be essentially improved we consider the class D( ü) . By (7),

sup IPr (®; f ) - f { x )I + M 6(l — r)

f*D { Q)

*=0 '

1

/

(8)

On the other hand, using the function g defined in Section 2, we get s u p \Pr(x) f ) - f { x ) \ > IP r(x-, g)-g(®)l

feD(O)

1 — r 2 /■ 1

= --- O(t )---

7Z

J 1 —2rcccos t + r

2

dt

1

— r — гй r

m

TV J

0 < n/(n+l)

Since (1 — r) < l/(n-\-1) < t, we have

(1 — r)2-f rt2

n + 1

dt,

sup

UD(Q)

\Рт(щ } ) - № \ > f r *Q( t ) M = A ( l - r ) j q ( j ) dt 7T/(n+l)

> --- (1 —r) У q [—^ — and this completes the proof.

B ern a rk . In the case of f e L we can get the following estimate

I-Pr ( ® ; / } - / ( » ) I < 1 2 ( l - r )

X )

when 0 < r < 1 and n = [1/(1 —r)] —1.

Following DzvarseiSvili [2], let us introduce in the space D* the norm

2 T Ï

\\ f\\D = sup J (D*) Г («)/(»)<&» I,

<PeV 1 o'" 1

where V denotes the class of all 27r-periodic functions of bounded variation in <0,

2

n) and such th a t

sup \<p{x) \к 1 and var 9 ? ( # ) < 1 . 0<а:<2тг

Denote by Ev ( f ) D the constants of the best approximation of fe D * defined by the formula

Д .(/)л = in fj|/(-)-^ (* )lln (v =

0

, 1 , 2 , ...),

where the infimum is extended over all trigonometric polynomials tv(x) of degree not exceeding v.

Arguing as in [4], we easily obtain

T

heorem

4. Let feJD * and let n = [1 /( 1 — r)] — 1. Then П

\\p, ( •, / ) - / ( • )llz> « 94 ( 1 - »■) £ E, (J)D (0-< r < 1).

v = 0

(9)

References

[1] S. A lja n cic, R. B o ja n ic and M. T om ic, On the degree of convergence of Fejér- Lebesgue sums, L’Enseignement Mathématique 15 (1969), p. 21-28.

[2] А. Г. Д жварш ейш вили , Интеграл Данж уа и некоторые вопросы из анализа, Труды Тбилисского Матем. Инст. 25 (1958), р. 273-372.

[3] S. Saks, Theory of the integral, New York 1937.

[4] R. Taber ski, A theorem of the Steckin and Leindler type connected with Abel sum-

mability of Fourier series, Demonstratio Math. 8 (1975), p. 215-225.

Cytaty

Powiązane dokumenty

In this note we present the theorem on the rate of pointwise summability of Fourier series by means of generalized Voronoi-N¨ orlund sums.. 2000 Mathematics Subject

We investigate some radius results for various geometric properties con- cerning some subclasses of the class S of univalent functions.. This work was supported by KOSEF

On the other hand for any function f from A 1 properties of T f are similar to properties of topologies generated by sequences, so similar to properties of the density topology T

[r]

[r]

Kom anoYSki, Essai d'une exposition de l'intégrale de Denjoy sans nombres transfinis,

Each January, one of these two schools, the one that has more students, is given extra money to spend on sports equipment.. Justify

This paper presents a method for training a Fourier series neural network on the basis of the multidimensional discrete Fourier transform.. The proposed method is characterized by