• Nie Znaleziono Wyników

9 Dyskusja wyników

W dokumencie Index of /rozprawy2/10276 (Stron 160-172)

W pracy wykazano istnienie roztworów stałych węglikoazotków tytanu w układzie pseudodwuskładnikowym TiC – TiN. Potwierdziły to badania strukturalne, z zastosowaniem technik dyfrakcyjnych oraz analiza EDS. O istnieniu roztworów stałych w tym układzie może

świadczyć również temperatura spiekania, która dla roztworów stałych jest niższa niż dla faz

wyjściowych

Zaproponowana metoda samorozwijającej się syntezy wysokotemperaturowej okazała się skuteczna i efektywna do otrzymywania jednofazowych proszków. Czystość fazowa proszków wyjściowych może być zapewniona bezpośrednio po syntezie a w przypadku węglikoazotków dodatkowa homogenizacja następuje podczas procesu spiekania.

Spiekanie bezciśnieniowe prowadzi do częściowego zagęszczenia materiału, jednak procesy dyfuzyjne są zbyt powolne w aspekcie całkowitego wyeliminowania porowatości. Znacznie efektywniejszą metodą uzyskiwania tworzyw niemal bezporowatych okazało się prasowanie na gorąco (HP). Spiekanie zarówno węglika tytanu z dodatkiem węgla jak i azotku oraz węglikoazotków tytanu bez aktywatorów spiekania pozwala uzyskać tworzywa o gęstości względnej ponad 99,0%.

Tak uzyskane materiały sprawdziły się jako sensory w technice woltamperometrycznej, gdzie uzyskano wysoką selektywność, powtarzalność oraz czułość elektrod wykonanych z szeregu testowanych materiałów. Dalsze badania nad optymalizacją warunków pomiaru oraz przygotowania sensora mogą doprowadzić do przemysłowego zastosowania tego typu elektrod, a tym samym częściowego ograniczenia stosowania toksycznych elektrod rtęciowych.

Badania potwierdziły wysoką twardość węglikoazotków, szczególnie tych w których większość luk oktaedrycznych wypełnionych jest przez węgiel. Nóż skrawający wykonany z najtwardszego z uzyskanych materiałów, testowany w warunkach znormalizowanych wykazał się stosunkowo wysoką żywotnością. O ile węglikoazotki nie wydają się konkurencyjne względem materałów na bazie cBN, czy diamentu, z pewnością mogą konkurować z szeroko stosowanym obecnie kompozytami na bazie węglika wolframu.

Wreszcie efekt zmiany charakteru przewodnictwa w trakcie utleniania materiału (z metalicznego w półprzewodnikowy) może być z powodzeniem wykorzystany w konstukcji fotoanody do uzyskiwania wodoru. Uzyskana dla utlenionego azotku tytanu szerokość

przerwy energii wzbronionej ma niższą wartość, niż dla czystego TiO2, co sugeruje możliwość polepszenia sprawności tego ogniwa.

Specyficzny zestaw właściwości uzyskanych materiałów pozwolił na wytypowanie trzech potencjalnych kierunków ich zastosowania. Uzyskane rezultaty uzasadniają potrzebę badań optymalizacyjnych w celu ich przemysłowego wdrożenia.

10 Literatura

[1] Janusz Nowotny, Marta Radecka, Mieczysław Rękas: Semiconducting properties of undoped TiO2, Journal of Physical Chemistry of Solids 58, 6, (1997) 927-937

[2] Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, Tatsuhiko Ihara, Shinichi Sugihara, Koji Takeuchi: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, Journal of Molecular Catalysis A: Chemical 161 (2000) 205-212

[3] A. Brudnik, M. Bućko, M. Radecka, A. Trenczek-Zając, K. Zakrzewska: Microstructure and optical properties of photoactiveTO2:Nthin films, Vacuum 82 (2008) 936-941

[4] M. Radecka, K. Zakrzewska, M. Wierzbicka, A. Gorzkowska, S. Komornicki: Study of the TiO2-Cr2O3

system for photoelectrollytic decomposition of water, Solid State Ionics 157 (2003) 379-386

[5] Andrew Mills, Stephen Le Hunte: An overview of semiconductor photocatalysis, Journal of Photochemistry and Photobiology A; Chemistry 108 (1997) 1-35

[6] J. Probst, U. Gbureck, R. Thull: Binary nitride and oxynitirde PVD coatings on titanium for biomedical aplications, Surface and Coatings Technology 148 (2001) 226-233

[7] Ulman's Encyklopedia of Industrial Chemistry vol. A5, Weinheim, Germany

[8] A. Wenzel, C. Hammerl, A. Konigen, B. Rauschenbach: Formation of titanium carbide by high-fluence carbon ion implantation, Nuklear Instruments and Methods in Physics Research B 129 (1997) 369-376 [9] F. Santerre, M. A. El Khakani, M. Chaker, J. P. Dodelet: Properties of TiC thin films grown by pulsed

laser deposition, Applied Surface Science 148 (1999) 24-33

[10] D. Strzęciwilk, Z. Wokulski, P. Tkacz: Microstructure of TiC crystals obtained from high temperature nickel solution, Journal of Alloys and Compounds 350 (2003) 256-263

[11] R. Teghil, L. D. Alessio, A. De Bonis, A. Galasso, P. Villani, M. Zaccagnino, A. Santagata, D. Ferro: Femtosecond pulsed laser ablation of group 4 carbides, Applied Surface Science 247 (2005) 51-56 [12] M. Guemmaz, M. Mosser, R. Ahujab, B. Johansson: Elastic properties of sub-stoichiometric titanium

carbides. Comparison of FP-LMTO calculations and experimental results, Solid State Communications 110 (1999) 299-303

[13] M. Guemmaz, A. Mosser, J. C. Parlebas: Electronic changes induced by vacancies on spectral and elastic properties of titanium carbides and nitrides, Journal of Electron Spectroscopy and related Phenomena 107 (2000) 91-101

[14] A. Schroer, W. Ensinger: Room temperature deposition of titanium carbide by ion-beam- enhanced reraction of titanium films with hydrocarbons, Surface and Coatings Technology 84 (1996) 448-452 [15] Alina Lupu, Dario Compagnone, Silvia Orlanducci, Maria Letizia Terranova, Vasile Magearu, Giuseppe

Palleschi: Titanium Carbide Thin-Film Electrodes: Characterization and Evaluation as Working Electrodes, Electroanalysis, 2004, 16, no. 20, 1704-1710

[16] Q. C. Jiang, F. Zhao, H. Y. Wang, Z. Q. Zhang: In situ TiC-reinforced steel composite fabricated via self-propagating high-temperature synthesis of Ni-Ti-C system, Materials Letters 59, 16 (2005) 2043-2047

[17] Jinfeng Nie, Xiangfa Liu, Xiaoguang Ma: Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy, Journal of Alloys and Compounds 491 (2010) 113-117

[18] S. Y. Luo, Y. S. Liao, Y. Y. Tsai: Wear characteristics in turning high hardness alloy steel by ceramic and cBN tools, Journal of Materials Processing Technology 88 (1999) 114-121

[19] Kyong H. Lee, seung I. Cha, Byung K. Kim, Soon H. Hong: Effect of WC/TiC grain size ratio on microstructure and mechanical properties of WC-TiC-Co cemented carbides, International Journal of Refractory Metals and Hard Materials 24 (2006) 109-114

[20] A. Saidi, A. Chrysanthou, J. V. Wood, J. L. F. Kellie: Preparation of Fe-TiC Composites by the Thermal -Explosion Mode of Combustion Synthesis, Ceramics International 23 (1997) 185-189

[21] Valery Rosenband, Alon Gany: Activated self-propagating high-temperature synthesis of aluminium and titanium nitrides, Experimental Thermal and Fluid Science 31 (2007) 461-467

[22] Weijie Lu, Di Zhang, Xiaonong Zhang, Renjie Wu, Taokao Sakata, Hirotaro Mori: Microstructural characterization of TiC in in situ synthesized titanium matrix composites prapared by common casting technique, Journal of Alloys and Compounds 327 (2001) 248-252

[23] S. Zhang, S. C. Tam: Mechanical alloying of TiC-TiN caramic system, Journal of Materials Processing Technology 67 (1997) 112-116

[24] A. P. Umanskii: Titanium carbonitride composite with iron – chromium binder, Powder metallurgy and Metal Ceramics, vol.40 (2001) 11-12, 637-640

[25] P. Wally, S. Binder, P. Ettmayer, W. Lengauer: Reaction of compact carbonitrides with liquid binder metals, Journal of Alloys and Compounds 230 (1995) 53-57

[26] K. Kudou, T. Ono, S. Okada; Crater wear characteristics of an Fe-diffused carbide cutting tool, Journal of Materials Processing Technology 132 (2003) 255-261

[27] Heinrich Klaasen, Jakob Kubarsepp: Wear of advanced carbides for metalforming tool materials, Wear 256 (2004) 846-853

[28] J. M. Cordoba, M. D. Alcala, M. A. Aviles, M. J. Sayagues, F. J. Gotor: New production of TiCxN1-x

based cerments by one step mechanically indeced sulf-sustaining reaction: Powder synthesis and pressureless sintering, Journal of European Ceramic Society 28 (2008) 2085-2098

[29] D. W. Lee, B. K. Kim: Synthesis of nano-structured titanium carbide by Mg-thermal reduction, Scripta Materialia 48 (2003) 1513-1518

[30] N. Liu, Y. D. Xu, H. Li, G. H. Li, L. D. Zhang: Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets, Journal of the European Ceramic Society 22 (2002) 2409-2414

[31] Gui-Ming Song, Yu-Jin Wang, Yu Zhou: Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications, International Journal of Refractory Metals and Hard Materials 21 (2003) 1-12

[32] S. Sabatello, N. Frage, M. P. Dariel: Graded TiC-based cermets, Materials Science and Engineering A 288 (2000) 12-18

[33] Jongmin Lee, Kwangjun Euh, Jun Cheol Oh, Sunghak Lee: Microstructure and hardness improvement of TiC/stainless steel surface composites fabricated by high-energy electron beam irradiation, Materials Science and Engineering A 323 (2002) 251-259

[34] Xiaolei Wu, Youshi Hong: Microstructure and mechanical properties at TiCp/Ni-alloy interfaces in laser-synthesized coatings, Materials Science and Engineering A 318 (2001) 15-21

[35] Chonghai Xu, Xing Ai, Chuanzhen Huang: Research and development of rare-earth cemented carbides , International Journal of Refractory Metals and Hard Materials 19 (2001) 159-168

[36] N. Frage, L. Levin, E. Manor, R. Shneck, J. Zabicky: Iron-titanium-carbon system. II. Microstructure of titanium carbide (TiCx) of various stoichiometries infiltrated with iron-carbon alloy, Scripta Materialia vol. 35, No. 7, pp. 799-803, 1996

[37] Yong Choi, N. I. Baik, J. S. Lee, S. I. Hong, Y. D. Hahn: Corrosion and wear properties of TiC/Ni-Mo composites produced by direct consolidation during a self-propagating high-temperature reaction, Composites Science and Technology 61 (2001) 981-986

[38] Marta Ziemnicka, Ludosław Stobierski: Wpływ odstępstwa od stechiometrii na właściwości jednofazowych spieków węglika tytanu TiC1-x, Ceramika, Postępy Technologii Ceramiki, Szkła i Budowlanych Materiałów Wiążących pod red. Z. Pędzicha, K. Haberko, Polskie Towarzystwo Ceramiczne, Kraków 2005

[39] N. Zarrinfar, P. H. Shipway, A. R. Kennedy, A. Saidi: Carbide stoichiometry in TiCx and Cu-TiCx produced by self-propagating high-temperature synthesis, Scripta Materialia 46 (2002) 121-126

[40] Mindaugas Lukosius, Christian Wenger, Sergej Pasko, Hans-Joachim Mussig, Bernhard Seitzinger, Christoph Lohe; Atomic Vapour deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices, Chemical Vapor Deposition 2008, 14, 123-128

[41] W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, G. Groboth: Solid state properties of group IVb carbonitrides, Journal of Alloys and Compounds 217 (1995) 137-147

[42] Li-Ying Kuo, Pouyan Shen: On the condensation and preferred orientation of TiC nanocrystals – effects of electric field, substrate temperature and second phase, Materials Science and Engineering A276 (2000) 99-107

[43] Ibrahim Ciftci: Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools, Tribology International 39 (2006) 565-569

[44] Bo Tian, Dong Bai Xie, Fu Hui Wang: Corrosion behavior of TiN and TIN/Ti composite films on Ti6Al4V alloy in Hank's solution, Journal of Applied Electrochemistry (2009)39:447-453

[45] M. Guemmaz, A. Mosser, J. J. Grob, J. C. Sens, R. Stuck: Composition and structure of titanium carbonitride thin film synthesized by ion implantation, Surface and Coatings Technology 80 (1996) 53-56 [46] Ludosław Stobierski: Ceramika węglikowa, Uczelniane Wydawnictwo Naukowo-Dydaktyczne AGH,

Kraków 2005

[47] Young-Hoon Shin, Yukihiro Shimogaki: Diffusion barrier property of TiN and TiN/Al/TiN films deposited with FMCVD for Cu interconnection in ULSI, Science and Technology of Advanced Materials 5 (2004) 399-405

[48] Dong-Soo Yoon, Jae Sung Roh: Novel Diffusion-Barrier Materials Against Oxygen for High-density Dynamic Random Acces Memory Capacitors, Advanced Functional Materials, 2002, 12, No. 5, May [49] Hugh O. Pierson; Handbook of Refractory Carbides and Nitrides- Properties, Charakteristics, Processing

and Applications, Noyes Publications, Westwood, New Yersey, USA, 1996

[50] G. Belardi, L. Piga, S. Quaresima, N. Shehu: Application of physical separation methods for the upgrading of titanium dioxide contained in a fine waste, International Journal of Mineral Processing 53 (1998) 145-156

[51] Tomohiko Yoshioka, Kanji Tsuru, Satoshi Hayakawa, Akiyoshi Osaka: Preparation of organotitanium molecular layers for biomedical applications, Materials Science and Engineering C 24 (2004) 901-905 [52] Carolina Nunes Kirchner, Karl Heinz Hallmeier, Rudiger Szargan, Thomas Raschke, Christian Radehaus:

Evaluation of Thin Film Titanium Nitride Electrodes for electroanalytical Applications, Electroanalysis 19, 2007, No. 10, 1023-1031

[53] M. Keijzer, K. Hemmes, J. H. W. De Wit, J. Schoonman: TiCN and metallic coatings for corrosion protection of separator plates in MCFCs, Journal of Applied Electrochemistry 30, 1421-1431, 2000 [54] H. W. Wang, M. M. Stack: The slutty erosive wear of physically vapour deposited TiN and CrN coatings

under controlled corrosion, Tribology Letters 6 (1999) 23-36

[55] S. Binder, W. Lengauer, P. Ettmayer, J. Bauer, J. Debuigne, M. Bohn: Phase equilibria in the systems Ti-C-N, Zr-C-N and Hf-Ti-C-N, Journal of Alloys and Compounds 217 (1995) 128-136

[56] Binary Alloys – Phase diagram database - Elektroniczna baza diagramów fazowych [57] Engineering Property Data nitrides

[58] Xiaoyan Ma, Changrong Li, Weijing Zhang: Study on the phase diagram of the Ti-B-N system and the interfacial reaction of the Ti/BN joints, Materials Science and Engineering A 392 (2005) 394-402

[59] Wendell S. Williams: Electrical properties of hard materials, International Journal of Refractory Metals and Hard Materials 17 (1999) 21-26

[60] F. Maglia, U. Anselmi – Tamburini, C. Deidda, F. Delogu, G. Cocco, Z. A. Munir: Role of mechanical activation in SHS synthesis of TiC Journal of Materials Science, 39, 16-17, 2004, 5227-5230

[61] C. Arvieu, J. P. Manaud, J. M. Quenisset: Interaction between titanium and carbon at moderate temperatures, journal of Alloys and Compounds 368 (2004) 116-122

[62] D. W. Lee, S. V: Alexandrovskii, B. K. Kim: Novel synthesis of substoichiometric ultrafine titanium carbide, Materials Letters 58 (2004) 1471-1474

[63] R. Telle Materials Science and Technology, R. W. Cahn, vol. 11, 4, 190-191

[64] V. N. Lipatnikov, A. A, Rempel, A. I. Gusev: Atomic ordering and hardness of nonstoichiometric titanium carbide, International Journal of Refractory Metals and Hard Materials 15, (1997) 61-64

[65] Karin : A revised thermodynamic description of the Ti-C system, Computer Coupling of Phase Diagrams and Thermochemistry 27 (2003) 367-373

[66] I. M. Pohrelyuk, I. V. Dyuh, V. M. Fredirko, O. I. Yas'kiv: Investigation of thermodiffusion carbonitride coatings on titanium alloys, Materials Science vol. 41, No. 4, 2005

[68] L. Guzman, M. Bonelli, A. Miotello, D. C. Kothari: Process parameters optimization for TiN and TiC formation using reactive ion beam assisted deposition, Surface and Coatings Technology 100-101 (1998), 500-502

[69] A. R. Olszyna: „Twardość a kruchość tworzyw ceramicznych” Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2004.

[70] L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York , 1971

[71] A. P. Umanskii, V. A. Lavrenko, S. S. Chuprov, and V. P. Konoval: High-temperature oxidation of composites based on titanium carbonitride and double titanium-chromium carbide, Refractory and Industrial Ceramics 47, No. 4, 2006

[72] E. M. Fryt: Wczesne etapy utleniania TiC. Ceramika 66/2, 678 (2001)

[73] C. L. Yeh, S. H. Su, H.Y. Chang: Effects of TiC addition on combustion synthesis of NiAl in SHS mode: Journal of Alloys and Compounds 398 (2005) 85-93

[74] C. L. Yeh, Y. G. Shen: Effects of TiC addition on formation of Ti3SiC2 by self-propagating high temperature synthesis, Journal of Alloys and Compounds 458 (2008) 286-291

[75] C. L. Yeh, Y. G. Shen: Effect of TiC and Al4C3 addition on combustion synthesis of Ti2AlC, Journal of Alloys and Compounds, 470, 1-2, (2009) 424-428

[76] A Kato, N Tamari, Journal of crystal growth 49 (1980) 199

[77] Anna Biedunkiewicz, Walenty Jasiński, Stanisław Lenart: Synthesis and growth of TiC coatings from the sol-gel process, Vacuum, vol. 50, no 1-2, 65-68, 1998

[78] Baoyin Tang, Hongxi Liu, Langping Wang, Xiaofeng Wang, Kongyin Gan, Yonghao Yu, Yuhang Wang, Tao Sun, Songyan Wang: Fabrication of titanium carbide film on bearing steel by plasma immersion ion implantation and deposition, Surface and Coating Technology 186 (2004) 320-323

[79] Jingxian Zhang, Dongliang Jiang, Qingling Lin, Zhengren Huang: Preparation of TiC ceramics throught aqueous tape casting, Ceramics International 31 (2005) 475-480

[80] K. Gołombek, L. A. Dobrzański, M. Soković: Properties of the wear resistant coatings deposited on the cemented carbides substrates in the cathodic arc evaporation process, Journal of Materials Procesiing Technology 157-158 (2004) 341-347

[81] Wenjun Xiao, Jian Yuan, Yafei Zhang, Wenfeng Shangguan: TiN film with (111) prefered orientation as a visible-light-driven photocatalyst for hudrogen evolution from water decomposition, Materials Chemistry and Physics 105 (2007) 6-9

[82] C. L. Yeh, H. C. Chuang: Combustion characteristics of SHS process of titanium nitride with TiN dilution, Ceramics International 30 (2004) 705-714

[83] D. Vallauri, V. A. Shcherbakov, A. V. Khitev, F. A. Deorsola: Study of structure formation in TiC-TiB2_MexOy ceramics fabricated by SHS and densification, Acta Materialia 56 (2008) 1380-1389

[84] H. R. Orthner, R. Tomasi, W. J. Botta F.: Reaction sintering of titanium carbide and titanium silicide prepared by high-energy milling, Materials science and Engineering A 336 (2002) 202-208

[85] I. A. Podchernyaeva, V. V. Shchepetov, A. D. Panasyuk, V. Yu Gromenko, D. V. Yurechko, V. P. Katashinskii: Refractory and Ceramics Materials. Structure and properties of wear-resistant detonation

coatings based on titanium carbonitride, Powder Metallurgy and Metal Ceramics Vol. 42, No. 9-10, 2003, 497-502

[86] C. L. Yeh, Y. D. Chen: Direct formation of titanium carbonitrides by SHS in nitrogen, Ceramics International 31 (2005) 719-729

[87] J. Lis: Spiekalne proszki związków kowalencyjnych otrzymywane metodą samorozwijającej się syntezy wysokotemperaturowej (SHS), Polskie Towarzystwo Ceramiczne, Kraków 1994

[88] Jun Zhao, Xunliang Yuan, Yonghui Zhou; Cutting performance and failure mechanisms of an Al2O3/WC/TiC micro- nano-composite ceramic tool, International Journal of refractory Metals and Hard Materials 28 (2010) 330-337

[89] Marta Ziemnicka, Bogusław Baś, Ludosław Stobierski, Mieczysław Rękas; Otrzymywanie gęstych spieków węglikowych i azotkowych dla współczesnej analityki, Materiały Ceramiczne/Ceramic Materials 61, 2, (2009) 125-129

[90] Marta Ziemnicka, Bogusław Baś, Ludosław Stobierski, Mieczysław Rękas: Spiekanie proszków roztworów stałych Ti(N,C) o zmiennej zawartości węgla i azotu, Materiały Ceramiczne/ Ceramic Materials, 60, 4, (2008) 281-285

[91] PN-EN 623-2:2001 Techniczna ceramiki zaawansowana. Ceramika monolityczna. Właściwości ogólne i strukturalne. Część 2. Oznaczanie gęstości i porowatości, opracowana w Normalizacyjnej Komisji Problemowej nr 289 ds. Ceramiki Technicznej

[92] Roman Pampuch: Współczesne materiały ceramiczne, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2005

[93] Marta Ziemnicka, Krzysztof Wojciechowski, Rafał Zybała, Maksymilian Schmidt: Electrical properties and Seebeck coefficient of Ti(C,N) ceramic sinters obtained by self-propagating high-temperature synthesis – w przygotowaniu

[94] Bogusław Baś, Marta Ziemnicka, Paweł Sobaś, Ludosław Stobierski, Mieczysław Rękas: Właściwości elektryczne azotku tytanu TiNx (x = 1 lub 0,9), Materiały Ceramiczne, 2009 t. 61 nr 3 s. 179–181

[95] D. Ravinder, G. Ravi Kumar, Y. C. Venudhar: High- temperature thermoelectric power studies of cooper substituted nickel ferrites, Journal of Alloys and Compounds 363 (2004) 6-9

[96] Minoru Ueda, Hiroshi Hayakawa, Masakazu Mukaida, Yoji Imai: Seebeck coefficients of iron group elements borides, Intermettalics 12 (2004) 55-58

[97] Yosuke Fujine, Hiroyuki Fujishiro, Kazuyoshi Suzuki, Yohei Kashiwada: Magnetism and thermoelecticity in La0,8Sr0.2Co1-zMzO3 (M:3d transition metal), Journal of Magnetism and Magnetic Materials 272-276 (2004) 104-105

[98] Masato Uehara, Ryosuke Shiraishi, Atsushi Nogami, Naoya Enomoto, Junichi Hojo: SiC-B4C composites for synergistic enhancement of thermoelectric property, Journal of European Ceramic Society 24 92004) 409-412

[99] Bekir Sami Yilbas: Laser short-pulse heating of metallic surfece: Consideration of Seebeck effect, Current Applied Physics 9 (2009) 496-504

[100] Marta Ziemnicka, Gabriela Górny, Ludosław Stobierski, Kazimierz Czechowski: Research on the mechanical properties and cutting performance of Ti(C,N) cutting tools – w przygotowaniu

[101] PN-EN ISO 12737:2006 Metale -- Określanie odporności na pękanie w płaskim stanie odkształcenia, Polski Komitet Normalizacyjny, 2007

[102] PN-EN ISO 15732:2007: Ceramika wysokiej jakości (ceramika zaawansowana, techniczna ceramika zaawansowana) -- Metoda badania odporności na pękanie ceramiki monolitycznej w temperaturze pokojowej za pomocą metody jednostronnie wstępnie pękniętej belki (SEPB)

[103] V. G. Churpina, I. M. Shalya, V. S. Zenkov, Powder Metallurgy & Metal Ceramics 45 (2006) 82

[104] Karolina Leibler: Zastosowanie metod fizycznych w badaniach technicznych (Przyrządy i metody pomiarowe) Państwowe Wydawnictwo Naukowe, Warszawa 1959

[105] B. Ciszewski, W. Przetakiewicz: Nowoczesne materiały w technice, Bellona, Warszawa 1993.

[106] A. Krell, „Interrelation Between the Influence of Indentation Size, Surface State, Grain Size, Grain-Boundary Deformation and Temperature on the Hardness of Ceramics, In Handbook of Ceramics Hard Materials, Ed. R. Riedel, Weinheim 2000.

[107] R. Riedel, Novel ultrahard materials, Advanced Materials, 6 (1994) 549 [108] A. R. Badzian, Materials Research Bulletin 16 (1981) 1385

[109] Y. S. Liao, H. M. Lin, J. H. Wang: Behaviors of end milling Inconel 718 superalloy by cemented carbide tools, Journal of Materials Processing Technology 201 (2008) 460-465

[110] Quan Yanming, Zhou Zehua: Tool wear and its mechanism for cutting SiC particle-reinforced aluminium matrix composites, Journal of Materials Processing Technology 100 (2000) 194-199

[111] K. Katuku, A. Koursaris, I. Sigalas; Wear, cutting forces and chip characteristics when dry turning ASTM Grade 2 austempered ductile iron with cBN cutting tools under finishing conditions, Journal of Materials Processing technology 209 (2009) 2412-2420

[112] Muammer Nalbant, Abdullah Altin, Hasan Gokkaya: The effect of coating material and geometry of cutting tool and cutting speed on machinability properties of Inconel 718 super alloys, Materials and Design 28 (2007) 1719-1724

[113] You-Rong Liu, Jia-Jun Liu, Zhi Du: The cutting performance and wear mechanism of ceramic cutting tools with MoS2 coating deposited by magnetron sputtering, Wear 231 (1999) 285-292

[114] X. H. Zheng, Q. X. Yu, J. Lin, M. Lu, S. Q. Pang: Research on the cutting performance of carbon nitride cutting tools, Journal of Materials Processing Technology 129 (2002) 157-160

[115] D. W. Wu, Application of superhard C3N4 coating on high speed steel cutters, Tool Technology, 34 suppl.

(2000) 8-12

[116] Anselmo Eduardo Diniz, Adilson Jose de Oliveira: Hard turning of interrupted surfaces using cBN tools, Journal of Materials Processing Technology 195 (2008) 275-281

[117] K. Liu, X. P. Li, M. Rahman, X. D. Liu: cBN tool wear in ductile cutting of tungsten carbide, Wear 255 (2003) 1344-1351

[118] Y. Sahin: Comparison of tool life between ceramic and cubic boron nitride (cBN) cutting tools when machining hardened steels, Journal of Materials Procesiing Technology 209 (2009) 3478-3489

[119] Y. Kevin Chou, Chris J. Evans: Cubic boron nitride tool wear in interrupted hard cutting, Wear 225-229 (1999) 234-245

[120] Alan G. King, John D. Christopher: Ceramic Cutting Tools, Materials, Development and Performance, pod red. E. Dov Whitney, Noys Publications, New Jersey, 1994

[121] PN-EN 3685:1996 Badanie trwałości noży tokarskich punktowych, opracowana przez Komitet Techniczny 206.

[122] Yoshiaki Suda, Hiroharu Kawasaki, Kazuya Doi, Jun Nanba, Tamiko Ohshima: Preparation of crystalline TiC thin films grown by pulsed Nd:YAG laser deposition using Ti target in methane gas, Materials Characterization 48 (2002) 221-228

[123] A. G. Evans: Fracture in Ceramic Materials, Toughening Mechanism, Machining Damage, Shock, Noyes Publications, Park Ridge, New Jersey, USA, 1984

[124] PN-EN 10083-2:2008 „Stale do ulepszania cieplnego. Część 2. Warunki techniczne dostawy stali niestopowych”

[125] A. Senthil Kumar, A. Raja Durai, T. Sornakumar: Machinability of hardened steel using alumina based ceramic cutting tools, International Journal of Refractory Metals and Hard Materials 21 (2003) 109-117 [126] A. Senthil Kumar, A. Raja Durai, T. Sornakumar: The effect of tool wear on tool life of alumina- based

ceramic cutting tools while machining hardened martensitic stainless steel, Journal of Materials Processing Technology 173 (2006) 151-156

[127] Eva Tesarova, Lucie Baldrianowa, Samo B. Hocevar, Ivan Svancara, Karel Vytras, Bozidar Ogorevc, Electrochimica Acta 54 (2009) 1506-1510

[127] Yan Wang, Hongyan Yuan, Xilin Lu, Zaide Zhou, Dan Xiao: All Solid State pH electrode based on titanium nitride sensitive film, Electroanalysis 18, 2006, No 15, 1493-1498

[128] Gang Li, Zhiming Ji, Kangbing Wu: Square wave anodic stripping voltammetrc determination of Pb2+

using acetylene black paste electrode based on the inducing adsorption ability of I-, Analytica Chimica Acta 557 (2006) 178-182

[129] Emma Munoz, Susana Palmero: Analysis and speciation of arsenic by stripping potentiometry: a review, Talanta 65 (2005) 613-620

[130] M. Antonietta Baldo, Carlo Bragato, Gian A. Mazzocchin, Salvatore Danielle: Lead and cooper deposition from dilute solutions onto carbon disc microelectrodes. Assessment of quantification procedures by anodic stripping voltammetry, Electrochimica Acta, 43, No. 23, (1998) 3413-3422

[131] Raewyn M. Town: Chronopotentiometric stripping analysis as a probe for cooper(II) and lead(II) complexation by fulvic acid: Limitations and potentialities, Analytica Chemica Acta 363 (1998) 31-43 [132] N. W. Khun, E. Liu: Linear sweep anodic stripping voltammetry of heavy metals from nitrogen doped

tetrahedral amorphous carbon thin films, Electrochimica Acta 54 (2009) 2890-2898

[133] Guohua Zhao, Xili Tong, Zhonghua Hu, Xiaoe Xiao, Dongming Li: Electrochemical costripping models and mutual interferences of multi-transmition metal systems on the surface of boron doped diamond, Electrochimica Acta 53 (2008) 4283-4292

[134] Christopher W. K. Chow, David E. Davey, Dennis E. Mulcahy: Comparison of detector systems in oxidative stripping potentiometry, Laboratory Automation and Information Management 33 (1998) 207-215

[135] Emily A. Hutton, Samo B. Hocevar, Bozidar Ogorevc, Malcolm R. Smyth: Bismuth film electrode for

W dokumencie Index of /rozprawy2/10276 (Stron 160-172)