• Nie Znaleziono Wyników

1. Introduction. Let A denote the class of all normalized functions f (z),

N/A
N/A
Protected

Academic year: 2021

Share "1. Introduction. Let A denote the class of all normalized functions f (z),"

Copied!
10
0
0

Pełen tekst

(1)

POLONICI MATHEMATICI LXVIII.1 (1998)

On some radius results for normalized analytic functions by Yong Chan Kim (Taegu), Jin Seop Lee (Taegu)

and Ern Gun Kwon (Andong)

Abstract. We investigate some radius results for various geometric properties con- cerning some subclasses of the class S of univalent functions.

1. Introduction. Let A denote the class of all normalized functions f (z),

(1.1) f (z) = z +

X

n=2

a

n

z

n

,

which are analytic in the open unit disc U = {z : |z| < 1}.

Also let S denote the class of all functions in A which are univalent in U.

We denote by S

(α) and K(α) the subclasses of S consisting of all functions which are, respectively, starlike and convex of order α in U (0 ≤ α < 1), that is,

(1.2) S

(α) :=



f : f ∈ S and Re  zf

(z) f (z)



> α, z ∈ U

 and

(1.3) K(α) :=



f : f ∈ S and Re



1 + zf

′′

(z) f

(z)



> α, z ∈ U

 . Further, we introduce the sets

(1.4) UST :=



f : f ∈ S and Re  f (z) − f(ζ) (z − ζ)f

(z)



≥ 0, (z, ζ) ∈ U × U



1991 Mathematics Subject Classification: Primary 30C45.

Key words and phrases : Hausdorff–Young theorem, univalent function, Hardy space, Dirichlet space.

The authors owe a debt of gratitude to Professor Frode Rønning and the referee for their comments on the paper. This work was supported by KOSEF (Project No. 94-0701- 02-01-3), TGRC-KOSEF, and the Basic Science Research Institute Program, Ministry of Education (BSRI-96-1401).

[51]

(2)

and

(1.5) UCV :=



f : f ∈ S and Re



1 + (z −ζ) f

′′

(z) f

(z)



≥ 0, (z, ζ) ∈ U ×U



which were defined by Goodman [3, 4].

Each of the classes UST and UCV has a natural geometric interpretation:

f ∈ UST if and only if the image of every circular arc in U with center ζ also in U is starlike with respect to f(ζ), and f ∈ UCV if and only if the image of every circular arc is convex .

Note that if we take ζ = 0 in (1.4) and (1.5) we have the usual classes of starlike and convex functions, and if we let ζ → z, then the conditions are trivially fulfilled.

Let S

p

(α) be the class defined by (1.6)

zf

(z) f (z) − 1

≤ Re zf

(z) f (z) − α.

We see that for all α ∈ [−1, 1) we have S

p

(α) ⊂ S

(0). Introducing the class UCV(α) (uniformly convex functions of order α) by g ∈ UCV (α) ⇔ zg

∈ S

p

(α), we observe that UCV(α) ⊂ K(0) for α ∈ [−1, 1) (see [7, 8]).

Then f ∈ UCV (α) if and only if

(1.7) Re



1 + (z − ζ) f

′′

(z) f

(z)



≥ α, (z, ζ) ∈ U × U.

Clearly we have UCV(0) = UCV. We easily find that [6]

g ∈ UCV ⇔ zg

∈ S

p

(0) ≡ S

p

.

Let α

j

(j = 1, . . . , p) and β

j

(j = 1, . . . , q) be complex numbers with β

j

6= 0, −1, −2, . . . , j = 1, . . . , q.

Then the generalized hypergeometric function

p

F

q

(z) is defined by

p

F

q

(z) ≡

p

F

q

1

, . . . , α

p

; β

1

, . . . , β

q

; z) (1.8)

:=

X

n=0

1

)

n

. . . (α

p

)

n

1

)

n

. . . (β

q

)

n

· z

n

n! , p ≤ q + 1,

where (λ)

n

is the Pochhammer symbol defined, in terms of the gamma function, by

(λ)

n

:= Γ (λ + n)/Γ (λ) (1.9)

=  1 (n = 0),

λ(λ + 1) . . . (λ + n − 1) (n ∈ N := {1, 2, 3, . . .}).

The

p

F

q

(z) series in (1.8) converges absolutely for |z| < ∞ if p < q + 1,

(3)

and for z ∈ U if p = q + 1. Furthermore, if we set

(1.10) w =

q

X

j=1

β

j

p

X

j=1

α

j

,

it is known that the

p

F

q

series, with p = q + 1, is absolutely convergent for

|z| = 1 if Re(w) > 0, and conditionally convergent for

|z| = 1 (z 6= 1) if −1 < Re(w) ≤ 0.

Let σ

α

(f ) denote the largest number r such that f (z) is univalent on U

r

:= {z ∈ C : |z| < r ≤ 1} and

(1.11) Re  zf

(z)

f (z)



> α on U

r

and let k

α

(f ) denote the largest number r such that f (z) is univalent on U

r

and

(1.12) Re



1 + zf

′′

(z) f

(z)



> α on U

r

.

Similarly, σ

UST

(f ) denotes the largest number r such that f (z) is uni- valent on U

r

and

(1.13) Re  f (z) − f(ζ) (z − ζ)f

(z)



≥ 0, (z, ζ) ∈ U

r

× U

r

,

σ

Sp(α)

(f ) denotes the largest number r such that f (z) is univalent on U

r

and

(1.14)

zf

(z) f (z) − 1

≤ Re zf

(z)

f (z) − α, z ∈ U

r

,

and k

UCV(α)

(f ) denotes the largest number r such that f (z) is univalent on U

r

and

(1.15) Re



1 + (z − ζ) f

′′

(z) f

(z)



≥ α, (z, ζ) ∈ U

r

× U

r

.

For 0 < p ≤ ∞ and a function f(z) in U, define the integral means M

p

(r, f ) by

(1.16) M

p

(r, f ) =

 

 

 1 2π

\

0

|f(re

)|

p



1/p

if 0 < p < ∞, max

|z|≤r

|f(z)| if p = ∞.

Then, by definition, an analytic function f (z) in U belongs to the Hardy space H

p

(0 < p ≤ ∞) if

(1.17) kfk

p

:= lim

r→1−

M

p

(r, f ) < ∞.

(4)

For f ∈ A we set

Φ

p

(r, f ) = r

{1 + M

p

(r, f

− 1)

p

}

1/p

(0 ≤ r < 1), (1.18)

and

Φ

p

(f ) = sup

0≤r<1

Φ

p

(r, f ) (0 < p < ∞).

(1.19)

For the functions f

j

(z) (j = 1, 2) defined by (1.20) f

j

(z) =

X

n=0

a

j,n+1

z

n+1

(a

j,1

:= 1; j = 1, 2),

let (f

1

∗ f

2

)(z) denote the Hadamard product or convolution of f

1

(z) and f

2

(z), defined by

(1.21) (f

1

∗ f

2

)(z) :=

X

n=0

a

1,n+1

a

2,n+1

z

n+1

(a

j,1

:= 1; j = 1, 2).

Let λ denote normalized Lebesgue area measure on U; and, for β > −1, λ

β

denote the finite measure defined on U by

(1.22) dλ

β

(z) = (1 − |z|

2

)

β

dλ(z).

For β > −1 and 0 < p < ∞ the weighted Bergman space A

pβ

is the collection of all functions f holomorphic in U for which

(1.23) kfk

pp,β

=

\

U

|f|

p

β

< ∞.

The weighted Dirichlet space D

β

(β > −1) is the collection of all func- tions f holomorphic in U for which the derivative f

belongs to A

2β

. It is well known that A

pβ

is a complete linear metric space for p > 0, a Banach space if p ≥ 1, and a Hilbert space if p = 2.

The space D

β

is a Hilbert space with the norm k · k

Dβ

defined by (1.24) kfk

2Dβ

= |f(0)|

2

+

\

U

|f

|

2

β

.

In this paper, we investigate some radii problems for various geometric properties concerning the subclasses of the class S of univalent functions.

2. A set of lemmas. The following lemmas will be required in our investigation.

Lemma 1 (Hausdorff–Young [1, Theorem 6.1, p. 94]). Let f ∈ H

p

, 1 ≤ p ≤ 2. Then



X

n=0

|a

n

|

q



1/q

≤ kfk

p

, 1/p + 1/q = 1,

where the left-hand side is sup

n≥0

|a

n

| if p = 1.

(5)

Lemma 2 (H. Silverman [9, Theorem 1, Corollary, p. 110]). Let f (z) be defined by (1.1) and 0 ≤ α < 1. Then

X

n=2

(n − α)|a

n

| ≤ 1 − α ⇒ σ

α

(f ) = 1, (i)

X

n=2

n(n − α)|a

n

| ≤ 1 − α ⇒ k

α

(f ) = 1.

(ii)

Lemma 3. Let f (z) be defined by (1.1) and 0 ≤ α < 1. Then

X

n=2

(n − α)|a

n

| ≤ 1 − α ⇒ k

α

(f ) ≥ 1/2.

Further , the constant 1/2 is best possible.

P r o o f. Let f (z) ∈ A be such that P

n=2

(n − α)|a

n

| ≤ 1 − α. Put g(z) = 2f (z/2) = z + P

n=2

a

n

(1/2)

n−1

z

n

≡ P

n=1

c

n

z

n

∈ A. Then

X

n=2

n(n − α) 1 − α |c

n

| ≤

X

n=2

n − α

1 − α |a

n

| ≤ 1.

By Lemma 2, we obtain k

α

(g) = 1 and k

α

(f ) ≥ 1/2.

Lemma 4 (A. W. Goodman [4, Theorem 6, p. 369; 3, Theorem 6, p. 91]).

Let f (z) be defined by (1.1). Then

X

n=2

n|a

n

| ≤ √

2/2 ⇒ σ

UST

(f ) = 1, (i)

X

n=2

n(n − 1)|a

n

| ≤ 1/3 ⇒ k

UCV

(f ) = 1.

(ii)

Further , the number 1/3 above is the largest possible.

Lemma 5. Let f (z) be defined by (1.1) and −1 ≤ α < 1. Then (i)

X

n=2

n(n − 1)|a

n

| ≤ 1 − α

3 − α ⇒ k

UCV(α)

(f ) = 1.

Further , the constant

1−α3−α

above cannot be replaced by a larger number.

X

n=2

(n − 1)|a

n

| ≤ 1 − α

3 − α ⇒ k

Sp(α)

(f ) = 1.

(ii)

X

n=2

(n − 1)|a

n

| ≤ 1 − α

3 − α ⇒ k

UCV(α)

(f ) ≥ 1/2.

(iii)

(6)

P r o o f. (i) Let f (z) = z + P

n=2

a

n

z

n

with

X

n=2

n(n − 1)|a

n

| ≤ 1 − α 3 − α . Then

X

n=2

n|a

n

| ≤ 1 − α 3 − α . Further,

1 + Re  f

′′

(z)(z − ζ) (1 − α)f

(z)



≥ 1 − 1 1 − α ·

P

n=2

n(n − 1)|a

n

| · |z

n−2

| 1 − P

n=2

n|a

n

| · |z

n−1

| |z − ζ|

≥ 1 −

2(1−α) 3−α

(1 − α) 1 −

1−α3−α

 = 0.

Thus k

UCV(α)

(f ) = 1. But equality is attained for the function f (z) = z −

6−2α1−α

z

2

with z = 1 and ζ = −1.

(ii) Let f (z) = z + P

n=2

a

n

z

n

with

X

n=2

(n − 1)|a

n

| ≤ 1 − α 3 − α . Then there exists

g(z) = z +

X

n=2

b

n

z

n

= z +

X

n=2

a

n

n z

n

, i.e. zg

(z) = f (z), such that

X

n=2

n(n − 1)|b

n

| =

X

n=2

(n − 1)|a

n

| ≤ 1 − α 3 − α .

Thus, by (i), k

UCV(α)

(g) = 1, i.e. g(z) ∈ UCV(α). Therefore, by the relation between UCV(α) and S

p

(α), f ∈ S

p

(α), i.e. σ

Sp(α)

(f ) = 1.

(iii) The proof is much akin to that of Lemma 3, with (i) above used in place of Lemma 2.

3. Results. By using Lemmas 1 and 2, we obtain Theorem 1. Let f (z) be defined by (1.1). Then

(3.1) σ

α

(f ) ≥ Φ

p

(g

α

) (0 ≤ α < 1; 1 ≤ p ≤ 2), where

(3.2) g

α

(z) =

 1 1 − α

 z

1 − z + α log(1 − z)



∗ f(z).

(7)

Moreover ,

g

α

(z) = [z

3

F

2

(2 − α, 1, 1; 1 − α, 2; z)] ∗ f(z) (3.3)

=

X

n=1

n − α 1 − α · 1

n a

n

z

n

. P r o o f. We may put f (z) = z + P

n=2

a

n

z

n

6= z.

For fixed r, 0 < r < 1, define

(3.4) R = Φ

p

(r, g

α

) (0 ≤ α < 1).

Then we easily find that 0 < R < r.

Set h(z) = g

α

(rz) − 1. Then Lemma 1 gives (3.5)



X

n=2

 n − α

1 − α |a

n

|r

n−1



q



1/q

≤ khk

p

= M

p

(r, g

α

− 1),

where 1/p + 1/q = 1, and the left-hand side of (3.5) attains its supremum when p = 1. Thus

X

n=2

n − α

1 − α |a

n

|R

n−1

=

X

n=2

n − α

1 − α |a

n

|r

n−1

(R/r)

n−1



X

n=2

 n − α

1 − α |a

n

|r

n−1



q



1/q

n X

n=2

(R/r)

pn−p

o

1/p

≤ M

p

(r, g

α

− 1) n X

n=2

(R/r)

pn−p

o

1/p

= 1, by the H¨older inequality.

Lemma 2 shows that σ

α

(u) = 1 for u(z) = R

−1

f (Rz) and σ

α

(f ) ≥ R, since r is arbitrary. Hence we get the inequality σ

α

(f ) ≥ Φ

p

(g

α

).

Theorem 2. Let f (z) be defined by (1.1) and let g

α

(z), 0 ≤ α < 1, be defined by (3.2). Then

(3.6) σ

α

(f ) ≥

 1

(β + 2)kg

α

k

2Dβ



1/2

(β > −1).

P r o o f. By Theorem 1 and (1.18), we have

(3.7) σ

α

(f ) ≥ r

{1 + M

2

(r, g

α

− 1)

2

}

1/2

. Since

β

(z) = β + 1

π (1 − r

2

)

β

r dr dθ (|z| = r),

(8)

we obtain

kg

α

k

2Dβ

= β + 1 π

1

\

0 2π

\

0

|g

α

(re

)|

2

(1 − r

2

)

β

r dθ dr (3.8)

= 2(β + 1)

1

\

0

M

2

(r, g

α

)

2

(1 − r

2

)

β

r dr.

From (3.3) we observe that

(3.9) M

2

(r, g

α

)

2

= 1 + M

2

(r, g

α

− 1)

2

=

X

n=1

 n − α 1 − α



2

|a

n

|

2

. Hence

(3.10) {σ

α

(f )}

2

kg

α

k

2Dβ

= 2(β + 1)

1

\

0

α

(f )}

2

{1 + M

2

(r, g

α

− 1)}(1 − r

2

)

β

r dr

≥ 2(β + 1)

1

\

0

r

3

(1 − r

2

)

β

dr = (β + 1)

1

\

0

r(1 − r)

β

dr

= (β + 1)B(2, β + 1) = 1 β + 2 ,

where B(α, β) denotes the beta function. Hence the proof is complete.

Remark . Letting β → −1, we easily find that (3.11) σ

α

(f ) ≥ 1/kg

α

k

2

.

Furthermore, for α = 0, we obtain the result of Goluzin [2, Theorem 23, p. 187].

Theorem 3. Let f (z) be defined by (1.1) and let g

α

(z), 0 ≤ α < 1, be defined by (3.2). Then

(3.12) k

α

(f ) ≥ Φ

p

(g

α

)/2 (1 ≤ p ≤ 2).

P r o o f. The proof is much akin to that of Theorem 1 which we have detailed above. Indeed, in place of Lemma 2, we make use of Lemma 3.

Remark . If we put α = 0 in Theorems 1 and 3, then we easily find that

(3.13) σ

0

(f ) ≥ Φ

p

(f )

and

(3.14) k

0

(f ) ≥ Φ

p

(f )/2,

(9)

which are the results of Yamashita [11, Theorem 2, Theorem 2C, pp. 1095–

1096].

From Lemmas 1 and 4 we have

Theorem 4. Let f (z) be defined by (1.1) . Then (3.15) σ

UST

(f ) ≥ Φ

p

(v) (1 ≤ p ≤ 2), where

(3.16) v(z) = z + √

2 (f (z) − z).

Define

(3.17) h

α

(z) = z + 3 − α 1 − α

 z

1 − z + log(1 − z)



(−1 ≤ α < 1; z ∈ U).

Put u

α

(z) = h

α

∗ f(z). Then (3.18) u

α

(z) = z +

X

n=2

3 − α 1 − α

 1 − 1

n

 a

n

z

n

. Hence, by using Lemmas 1 and 5, we have

Theorem 5. Let f (z) be defined by (1.1) and −1 ≤ α < 1. Then for 1 ≤ q ≤ 2,

(3.19) σ

Sp(α)

(f ) ≥ Φ

q

(u

α

) and

(3.20) k

UCV(α)

(f ) ≥ Φ

q

(u

α

)/2, where u

α

is defined by (3.18).

References

[1] P. L. D u r e n, Theory of H

p

Spaces, Academic Press, New York, 1970.

[2] G. M. G o l u z i n, On the theory of univalent conformal mappings, Mat. Sb. 42 (1935), 169–190 (in Russian).

[3] A. W. G o o d m a n, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87–92.

[4] —, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364–370.

[5] Y. C. K i m, K. S. L e e, and H. M. S r i v a s t a v a, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1–12.

[6] F. R ø n n i n g, On starlike functions associated with parabolic regions, Ann. Univ.

Mariae Curie-Sk lodowska Sect. A 45 (1991), 117–122.

[7] —, A survey on uniformly convex and uniformly starlike functions, ibid. 47 (1993), 123–134.

[8] —, Some radius results for univalent functions, J. Math. Anal. Appl. 194 (1995),

319–327.

(10)

[9] H. S i l v e r m a n, Univalent functions with negative coefficients, Proc. Amer. Math.

Soc. 51 (1975), 109–116.

[10] H. M. S r i v a s t a v a and S. O w a (eds.), Current Topics in Analytic Function Theory, World Sci., Singapore, 1992.

[11] S. Y a m a s h i t a, Starlikeness and convexity from integral means of the derivative, Proc. Amer. Math. Soc. 103 (1988), 1094–1098.

Department of Mathematics Department of Mathematics

Yeungnam University Andong National University

214-1, Daedong, Gyongsan 712-749 Andong 760-749

Korea Korea

E-mail: kimyc@ynucc.yeungnam.ac.kr E-mail: egkwon@anu.andong.ac.kr

Re¸ cu par la R´ edaction le 26.7.1996

evis´ e le 17.3.1997

Cytaty

Powiązane dokumenty

W szczególności wykazuję, że funkcjonał rzeczywisty Hg o różnym od zera gradiencie osiąga extremum dla pewnych specjalnych funkcji określonych równaniem (8). Доказаны

kJ Beemer, J., Ldwnersche hifferentialgleichung und quasikonforme iortsetzoare schlichte Punktioneh, Seine Angew.. A Univalence Criterion and the Structure. 170^73), 71-cG.

Since the subsequence (p n)t) is sequence of locally bounded functions in /&lt;, we obtain by Vitali’ s theorem that the sequence (pnic ) is almost uniformly convergent

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions