• Nie Znaleziono Wyników

1. Introduction. In 1989, Fouvry and Iwaniec [4] used the double large sieve inequality due to Bombieri and Iwaniec [1] to estimate multiple expo- nential sums with monomials

N/A
N/A
Protected

Academic year: 2021

Share "1. Introduction. In 1989, Fouvry and Iwaniec [4] used the double large sieve inequality due to Bombieri and Iwaniec [1] to estimate multiple expo- nential sums with monomials"

Copied!
19
0
0

Pełen tekst

(1)

XCII.3 (2000)

Multiple exponential sums with monomials

by

Xiaodong Cao (Beijing) and Wenguang Zhai (Jinan)

1. Introduction. In 1989, Fouvry and Iwaniec [4] used the double large sieve inequality due to Bombieri and Iwaniec [1] to estimate multiple expo- nential sums with monomials

X

m1∼M1

. . . X

mk∼Mk

ϕ

m1

. . . ϕ

mk

e



T m

α11

. . . m

αkk

M

1α1

. . . M

kαk

 ,

where e(θ) := e

2πiθ

, α

j

∈ R, ϕ

mj

∈ C. This method is often superior to the classical methods (for comparison, see [5]–[7], [10] for example).

Let A be the A-process of Weyl–van der Corput and D the process of applying the large sieve inequality. Then the method of Fouvry and Iwaniec consists in an application of the AD process, which ends with a spacing problem for the points t(m, q) and gives rise to a lot of applications. This method was sharpened in Liu [8]. Recently, this spacing problem was further improved in Sargos and Wu [9] by an ingenious new idea.

But sometimes if T is very large, one should use the A

2

D process (i.e.

two times the A-process followed by the D-process), which naturally involves the spacing problem for the points t(m, q

1

, q

2

) := t(m+q

2

, q

1

)−t(m−q

2

, q

1

) for m ∼ M , q

1

∼ Q

1

and q

2

∼ Q

2

. Recently, the authors [2] studied the spacing problem of t(m, q

1

, q

2

) with q

1

fixed by the method of Fouvry and Iwaniec [4], and used the result to study some problems in number theory (see Cao and Zhai [2], [3]). This idea plays a key role in the two papers.

Our aim is to give better results on the spacing of t(m, q

1

, q

2

). In Sec- tion 2, some preliminary lemmas are given. In Section 3, we use the method of Fouvry and Iwaniec to study the spacing of t(m, q

1

, q

2

) for all m, q

1

, q

2

, which can be used to deal with the case of q

1

near to q

2

in applications.

In Section 4 we use the new idea of Sargos and Wu [9] and the method in

2000 Mathematics Subject Classification: Primary 11L07; Secondary 11N25, 11N45.

This work is supported by the National Natural Science Foundation of China (Grant No. 19801021) and Natural Science Foundation of Shandong Province (Grant No.

Q98A02210).

[195]

(2)

Section 3 to study the same spacing problem, which is used in application for q

2

larger than q

1

. The spacing problems for other related points are con- sidered in Section 5. In Section 6, some estimates for exponential sums with monomials are given. Applications of these results will be given elsewhere.

Notations. m ∼ M means that M < m ≤ 2M ; f  g means f  g  f ; ktk := min

n∈Z

|n−t| and ψ(t) := t−[t]−1/2 for real t. We also use ε to denote an arbitrarily small positive constant, ε

0

to denote an unspecified constant multiple of ε, and ε

to denote a fixed suitably small positive number. We also use the notations

C

αm

:= α(α − 1) . . . (α − m + 1)

m! and C

α0

= 1.

Throughout the paper, we always set (for α 6= 0, 1, 2, 3) t(m, q) := t(m, q; α) = (m + q)

α

− (m − q)

α

,

t(m, q

1

, q

2

) := t(m, q

1

, q

2

; α) = t(m + q

2

, q

1

) − t(m − q

2

, q

1

).

2. Some preliminary lemmas. Let δ > 0, M ≥ 1 and f ∈ C[M, 2M ].

Define

(2.1) R(f, δ) := |{m ∈ [M, 2M ] : kf (m)k < δ}|,

which denotes the number of integer points in the δ-neighbourhood of f (t) for M ≤ t ≤ 2M . In this section all constants implied by “”, “O” and

“” may depend only on α and β.

We set h := (n, e n, q, e q) and H := (N, Q). We write h ∼ H for n, e n ∼ N , q, e q ∼ Q and define H := {h : h ∼ H}. The following lemma is Theorem 2 of Sargos and Wu [9].

Lemma 2.1. Let α, β ∈ R with αβ 6= 0 and let M ≥ 1, N ≥ 1, Q ≥ 1 and L := log(2M N Q). Let H

⊆ H and g

h

(t) ∈ C

2

[M, 2M ] with g

h0

(t)  µM , g

00h

(t)  µ for t ∼ M , h ∈ H

. Put f

h

(t) := v(h)t + g

h

(t) with v(h) :=

e

n

α

q e

β

/(n

α

q

β

). Then X

h∈H

R(f

h

, δ)  δM |H

| + |H

| + (δN Q|H

−1

L)

1/2

(2.2)

+ µ

1/3

M |H

| + (δ

2

N

2

Q

2

|H

|

2

µ

−1

)

1/3

+ N Q(δM |H

|)

1/2

.

Lemma 2.2. Let α(α − 1)(α − 2)(α − 3) 6= 0, α ∈ R and q

1

, q

2

> 0. Then for |u| ≤ 1/(10(q

1

+ q

2

)), J ∈ N, we have

σ(u) = σ(u, q

1

, q

2

) :=

 t(1, q

1

u, q

2

u; α) 4α(α − 1)q

1

q

2

u

2



1/(α−2)

(2.3)

= 1 + X

J j=1

σ

j

(q

1

, q

2

)u

2j

+ O

J

(((q

1

+ q

2

)u)

2J+2

),

(3)

where

σ

j

(q

1

, q

2

) = X

(SC)

k

1

!

k

2

!k

3

! . . . k

J+1

! · C

(α−2)k1 −1

(2C

α2

)

k1

(2.4)

×



J+1

Y

i=2

 C

α2i

X

i k=1

C

2i2k−1

q

2(k−1)1

q

22(i−k)



ki



: = X

j k=0

a

j,k

q

2(j−k)1

q

2k2

(a

j,k

= a

j,j−k

, a

j,k

is real),

and where SC denotes the following conditions: k

i

≥ 0 (i = 1, . . . , J + 1), k

2

+ 2k

3

+ . . . + Jk

J+1

= j, k

2

+ k

3

+ . . . + k

J+1

= k

1

.

In particular

σ

1

= 2C

α4

C

(α−2)1 −1

C

α2

(q

21

+ q

22

) := C(q

12

+ q

22

), (2.5)

σ

2

= 4C

(α−2)2 −1

(C

α4

)

2

(C

α2

)

2

(q

21

+ q

22

)

2

(2.6)

+ C

(α−2)1 −1

C

α6

C

α2

(3q

41

+ 10q

12

q

22

+ 3q

42

).

P r o o f. For µ 6= 0 and |x| < 1/2 we have

(2.7) (1 + x)

µ

=

X

m=0

C

µm

x

m

.

From (2.7) one easily gets t(1, q

1

u, q

2

u; α) =

X

m=0

C

αm

{((q

1

+ q

2

)u)

m

− (−(q

1

− q

2

)u)

m

} (2.8)

+ X

m=0

C

αm

{−((q

1

− q

2

)u)

m

+ (−(q

1

+ q

2

)u)

m

}

= 2 X

m=1

C

α2m

{(q

1

+ q

2

)

2m

− (q

1

− q

2

)

2m

}u

2m

. It is well known that

(2.9) (x

1

+ . . . + x

m

)

n

= X

k1+...+km=n ki≥0, i=1,...,m

n!

k

1

! . . . k

m

! x

k11

. . . x

kmm

.

(4)

It follows from (2.9) that

(2.10) (q

1

+ q

2

)

2m

− (q

1

− q

2

)

2m

= X

2m n=0

C

2mn

q

n1

q

2m−n2

X

2m n=0

C

2mn

q

n1

(−q

2

)

2m−n

= 2 X

m k=1

C

2m2k−1

q

12k−1

q

2m−2k+12

. Combining (2.8) and (2.10) we obtain

(2.11) σ(u) = (1 + A(q

1

, q

2

, u) + O((q

1

u + q

2

u)

2J+2

))

1/(α−2)

, where

A(q

1

, q

2

, u) =

J+1

X

m=2

C

α2m

2C

α2

 X

m

k=1

C

2m2k−1

q

12(k−1)

q

2(m−k)2

 u

2m−2

. Now, using (2.11), (2.7) and the mean-value theorem, we have (2.12) σ(u) = 1 +

J+1

X

k1=1

C

(α−2)k1 −1

A

k1

(q

1

, q

2

, u) + O(((q

1

+ q

2

)u)

2J+2

).

Finally, by (2.12), (2.9) and after a simple calculation, we easily deduce σ(u) = 1 +

J+1

X

k1=1

C

(α−2)k1 −1

(2C

α2

)

k1

 X

k2+k3+...+kJ+1=k1

ki≥0, i=2,3,...,J+1

k

1

! k

2

!k

3

! . . . k

J+1

!

× n

J+1

Y

i=2

 C

α2i

X

i k=1

C

2i2k−1

q

2(k−1)1

q

22(i−k)



ki

on

J+1

Y

i=2

u

2(i−1)ki

o

+ O(((q

1

+ q

2

)u)

2J+2

),

and from the above expression Lemma 2.2 can be proved at once.

Lemma 2.3. Let α, β ∈ R, α(α − 1)β(αβ − β − 1) 6= 0, r, q > 0 and let γ := 1/(αβ − β − 1). Then for |u| ≤ 1/(10(r + q)), J ∈ N,

σ

(u) = σ

(u, q, r) :=

 t(1, qu, ru; α) 2(α − 1)(2α)

β

q

β

ru

β+1



γ

(2.13)

= 1 + X

J j=1

σ

j

(q, r)u

2j

+ O(((q + r)u)

2J+2

), where

σ

1

(q, r) = γ

 4C

α4

α(α − 1) + 6C

β2

αβ + (α − 1)C

β3

β

 r

2

(2.14)

+ γ

 4C

α4

α(α − 1) + 2C

β2

αβ



q

2

,

(5)

σ

j

(q, r) = X

j i=0

b

j,i

q

2i

r

2(j−i)

, (2.15)

where b

j,i

= b

j,i

(α, β) is real for all i, j ≥ 0.

P r o o f. The proof is similar to that of Lemma 2.2, so we omit the details.

We notice that the degree of u in the Taylor expansion of σ

(u, q, r) is al- ways even since σ

(−u, q, r) = σ

(u, q, r). Moreover, we have σ

(u, q, −r) = σ

(u, q, r).

3. Spacing problem for the points t(m, q

1

, q

2

) (I). This section is devoted to investigating the spacing problem for the points t(m, q

1

, q

2

) with q

1

“near” to q

2

by the method of Fouvry and Iwaniec [4]. Throughout this and the next section all constants implied by “”, “O” and “” depend at most on α and ε (or ε

); we also use the following notations. Let M ≥ 10, Q

1

≥ 1, Q

2

≥ 1, η > 0, δ > 0 and ∆ > 0. We set T := M

α−2

Q

1

Q

2

and L := log(2M Q

1

Q

2

). Therefore for m ∼ M , q

1

∼ Q

1

, q

2

∼ Q

2

and Q

1

+ Q

2

< M/3, we have t(m, q

1

, q

2

)  T .

Let F(M, Q

1

, Q

2

, ∆) denote the number of sextuplets (m, e m, q

1

, e q

1

, q

2

, e q

2

) with m, e m ∼ M, q

1

, e q

1

∼ Q

1

and q

2

, e q

2

∼ Q

2

, satisfying

(3.1) |t(m, q

1

, q

2

) − t( e m, e q

1

, e q

2

)| ≤ ∆T.

Theorem 1. Let 1 ≤ Q

1

≤ Q

2

≤ M

2/3−ε

. Then

F(M, Q

1

, Q

2

, ∆)M

−2ε

 M Q

1

Q

2

+ ∆(M Q

1

Q

2

)

2

(3.2)

+ M

−2

Q

21

Q

62

+ Q

21

Q

8/32

. We set

A :=

 q

1

q

2

e q

1

e q

2



1/(α−2)

, B := Aσ

1

(q

1

, q

2

) − A

−1

σ

1

( e q

1

, e q

2

),

where σ

1

(q

1

, q

2

) is defined by (2.5). The following lemma is an analogue of Lemma 4 of Fouvry and Iwaniec [4].

Lemma 3.1. Let D(M, Q

1

, Q

2

, ∆) denote the number of couples (m, q), q = (q

1

, e q

1

, q

2

, e q

2

), with m ∼ M ; q

1

, e q

1

∼ Q

1

; q

2

, e q

2

∼ Q

2

, satisfying kAm − Bm

−1

k ≤ ∆. If 1 ≤ Q

1

≤ Q

2

≤ M

3/4−ε

, then

(3.3) M

−ε

D(M, Q

1

, Q

2

, ∆)  M Q

1

Q

2

+ ∆M (Q

1

Q

2

)

2

+ Q

21

Q

8/32

. P r o o f. Since D(M, Q

1

, Q

2

, ∆) is non-decreasing in ∆, we can assume that (Q

1

Q

2

)

−1

< ∆ < 1. First we estimate the number of couples (m, q) with |B| ≤ ∆M by a crude argument. In this case we have kAmk ≤ 2∆, which implies

(3.4)

 q

1

q

2

e q

1

q e

2



1/(α−2)

m e m

 ∆M

−1

.

(6)

By Lemma 1 of Fouvry and Iwaniec [4], the number of quadruples (m, e m, n, e n) with m, e m ∼ M , n, e n ∼ Q

1

Q

2

such that

 n e n



1/(α−2)

m e m

 ∆M

−1

is

(3.5)  M Q

1

Q

2

L + (∆M

−1

)M

2

(Q

1

Q

2

)

2

= M Q

1

Q

2

L + ∆M (Q

1

Q

2

)

2

. Since Q

1

Q

2

≤ q

1

q

2

, e q

1

q e

2

≤ 4Q

1

Q

2

, the number of such (m, q) is

(3.6)  M (Q

1

Q

2

)

1+ε

+ ∆M (Q

1

Q

2

)

2+ε

by a divisor argument.

By Lemma 3 of Fouvry and Iwaniec [4] (see also the proof of Lemma 2 in Liu [8]) we find that for S = ∆

−1

, the number of (m, q) with |B| ≥ ∆M is (3.7)  ∆M (Q

1

Q

2

)

2+ε

+ E

1

+ E

2

,

where

E

1

:= E

1

(M, Q

1

, Q

2

, ∆) = ∆ X

1≤s≤S

X

q1,eq1∼Q1

q2,eq2∼Q2

min(M, 1/kAsk), (3.8)

E

2

:= E

2

(M, Q

1

, Q

2

, ∆) (3.9)

= ∆ X

1≤s≤S

X

q1,eq1∼Q1, q2,eq2∼Q2 kAsk3s|B|M−2

min(M, (|B|sM

−3

)

−1/2

).

We estimate E

1

first. By a simple splitting argument for the interval [1, ∆

−1

], we get for some 1 ≤ S

1

≤ ∆

−1

= S,

E

1

 ∆L X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2

kAsk≤M−1

min(M, 1/kAsk) (3.10)

+ ∆L X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2

kAsk>M−1

min(M, 1/kAsk)

= ∆LT

1

+ ∆LT

2

.

Applying the same argument as for (3.6), we obtain

(3.11) T

1

 M {S

1

(Q

1

Q

2

)

1+ε

+ (M

−1

S

1−1

)S

12

(Q

1

Q

2

)

2+ε

}.

To treat T

2

, applying the splitting argument to the interval [M

−1

, 1], we get for some M

−1

≤ δ ≤ 1,

T

2

 L δ

X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2 δ<kAsk≤2δ

1  L δ

X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2 δ<kAsk≤2δ

1.

(7)

Similarly to the estimate for T

1

in (3.11), we also have

(3.12) T

2

 δ

−1

L{S

1

(Q

1

Q

2

)

1+ε

+ (δS

1−1

)S

12

(Q

1

Q

2

)

2+ε

}.

From (3.10)–(3.12) we obtain

(3.13) E

1

 M (Q

1

Q

2

)

1+ε

L + (Q

1

Q

2

)

2+ε

L.

To treat E

2

, we split the range of summation into subsets defined by S

1

< s ≤ 2S

1

and R < |B| ≤ 2R, where 1 ≤ S

1

≤ ∆

−1

and ∆M ≤ R ≤ Q

22

. Thus for some S

1

and R,

E

2

 L

2

X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2 kAsk3s|B|M−2, R<|B|≤2R

min(M, (|B|sM

−3

)

−1/2

) (3.14)

 L

2

X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2

kAskS1RM−2

min(M, (RS

1

M

−3

)

−1/2

)

:= L

2

∆T

3

.

If R ≤ M S

1−1

, similarly to (3.11) we have

(3.15) ∆T

3

 ∆{S

1

M (Q

1

Q

2

)

1+ε

+ S

1

(Q

1

Q

2

)

2+ε

}.

If R > M S

1−1

, similarly to (3.12) we also have

∆T

3

 L∆(RS

1

M

−3

)

−1/2

X

s∼S1

X

q1,eq1∼Q1, q2,eq2∼Q2 kAskS1RM−2

1 (3.16)

 L∆(RS

1

M

−3

)

−1/2

{S

1

(Q

1

Q

2

)

1+ε

+ (RM

−2

)S

12

(Q

1

Q

2

)

2+ε

}.

Combining (3.14)–(3.16) we get

(3.17) E

2

 M (Q

1

Q

2

)

1+ε

L + (Q

1

Q

2

)

2+ε

L + (∆M )

−1/2

(Q

1

Q

2

)

2+ε

Q

2

L.

Finally, since D(M, Q

1

, Q

2

, ∆) is non-decreasing in ∆, we can replace ∆ on the right-hand side of (3.17) by ∆ + M

−1

Q

2/32

; this new ∆ and the con- dition Q

1

≤ Q

2

≤ M

3/4−ε

assure that |B| < ∆M

2

holds. This completes the proof of Lemma 3.1.

Proof of Theorem 1. Inequality (3.1) implies that

|t

1/(α−2)

(m, q

1

, q

2

) − t

1/(α−2)

( e m, e q

1

, e q

2

)| ≤ ∆T

1/(α−2)

. By (2.3) with u = 1/m and J = 1, we deduce that

(3.18) |Am + Bm

−1

− e m|  ∆M + Q

42

M

−3

.

Clearly (3.18) implies kAm + Bm

−1

k  ∆M + Q

42

M

−3

, and for given

m, q

1

, e q

1

, q

2

, e q

2

the number of e m is bounded by O(1 + ∆M ). Applying

(8)

Lemma 3.1 with ∆ = ∆M + Q

42

M

−3

we get F(M, Q

1

, Q

2

, ∆)  (1 + ∆M )

× (M (Q

1

Q

2

)

1+ε

+ ∆M

2

(Q

1

Q

2

)

2+ε

+ M

−2

Q

2+ε1

Q

6+ε2

) + (1 + ∆M )Q

2+ε1

Q

8/3+ε2

L.

If ∆M < 1 we obtain the bound (3.2), otherwise the trivial estimate yields F(M, Q

1

, Q

2

, ∆)  (1 + ∆M )M (Q

1

Q

2

)

2

 ∆(M Q

1

Q

2

)

2

.

Now the proof of Theorem 1 is finished.

4. Spacing problem for the points t(m, q

1

, q

2

) (II). In this section, we shall use the new idea developed by Sargos and Wu [9] and the method in the proof of Theorem 1 to investigate the spacing problem for the points t(m, q

1

, q

2

) for q

2

“larger” than q

1

. Before stating our result, we need some notations. For q

1

∼ Q

1

, q

2

∼ Q

2

, we have (q

1

q

2α−1

)

1/(α−2)

∈ I, where I :=

[c(Q

1

Q

α−12

)

1/(α−2)

, c

0

(Q

1

Q

α−12

)

1/(α−2)

], and c, c

0

are two suitable positive constants depending on α only. Let I

η

⊆ I with |I

η

| = η(Q

1

Q

α−12

)

1/(α−2)

. We use E(M, Q

1

, Q

2

, ∆, I

η

) to denote the number of sextuplets (m, e m, q

1

, e q

1

, q

2

, e q

2

) with m, e m ∼ M , q

1

, e q

1

∼ Q

1

, q

2

, e q

2

∼ Q

2

, such that

|t(m, q

1

, q

2

) − t( e m, e q

1

, e q

2

)| ≤ ∆T, (4.1)

(q

1

q

2α−1

)

1/(α−2)

∈ I

η

, (e q

1

q e

2α−1

)

1/(α−2)

∈ I

η

.

Theorem 2. If Q

1

≥ 1, Q

1

M

ε

≤ Q

2

≤ M

1−ε

and Q

1

Q

2

≤ M

3/2−ε

, then there exists an

η = η(M, Q

1

, Q

2

) ∈

 max

 Q

21

Q

22

, 3L

Q

1

Q

2

 , c

0

c − 1



such that

(4.2) η

−1

M

−ε

X

0≤k≤K

E(M, Q

1

, Q

2

, ∆, I

η,k

)

 M Q

1

Q

2

+ ∆M

2

Q

21

Q

22

+ (M Q

71

Q

92

)

1/4

+ M

−2

Q

41

Q

42

+ (∆M

4

Q

151

Q

172

)

1/8

+ (∆M

4

Q

31

Q

2

)

1/2

+ (Q

131

Q

152

)

1/6

+ (∆M

2

Q

81

Q

102

)

1/4

+ (M

−1

Q

51

Q

62

)

1/2

,

where I

η,k

:= [a

k

, (1 + η)a

k

], a

k

:= (1 + η)

k

c(Q

1

Q

α−12

)

1/(α−2)

, and K :=

[log(c

0

/c)/η].

Define

q := (q

1

, e q

1

, q

2

, e q

2

), v(q) :=

 q

1

q

2

e q

1

e q

2



1/(α−2)

,

Q := {q : q

1

, e q

1

∼ Q

1

; q

2

, e q

2

∼ Q

2

},

(9)

v

1

(q) := v(q)σ

1

(q

1

, q

2

) − v

−1

(q)σ

1

(e q

1

, e q

2

),

where σ

1

(q

1

, q

2

) is given by (2.5), and we define ψ

J

:= ψ

J

(m, q) by the recurrence relation

ψ

1

:= v

1

(q)m

−1

, (4.3)

ψ

J

= X

J j=1

{v(q)σ

j

(q

1

, q

2

)m

−2j+1

− σ

j

(e q

1

, e q

2

)(v(q)m + ψ

J−1

)

−2j+1

} (4.4)

for J ≥ 2.

Let E

0

(M, Q

1

, Q

2

, δ, I

η

) be the number of couples (m, q) with m ∼ M, q ∼ Q such that

kv(q)m + ψ

J

(m, q)k ≤ δ, (4.5)

(q

1

q

2α−1

)

1/(α−2)

∈ I

η

, (e q

1

q e

2α−1

)

1/(α−2)

∈ I

η

. Lemma 4.1. If 1 ≤ Q

1

≤ Q

2

≤ ε

M , then for any J ≥ 1,

E(M, Q

1

, Q

2

, ∆, I

η

)  (1 + ∆M + M

−2J−1

Q

2J+22

) (4.6)

× E

0

(M, Q

1

, Q

2

, ∆M + M

−2J−1

Q

2J+22

, I

η

).

P r o o f. Obviously it is sufficient to prove

(4.7) m = v(q)m + ψ e

J

+ O

J

(∆M + M

−2J−1

Q

2J+22

).

We observe that

 t(m, q

1

, q

2

) 4α(α − 1)



1/(α−2)

= (q

1

q

2

)

1/(α−2)

mσ(m

−1

, q

1

, q

2

).

The inequality in (4.1) is equivalent to

|t

1/(α−2)

(m, q

1

, q

2

) − t

1/(α−2)

( e m, e q

1

, e q

2

)|  ∆T

1/(α−2)

, which implies

|v(q)mσ(m

−1

, q

1

, q

2

) − e mσ( e m

−1

, e q

1

, e q

2

)|  ∆M.

Applying Lemma 2.2, we can get for every J ≥ 0, (4.8)

v(q)m + X

J j=1

{v(q)σ

j

(q

1

, q

2

)m

−2j+1

− σ

j

(e q

1

, e q

2

) e m

−2j+1

} − e m

 ∆M + M

−2J−1

Q

2J+22

. For the choice of J = 0, one has e m = v(q)m + O(∆M + M

−1

Q

22

). Taking J = 1 in (4.8) and replacing e m by v(q)m + O(∆M + M

−1

Q

22

), we get the first approximation

(4.9) m = v(q)m + ψ e

1

+ O(∆M + M

−3

Q

42

),

(10)

namely, (4.7) holds for J = 1. Now we suppose that (4.7) is true for J − 1.

Thus we can replace e m

−2j+1

by {v(q)m +ψ

J−1

+O(∆M +M

−2J+1

Q

2J2

)}

2j−1

in (4.8); we then easily deduce that (4.7) is also true for J. This finishes the proof of Lemma 4.1.

Now we divide the set Q into two sets Q

1

and Q

2

. All q satisfying (4.10) |v

2

(q)q

22

− e q

22

| ≥ 2|v

2

(q)q

12

− e q

12

|, q ∈ Q,

form the set Q

1

. All other q form Q

2

.

Lemma 4.2. Let 1 ≤ Q

1

≤ Q

2

≤ ε

M . Then for t ∼ M and q ∈ Q

1

, we have

(4.11)

i

ψ

J

(t, q)

∂t

i

 |ω(q) − 1|Q

22

M

−i−1

(i = 0, 1, 2), where

ω(q) =

 q

1

q

α−12

e q

1

e q

α−12



1/(α−2)

. P r o o f. Since

ψ

1

(t, q) = C{(v

2

(q)q

12

− e q

12

) + (v

2

(q)q

22

− e q

22

)} v

−1

(q) t , by (4.10) we get

ψ

1

(t, q)  |v

2

(q)q

22

− e q

22

|M

−1

 Q

2

 q

1

q

2

e q

1

q e

2



1/(α−2)

q

2

− e q

2

M

−1

 Q

22

|ω(q) − 1|M

−1

.

Now, (4.11) is true for J = 1. Suppose that it holds for J − 1. We write ψ

J

= v(q)m

X

J j=1

 σ

j

(q

1

, q

2

)

m

2j

σ

j

(e q

1

, e q

2

) (v(q)m + ψ

J−1

)

2j

 (4.12)

− ψ

J−1

X

J j=1

σ

j

(e q

1

, e q

2

) (v(q)m + ψ

J−1

)

2j

.

Using (2.4), the induction hypothesis and Q

1

≤ Q

2

≤ ε

M , it is easy to see that the last term in (4.12) is

 (|ω(q) − 1|Q

22

M

−1

)

 Q

2

M



2

 ε

∗2

|ω(q) − 1|Q

22

M

−1

.

Similarly by (2.4) we get again

(11)

(4.13) X

J j=1

σ

j

(q

1

, q

2

)

m

2j

σ

j

(e q

1

, e q

2

) (v(q)m + ψ

J−1

)

2j

= C

 q

12

+ q

22

m

2

q e

12

+ e q

22

(v(q)m + ψ

J−1

)

2



+ X

J j=2

 ( P

j

i=0

a

j,i

q

12(j−i)

q

2i2

)

m

2j

( P

j

i=0

a

j,i

q e

12(j−i)

q e

22i

) (v(q)m + ψ

J−1

)

2j



= C (v

2

(q)q

22

− e q

22

) + (v

2

(q)q

21

− e q

12

) (v(q)m + ψ

J−1

)

2

+ C (2v(q)m + ψ

J−1

)(q

12

+ q

22

)

ψmJ−12

(v(q)m + ψ

J−1

)

2

+

X

J j=2

X

j i=0

a

j,i

 q

12(j−i)

q

2i2

m

2j

q e

12(j−i)

e q

22i

(v(q)m + ψ

J−1

)

2j

 . Via (4.10) we have

(4.14) (v

2

(q)q

22

− e q

22

) + (v

2

(q)q

12

− e q

12

)  Q

22

|ω(q) − 1|.

By the induction hypothesis we have (4.15) (2v(q)m + ψ

J−1

)(q

12

+ q

22

) ψ

J−1

m

2

 M Q

22

(|ω(q) − 1|Q

22

M

−1

)

M

2

 ε

∗2

Q

22

|ω(q) − 1|.

Now we prove (4.16)

X

J j=2

X

j i=0

a

j,i

 q

12(j−i)

q

2i2

m

2j

q e

12(j−i)

q e

22i

(v(q)m + ψ

J−1

)

2j



 |ω(q) − 1|Q

42

M

4

.

For any 1 ≤ j ≤ J, by the induction hypothesis we have 1

(v(q)m)

2j

1

(v(q)m + ψ

J−1

)

2j

= (v(q)m + ψ

J−1

)

2j

− (v(q)m)

2j

(v(q)m)

2j

(v(q)m + ψ

J−1

)

2j

 jM

−4j

v(q)m+ψ

\

J−1

v(q)m

u

2j−1

du  jM

−4j

M

2j−1

J−1

|

 jM

−4j

M

2j−1

|ω(q) − 1| Q

22

M  |ω(q) − 1|

M

2j

.

(12)

For 1 ≤ i ≤ j, we have v

2i

(q)q

12i

− e q

12i

= i

v2(q)q

\

12

e q12

u

i−1

du

 iQ

2i−21

|v

2

(q)q

12

− e q

12

|  iQ

2i−21

|v

2

(q)q

22

− e q

22

|

 iQ

2i−21

Q

22

|ω(q) − 1|  iQ

2i2

|ω(q) − 1|

and

v

2i

(q)q

22i

− e q

22i

= i

v2(q)q

\

22

e q22

u

i−1

du

 iQ

2i−22

|v

2

(q)q

22

− e q

22

|  iQ

2i2

|ω(q) − 1|.

So for 0 ≤ i ≤ j, we have v

2i

(q)q

12(j−i)

q

22i

− e q

12(j−i)

e q

22i

= v

2i

(q)q

2(j−i)1

q

22i

− (v(q)q

1

)

2(j−i)

q e

22i

+ (v(q)q

1

)

2(j−i)

q e

22i

− e q

12(j−i)

q e

22i

= (v(q)q

1

)

2(j−i)

(v

2i

(q)q

22i

− e q

22i

) + e q

22i

((v(q)q

1

)

2(j−i)

− e q

12(j−i)

)

 (Q

2(j−i)1

Q

2i2

+ Q

2j2

)|ω(q) − 1|

 Q

2j2

|ω(q) − 1|.

Combining the above estimates we get, for any 0 ≤ i ≤ j, q

2(j−i)1

q

22i

m

2j

q e

12(j−i)

q e

22i

(v(q)m + ψ

J−1

)

2j

= q

12(j−i)

q

2i2

m

2j

q e

12(j−i)

q e

22i

m

2j

+ e q

12(j−i)

e q

22i

 1

(v(q)m)

2j

1

(v(q)m + ψ

J−1

)

2j



= m

−2j

(v

2i

(q)q

2(j−i)1

q

22i

− e q

12(j−i)

q e

22i

) + e q

12(j−i)

e q

22i

 1

(v(q)m)

2j

1

(v(q)m + ψ

J−1

)

2j



 M

−2j

Q

2j2

|ω(q) − 1|.

Hence (4.16) follows upon summing over j ≥ 2, 0 ≤ i ≤ j.

(13)

Combining (4.12)–(4.16) we conclude that the first relation of (4.11) (namely, i = 0) holds for J. The other two can be shown similarly.

The following lemma is a key to the proof of Theorem 2. To prove the lemma, we shall use Lemma 2.1 and the idea in the proof of Theorem 1.

Lemma 4.3. If Q

1

Q

2

≤ ε

M

3/2

and 1 ≤ Q

1

≤ Q

2

≤ ε

M , then there is an

η = η(M, Q

1

, Q

2

) ∈

 max

 Q

21

Q

22

, 3L

Q

1

Q

2

 , c

0

c − 1



such that

(4.17) η

−1

M

−ε

X

0≤k≤K

E

0

(M, Q

1

, Q

2

, δ, I

η,k

)

 M Q

1

Q

2

+ δM Q

21

Q

22

+ (M Q

71

Q

92

)

1/4

+ M

−2

Q

41

Q

42

+ (δM

3

Q

151

Q

172

)

1/8

+ (δM

3

Q

31

Q

2

)

1/2

+ (Q

131

Q

152

)

1/6

+ (δM Q

81

Q

102

)

1/4

+ (M

−1

Q

51

Q

62

)

1/2

.

P r o o f. We put f

q

(t) := v(q)t + ψ

J

(t, q) and use S

η

to denote the quantity to be estimated in Lemma 4.3. Let E

0(1)

(M, Q

1

, Q

2

, δ, I

η,k

) denote the number of couples (m, q) with m ∼ M , q ∈ Q

1

such that (4.5) holds, and E

0(2)

(M, Q

1

, Q

2

, δ, I

η,k

) be the number of couples (m, q) with m ∼ M , q ∈ Q

2

such that (4.5) holds. Clearly we have

(4.18) E

0

(M, Q

1

, Q

2

, δ, I

η,k

)

= E

0(1)

(M, Q

1

, Q

2

, δ, I

η,k

) + E

0(2)

(M, Q

1

, Q

2

, δ, I

η,k

).

We estimate η

−1

P

0≤k≤K

E

0(1)

(M, Q

1

, Q

2

, δ, I

η,k

) first. Define

H

(1)η

:= {q ∈ Q

1

: |ω(q)−1| ≤ η}, H

(1)η,l

:= {q ∈ Q

1

: η

l

/2 < |ω(q)−1| ≤ η

l

} with η

l

:= η/2

l

(0 ≤ l ≤ L := [log(ηQ

1

Q

2

/L)/log 2]). Noticing that the last two conditions of (4.5) imply |ω(q) − 1| ≤ η, we can write

(4.19) η

−1

X

0≤k≤K

E

0(1)

(M, Q

1

, Q

2

, δ, I

η,k

)

 η

−1

X

q∈H(1)η,L+1

R(f

q

, δ) + η

−1

X

0≤l≤L

X

q∈H(1)η,l

R(f

q

, δ).

For q ∈ H

η,L+1(1)

, we have R(f

q

, δ)  M trivially, which implies that the first term on the right-hand side of (4.19) is

(4.20)  η

−1

M {Q

1

Q

2

L + η

L+1

(Q

21

Q

22

)}  M Q

1

Q

2

−1

in view of Lemma 3.2 in [9].

(14)

When q ∈ H

(1)η,l

(0 ≤ l ≤ L), Lemma 4.2 shows that the function f

q

(t) satisfies the condition of Lemma 2.1 with µ = η

l

Q

22

/M

3

. Hence the second term on the right-hand side of (4.19) is

(4.21)  η

−1

X

0≤l≤L

{δM |H

(1)η,l

| + (η

l

Q

22

)

1/3

|H

(1)η,l

| + |H

(1)η,l

|}

+ η

−1

X

0≤l≤L

(δM

3

Q

1

|H

η,l(1)

|Lη

l−1

Q

−12

)

1/2

+ η

−1

X

0≤l≤L

2

M

3

Q

21

|H

(1)η,l

|

2

η

−1l

)

1/3

+ η

−1

X

0≤l≤L

Q

1

Q

2

(δM |H

(1)η,l

|)

1/2

. When 0 ≤ l ≤ L, Lemma 3.2 of [9] implies that

|H

(1)η,l

|  Q

1

Q

2

L + η

l

(Q

1

Q

2

)

2

 η

l

(Q

1

Q

2

)

2

,

so we replace |H

(1)η,l

| by the estimate η

l

(Q

1

Q

2

)

2

in (4.21). Combining (4.19) and (4.20), a simple calculation shows that

(4.22) η

−1

X

0≤k≤K

E

0(1)

(M, Q

1

, Q

2

, δ, I

η,k

)

 M Q

1

Q

2

−1

+ δM Q

21

Q

22

+ Q

21

Q

22

+ Q

21

Q

8/32

η

1/3

+ (δM

3

Q

31

Q

2

)

1/2

L

2

η

−1

+ (δ

2

M

3

Q

61

Q

42

)

1/3

η

−2/3

+ (δM Q

41

Q

42

)

1/2

η

−1/2

.

Now we estimate η

−1

P

0≤k≤K

E

0(2)

(M, Q

1

, Q

2

, δ, I

η,k

) by the technique in the proof of Theorem 1. Let E

0

(M, Q

1

, Q

2

, δ) be the number of couples (m, q) with m ∼ M , q ∈ Q

2

such that the first condition of (4.5) holds. We can obtain

X

0≤k≤K

E

0(2)

(M, Q

1

, Q

2

, δ, I

η,k

) ≤ E

0

(M, Q

1

, Q

2

, δ).

From the first condition of (4.5), we get

|v

2

(q)q

22

− e q

22

| < 2|v

2

(q)q

21

− e q

12

|.

So applying similar arguments to those for the estimate (4.11) in Lemma 4.2 for i = 0, we get

(4.23) kv(q)m + v

1

(q)m

−1

k  δ + Q

21

Q

22

M

−3

.

Let B(M, Q

1

, Q

2

, δ) denote the number of couples (m, q) with m ∼ M ,

Cytaty

Powiązane dokumenty

The lack of correlation be- tween tryptase and histamine levels in both studied groups of subjects suggest the independence of their release from mast cells during their

This PhD thesis includes a careful study of the last two problems, i.e., how to reduce the test-data burden for monster chips, and how to create a design-for-testability

We also show, although only numer- ically, that his proof of the Bourgain-Milman inequality using estimates for the Bergman kernel for tube domains cannot be improved to obtain

The author would like to thank the referee for his valuable comments and Prof. Iwaniec for his encouragement

So the cor- responding exponential sums are bilinear forms which can be estimated by the well-known double large sieve inequality due to Bombieri and Iwaniec (Proposition 1 of

In general, even when there is a critical point of multiplicity d, a sharper upper bound than (1.16) is available by applying our result for pure exponential sums, Theorem 2.1,

The parameter σ α has appeared in many papers on exponential sums but we are not aware of an upper bound of the type (1.13) ever appearing before, even for the case of

Następnie wykonać na stronie 39 w podręczniku ćw 2,5,6- w razie potrzeby skorzystać z nagrań,które są na płycie do podręcznika lub są dostępne online po zalogowaniu się