• Nie Znaleziono Wyników

10. Podsumowanie i wnioski

10.2. Kierunki dalszych prac

Ze względu na złożoność i interdyscyplinarność podjętej tematyki w rozprawie doktorskiej nie wyczerpano wszystkich tematów badawczych związanych ze zwiększeniem sprawności ogólnej silnika spalinowego przez rekuperację energii z gazów wylotowych wskutek zastosowania generatora ATEG2. W związku z powyższym, kierunki dalszych badań i prac rozwojowych powinny dotyczyć:

1. Zastosowania wysokotemperaturowych modułów TEM w opracowanym generatorze ATEG2 charakteryzujących się większymi parametrami użytecznymi niż moduły wykorzystane w rozprawie.

2. Zbudowanie generatora ATEG2 składającego się z modułów TEM nisko i wysokotemperaturowych. Te drugie powinny być umieszczone w pierwszej części wymiennika ciepła, natomiast niskotemperaturowe moduły TEM w ostatniej.

Zwiększy to sprawność odzysku strumienia energii odpadowej, co przełoży się na wzrost mocy generatora ATEG2.

3. Opracowania zintegrowanego generatora ATEG z układami katalitycznymi stosowanymi obecnie w silnikach spalinowych.

Literatura

[1] 2014 Formula One Power Unit Regulations, Federation Internationale de l’Automobile, France 2014.

[2] 2015 Key World Energy STATISTICS, International Energy Agency, France 2015.

[3] Aixala L., et al., Development of Efficient and Green Thermoelectric Materials on a Large Scale, „4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[4] Al-Merbati A.S., Yilbas B.S., Sahin A.Z., Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of pin geometry on device performance, „Applied Thermal Engineering” 2013, Vol. 50, Issues 1, p. 683–692.

[5] Alsttedde M.K., Rinderknecht F., Friedrich H., Integrating Phase-Change Materials into Automotive Thermoelectric Generators, „Journal of Electronic Materials” 2014, Vol. 43, No. 6, p. 2135–2139.

[6] Alt M., Sutter T., Fulton K., Peralta N., et al., The new 1.4l Central Direct injected Turbo gasoline engine from General Motors, „36. Internationales Wiener Motorensymposium 2015”, Vienna 2015.

[7] Anatychuk L.I., Luste O.J., Kuz R.V., Theoretical and Experimental Study of Thermoelectric Generators for Vehicles, „Journal of Electronic Materials”

2011, Vol. 40, No. 5, p. 1326–1331.

[8] Aranguren P., Astrain D., Martinez A., Study of Complete Thermoelectric Generator Behavior Including Water-to-Ambient Heat Dissipation on the Cold Side, „Journal of Electronic Materials” 2014, Vol. 43, No. 6, p. 2320–2330.

[9] Arena F., Mezzana L., Doyon A., Suzuki H., et al., The Automotive CO2

Emissions Challenge. 2020 Regulatory Scenario for Passenger Cars, Arthur D.

Little, Roma 2014.

[10] Bajerlein M., Fuć P., Lijewski P., Rymaniak Ł., et al., Simulation of vehicle work in real conditions at engine test bed, „Combustion Engines” 2013, Vol.

154, No. 3, p. 708–715.

[11] Baker Ch., Shi L., Experimental and Modeling Study of a Heat Exchanger Concept for Thermoelectric Waste Heat Recovery from Diesel Exhaust,

„SAE International” 2012, No. 2012-01-0411.

[12] Balmer-Millar M.L., Fluga E., Peterson R., Off-Road Mobile Machinery Fuel Efficiency: A Total Systems Perspective, „8th AVL International Commercial Powertrain Conference 2015”, Graz 2015.

[13] Birkholz U., History of Thermoelectricity, Thermoelectric Goes Automotive II, Expert verlag, Renningen 2012, p. 88–101.

[14] Boretto G., Golisano R., Scotti M., Antonioli P., et al., The first of a new generation of diesel engines from General Motors – the efficient and powerful 1.6 liter Euro6 Midsize Diesel Engine, „34. Internationales Wiener Motorensymposium 2013”, Vienna 2013.

[15] Brito F.P., Martins J., Goncalves L.M., Sousa R., Temperature Controlled Exhaust Heat Thermoelectric Generation, SAE International 2012, No. 2012-01-1214.

[16] Brzeżański M., Śliwiński K., Downsizing – nowy kierunek rozwoju silników samochodowych, „Combustion Engines” 2004, Vol. 119, No. 2, p. 3–11.

[17] Bukała M., Analiza teoretyczna właściwości kryształów mieszanych PbTe/CdTe oraz nanostruktur utworzonych na bazie tych materiałów, rozprawa doktorska, Instytut Fizyki Polskiej Akademii Nauk, Warszawa 2012.

[18] Buric J., Waste heat recovery system with heat flow adjustment by heat pipe,

„4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[19] Cleary M., Zhang Y., Mazzotta A., Young H., et al., Development of Thermoelectric Generators for Multiple Vehicle Exhaust Waste Heat Recovery Applications, „4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[20] Crane D., Lagrandeur J., Jovovic V., Ranalli M., et al., TEG On-Vehicle Performance and Model Validation and What It Means for Further TEG Development, „Journal of Electronic Materials” 2013, Vol. 42, No. 7, p. 1582–1591.

[21] Cyunczyk A., Fizyka metali, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2003.

[22] Denner V., Shaping the Future – Innovations for Efficient Mobility, „34.

Internationales Wiener Motorensymposium 2013”, Vienna 2013.

[23] Dingel O., Semper T., Ambrosius V., Seebode J., Waste Heat Recovery: What are the Alternatives to the thermoelectric Generator, „Thermoelectric Goes Automotive II”, Expert Verlag, Renningen 2012, p. 30–48.

[24] Dziubański S., Poprawa bilansu energetycznego w silniku spalinowym przez zastosowanie turbogeneratora, Politechnika Opolska, Wydział Mechaniczny, Opole 2011.

[25] Esponisa N., Lazard M., Aixala L., Scherrer H., Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery, „Journal of Electronic Materials” 2010, Vol. 39, No. 9, p. 1447–1455.

[26] EUROPA 2020, Krajowy Program Reform, Strategia na rzecz inteligentnego i zrównoważonego rozwoju sprzyjającego włączeniu społecznemu, Ministerstwo Gospodarki, Warszawa 2016.

[27] EUROPA 2020, Strategia na rzecz inteligentnego i zrównoważonego rozwoju sprzyjającego włączeniu społecznemu, Komisja Europejska, Bruksela 2010.

[28] Felten F., Thermoelectric Generator for Automotive Application Prerequisites for Industrialization, „ 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[29] Forissier M., Zechmair D., Weber O., Criddle M., et al., The Electric Supercharger, Improved transient behavior and reduced CO2 as well as NOx Emissions at the same time?, „34. Internationales Wiener Motorensymposium 2013”, Vienna 2013.

[30] Freymann R., Ringler J., Seifert M., Horst T., The second generation Turbosteamer, „MTZ” 2012, Vol. 73, No. 2, p. 18–23.

[31] Freymann R., Strobl W., Obieglo A., The turbosteamer: A system introducing the principle of cogeneration in automotive applications, „MTZ” 2008, Vol.

69, No. 5, p. 20–27.

[32] Fuć P., Badania termodynamiczne odzysku odpadowej energii gazów spalinowych z użyciem generatora TEG, raport końcowy projektu nr UMO-2011/01/B/ST8/07241, 2011–2012.

[33] Fuć P., Studium pasywnej regeneracji filtrów cząstek stałych w silnikach o zapłonie samoczynnym, Wydawnictwo Politechniki Poznańskiej, Poznań 2012.

[34] Fuć P., Lijewski P., Ziółkowski A., Siedlecki M., Tendencje zmian przepisów homologacyjnych w aspekcie emisji gazów wylotowych dla pojazdów kategorii PC i LDV, „Combustion Engines” 2015, Vol. 162, No. 3, p. 417–424.

[35] Fuć P., Merkisz J., Bajerlein M., Lijewski P., i inni, Możliwości odzysku energii z gazów wylotowych z nowoczesnych silników spalinowych, „Logistyka” 2014 nr 3, s. 1829–1835.

[36] Fuć P., Merkisz J., Lijewski P., Bajerlein M., et al., Exhaust emission in NEDC test simulated at a dynamic engine test bed, „Combustion Engines” 2013, Vol.

154, No. 3, p. 701–707.

[37] Fuć P., Merkisz J., Lijewski P., Merkisz-Guranowska A., et al., The Assessment of Exhaust System Energy Losses Based On The Measurements Performed Under Actual Traffic Conditions in: Energy Production and Management in the 21st Century: The Quest for Sustainable Energy , Vol. 2, ed. C.A. Brebbia, E.R.

Magaril, M.Y. Khodorovsky, WIT Press, New Forest 2014, p. 369–378.

[38] Funahashi R., Matsumura Y., Takeuchi T., Combe E., et al., Development of oxide and silicide thermoelectric materials and modules, Improvement 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[39] Ghatak K.P., Bhattacharya S., Thermoelectric Power Materials. Strong Magnetic Fields, Springer, Heidelberg 2010.

[40] Ghoshal U., Ghoshal S., McDowell C., Shi L., et al., Enhanced thermoelectric cooling at cold junction interfaces, „Journal of Applied Physics” 2002, Vol. 80, Issues 16, p. 3006–3008.

[41] Goldsmid H.J., Introduction to Thermoelectricity, Springer, Heidelberg 2010.

[42] Goldsmid H.J., Recent Studies of Bismuth Telluride and Its Alloys, „Journal of Applied Physics” 1961, Vol. 32, Issues 10, p. 2198–2201.

[43] Greszler A. Diesel Turbo-compound Technology, ICCT/NESCCAF Workshop Improving the Fuel Economy of Heavy-Duty Fleets II, February 2008.

[44] Hase S., Prospects for TEG Practical Applications, by Physical Evaluations in varied Heat-Recovery Technologies, Thermoelectric Goes Automotive II, Expert Verlag, Renningen 2012, p. 49–56.

[45] Holmström T., Lundgren S., CO2 challenges for future HD propulsion, „8th AVL International Commercial Powertrain Conference 2015”, Graz 2015.

[46] Hussain Q.E., Brigham D.R., Maranville C.W., Thermoelectric Exhaust Heat Recovery for Hybrid Vehicles, „SAE International” 2009, No. 2009-01-1327.

[47] Iida T., Kogo Y., Yasumori A., Nishio K., et al., Current status of Mg2Si for realizing a practical thermal-to-electric power generation device, Improvement 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[48] Ioffe A.F., Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch, London 1957.

[49] Iriyama Y., Heat Recovery Technology for Fuel Efficiency, „4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[50] ISAC 400 PUMA OPEN V1.5 User’s Guide, AVL, AT2775E, Graz 2009.

[51] Jang J., Tsai Y., Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system, „Applied Thermal Engineering” 2013, Vol. 51, Issues 1–2, p. 677–689.

[52] Karpiesiuk Ł., Trzaska K., Derdak M., Koryzma T., i inni, Branża Motoryzacyjna. Raport 2015, Polski Związek Przemysłu Motoryzacyjnego, Warszawa 2015.

[53] Kim S., Park S., Kim S., Rhi S., A Thermoelectric Generator Using Engine Coolant for Light-Duty Internal Combustion Engine-Powered Vehicles,

„Journal of Electronic Materials” 2011, Vol. 40, No. 5, p. 812–816.

[54] Kitte J., Beck F., Jansch D., The Virtual Continuous TEG Model: Efficient Optimization of Thermogenerators, „Journal of Electronic Materials” 2013, Vol. 42, No. 7, p. 2258–2268.

[55] Kittel C., Wstęp do fizyki ciała stałego, Wydawnictwo Naukowe PWN, Warszawa 1999.

[56] Klauer N., Klüing M., Schünemann E., Schwarz Ch., et al., BMW TwinPower Turbo Gasoline Engine Technology – Enabling Compliance with worldwide Exhaust Gas Emissions Requirements, „34. Internationales Wiener Motorensymposium 2013”, Vienna 2013.

[57] Koeberlein D., Cummins SuperTruck Program. Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks Project ID: ACE057, „Department of Energy United States of America”, Washington 2012.

[58] Korzhuev M.A., Katin I.V., On the Placement of Thermoelectric Generators in Automobiles, „Journal of Electronic Materials” 2010, Vol. 39, No. 9, p. 1390–1394.

[59] Krähenbühl P., Cococcetta F., Calaon I., Gradwohl G., et al., Waste Heat Recovery for On-Highway Vehicles: from Concept to Industrialization, „8th AVL International Commercial Powertrain Conference 2015”, Graz 2015.

[60] Kumar S., Heister S.D., Xu X., Salvador J.R., et al., Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis, „Journal of Electronic Materials” 2013, Vol. 42, No. 4, p. 665–674.

[61] Kumar S., Heister S.D., Xu X., Salvador J.R., et al., Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies, „Journal of Electronic Materials” 2013, Vol. 42, No. 6, p. 944–955.

[62] Kutz H., Köhler C., Zellbeck H., Kluge M., Development, design and analysis of a cycle-optimised thermoelectric generator, „Improvement 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[63] Kühn R., Koeppen O., Kitte J., Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle, „Journal of Electronic Materials” 2014, Vol. 43, No. 6, p. 1521–1526.

[64] Kühn R., Koeppen O., Schulze P., Jänsch D., et al., Comparison of simulated and measured data of a Thermoelectric generator (TEG) developed in research project TEG 2020 and its Hardware in the Loop (HiL) results, „Improvement 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[65] Lee J., Ohn H., Choi J., Kim S.J., et al., Development of Effective Exhaust Gas Heat Recovery System for a Hybrid Electric Vehicle, SAE International 2011, No. 2011-01-1171.

[66] Lijewski P., Studium emisji związków toksycznych spalin z silników o zastosowaniach pozadrogowych, Wydawnictwo Politechniki Poznańskiej, Poznań 2013.

[67] Markowski P., Właściwości termoelektryczne kompozytów grubowarstwowych, rozprawa doktorska, Politechnika Wrocławska, Wydział Elektroniki Mikrosystemów i Fotoniki, Wrocław 2008.

[68] Mattes W., Brüner T., Durst B., Missy St., The New 3-Cylinder TwinPower Turbo Gasoline Engine from BMW in the i8, „23rd Aachen Colloquium Automobile and Engine Technology 2013”, Aachen 2013.

[69] Mccarty R., Thermoelectric Power Generator Design for Maximum Power: It’s All About ZT, „Journal of Electronic Materials” 2013, Vol. 42, No. 7, p. 1504–1508.

[70] Merkisz J., Fuć P., Bajerlein M., Lijewski P., i inni, Wyznaczenie strat energii w układzie wylotowym autobusu komunikacji miejskiej w rzeczywistych warunkach eksploatacji, „Logistyka” 2014 nr 3, s. 4258–4265.

[71] Merkisz J., Fuć P., Lijewski P., Ziółkowski A., i inni, Analiza rozkładu temperatury w układzie wylotowym silnika o ZS w aspekcie odzysku energii odpadowej z gazów wylotowych, „Logistyka” 2014, nr 4, s. 2207–2213.

[72] Merkisz J. Fuć P., Lijewski P., Ziółkowski A., et al., Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator, „Journal of Electronic Materials” 2016, Vol. 45, No. 8, p. 4028–4037.

[73] Merkisz J. Fuć P., Lijewski P., Ziółkowski A., et al., The Analysis of Exhaust Gas Thermal Energy Recovery Through a TEG Generator in City Traffic Conditions Reproduced on a Dynamic Engine Test Bed, „Journal of Electronic Materials” 2015, Vol. 44, No. 6, p. 1704–1715.

[74] Merkisz J., Fuć P., Lijewski P., Ziółkowski A., Waste energy recovery analysis of a diesel engine exhaust system, in: Heat Transfer XIII: Simulation and Experiments in Heat and Mass Transfer Simulation and Experiments in Heat and Mass, ed. B. Sundén, C.A. Brebbia, WIT Press, New Forest 2014, p. 93–102

[75] Merkisz J., Mazurek S., Pokładowe Systemy Diagnostyczne Pojazdów Samochodowych, Wydawnictwa Komunikacji i Łączności, Warszawa 2006.

[76] Merkisz J., Mizera J., Opracowanie innowacyjnego układu odzysku energii z gazów wylotowych pojazdów napędzanych silnikami spalinowymi i układami hybrydowymi, raport końcowy projektu nr PBS1/A6/7/2012, 2012–2015.

[77] Merkisz J., Pielecha J., Radzimirski S., New Trends in Emission Control in the European Union, „Springer Tracts in Transportation”, Vol. 4, Heidelberg 2014 [78] Mori M., Yamagami T., Oda N., Hattori M., Current Possibilities of

Thermoelectric Technology Relative to Fuel Economy, SAE International 2009, No. 2009-01-0170.

[79] Mori M., Yamagami T., Sorazawa M., Miyabe T., et al., Simulation of Fuel Economy Effectiveness of Exhaust Heat Recovery System Using Thermoelectric Generator in a Series Hybrid, SAE International 2011, No. 2011-01-1335.

[80] Musiał M., Borcuch M., Wojciechowski K.T., The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator, „Journal of Electronic Materials” 2016, Vol. 45, No. 3, p. 1517–1522.

[81] Nefischer P., Hiemesch D., Kaufmann M., Steinparzer F., Driving Pleasure and Sustainability – The New BMW Diesel Engine Family, „23rd Aachen Colloquium Automobile and Engine Technology 2013”, Aachen 2013.

[82] Neußer H.J., Kahrstedt J., Jelden H., Dorenkamp R., et al., The EU6 Engines Based on the Modular Diesel System of Volkswagen –Innovative Exhaust Gas Purification Near the Engine for Further Minimization of NOx and CO2, „34.

Internationales Wiener Motorensymposium 2013”, Vienna 2013.

[83] Niewiarowski K., Tłokowe silniki spalinowe, t. 1, Wydawnictwa Komunikacji i Łączności, Warszawa 1983.

[84] Nolas G.S., From New Materials to Device Development: A Synergistic Approach to Thermoelectrics Research, 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[85] Patil D., Arakerimath R.R., A Review of Thermoelectric Generator for Waste Heat Recovery from Engine Exhaust, „International Journal of Research in Aeronautical and Mechanical Engineering” 2013, Vol. 1, Issue 8, p. 1-9.

[86] Patterson A.T.C., Tett R.J., McGuire J., Exhaust Heat Recovery using Electro-Turbogenerators, SAE International 2009, No. 2009-01-1604.

[87] Pawlak G., Rozwój silników pojazdów ciężarowych Scania, „Combustion Engines” 2010, Vol. 140, No. 1, p. 40–49.

[88] Pielecha I., Cieślik W., Borowski P., Czajka J., et al., Reduction of the number of cylinders in internal combustion engines – contemporary trends in downsizin , „Combustion Engines” 2014, Vol. 159, No. 4, p. 12–25.

[89] Pujati F.J., Gomes F.P., de Oliveira F.M., Pereira V.F., Thermoelectric Generator Applied to a Baja SAE Vehicle, SAE International 2011, No. 2011-36-0373.

[90] Renault Reveals Race-Intent 2014 Power Unit: The energy F1-2014, Renault Sport F1, France 2014.

[91] Rogl P., Rogl G., Grytsiv A., Bauer E., et al., Thermoelectric Skutterudites with high ZT, „Improvement 4th Thermoelectric Conference Utilizing Waste Heat in Transport and Industry 2014”, Berlin 2014.

[92] Rosi F.D., Abeles B., Jensen R.V., Materials for thermoelectric refrigeration,

„Journal of Physics and Chemistry of Solids” 1959, Vol. 10, Issues 2–3, p. 191–200.

[93] Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 715/2007 w sprawie homologacji typu pojazdów silnikowych w odniesieniu do emisji zanieczyszczeń pochodzących z lekkich pojazdów pasażerskich i użytkowych (Euro 5 i Euro 6) oraz w sprawie dostępu do informacji dotyczących naprawy i utrzymania pojazdów, czerwiec 2007.

[94] Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 443/2009 określające normy emisji dla nowych samochodów osobowych w ramach zintegrowanego podejścia Wspólnoty na rzecz zmniejszenia emisji CO2 z lekkich pojazdów dostawczych, kwiecień 2009.

[95] Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 510/2011 określające normy emisji dla nowych lekkich samochodów dostawczych w ramach zintegrowanego podejścia Unii na rzecz zmniejszenia emisji CO2 Colloquium Automobile and Engine Technology 2012”, Aachen 2012.

[99] SEMTECH®-DS On Board, In-Use Emissions Analyzer, User Manual, Document: 9510–086,, Sensors Inc., USA 2007

[100] SEMTECH® ECOSTAR (Gaseous), Getting Started, Quick Reference Manual, Document: 9510–159, Sensors Inc., USA 2014.

[101] Shu G., Zhao J., Tian H., Wei H., et al., Theoretical Analysis of Engine Waste Heat Recovery by the Combined Thermo-Generator and Organic Rankine Cycle System, SAE International 2012, No. 2012-01-0636.

[102] Skorko M., Fizyka podręcznik dla studentów wyższych technicznych studiów zawodowych dla pracujących, Państwowe Wydawnictwo Naukowe PWN, Warszawa 1973.

[103] SSQ AVL PUMA OPEN 2011 User’s Guide, AVL, AT3475E, Graz 2011.

[104] Su Ch., Tong N., Xu Y., Chen S., et al., Effect of the Sequence of the Thermoelectric Generator and the Three-Way Catalytic Converter on Exhaust Gas Conversion Efficiency, „Journal of Electronic Materials” 2013, Vol. 42, No. 7, p. 1877–1881.

[105] Śliwiński K., Energy recovery systems in the automotive vehicles, „Combustion Engines” 2013, Vol. 154, No. 3, p. 637–642.

[106] Tatarninov D., Koppers M., Bastian G., Schramm D., Modeling of a Thermoelectric Generator for Thermal Energy Regeneration in Automobiles,

„Journal of Electronic Materials” 2013, Vol. 42, No. 7, p. 2275–2281.

[107] Tatarninov D., Walling D., Bastian G., Optimized Characterization of Thermoelectric Generators for Automotive Application, „Journal of Electronic Materials” 2012, Vol. 41, No. 6, p. 1706–1712.

[108] Turek D., Alke E., Barcikowski B., Bujno T., i inni, TRANSPORT Wyniki działalności w 2014 r., Główny Urząd Statystyczny, Warszawa 2015.

[109] United Nations Economic, Commission for Europe World Forum for Harmonization of Vehicle Regulations, ECE/TRANS/WP.29/2014/27 Proposal for a new global technical regulation on the Worldwide harmonized Light vehicles Test Procedure (WLTP), December 2013.

[110] Upendra K., Grauers A., Analysis of 2014 Formula one hybrid powertrain.

A Preliminary study with focus on its applicability to road cars, Swedish Hybrid Vehicle Centre, Göteborg 2014.

[111] Vehicle Exhaust Flow Meter SEMTECH EFM, User’s Manual, Document 9510-085, Revision 1.4. Sensors Inc., USA 2001–2007

[112] Wajand J.A., Silniki o zapłonie samoczynnym, Wydawnictwa Naukowo-Techniczne, Warszawa 1988.

[113] Wajand J.A., Wajand J.T., Tłokowe silniki spalinowe średnio- i szybkoobrotowe, Wydawnictwa Naukowo-Techniczne, Warszawa 2005.

[114] Wakeham N., Bangura A.F., Xu X., Mercure J.F., et al., Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional conductor, Nat Commun, 2 (396).

[115] Wall J.C., Cummins Technologies for Low Emissions – Past and Future,

„ASME 2014 Internal Combustion Engine Division Fall Technical Conference”, Columbus 2014.

[116] Wang D., Crane D., LaGrandeur J., Design and Analysis of a Thermoelectric HVAC System for Passenger Vehicles, SAE International 2010, No. 2010-01-0807.

[117] Wisłocki K., Systemy doładowania szybkoobrotowych silników spalinowych, Wydawnictwa Komunikacji i Łączności, Warszawa 1991.

[118] Wiśniewski S., Wiśniewski T.S., Wymiana ciepła, Wydawnictwo Naukowo-Techniczne, Warszawa 2012.

[119] Wojciechowski K.T., Merkisz J., Fuc P., Tomankiewicz J., et al., Prototypical thermoelectric generator for waste heat conversion from combustion engines,

„Combustion Engines” 2013, Vol. 154, No. 3, p. 60–71.

[120] Wojciechowski K.T., Schmidt M., Zybala R., Merkisz J., et al., Comparison of Waste Heat Recovery from the Exhaust of a Spark Ignition and a Diesel Engine, „Journal of Electronic Materials” 2009, Vol. 39, No. 9, p. 2034–2038.

[121] Wojciechowski K.T, Zybala R., Tomankiewicz J., Fuc P., et al., Influence on Back Pressure on Net Efficiency of TEG Generator mounted in the Exhaust System of a Diesel Engine, Thermoelectric Goes Automotive II, Expert Verlag, Renningen 2012, p. 177–188.

[122] Wu H., Sun K., Chen M., Xing Y., Evaluation of Power Conditioning Architectures for Energy Production Enhancement in Thermoelectric Generator Systems, „Journal of Electronic Materials” 2014, Vol. 43, No. 6, p. 1567–1573.

[123] Wurms R., Budack R., Grigo M., Mendl G., et al., The new Audi 2.0l Engine with innovative Rightsizing – a further Milestone in the TFSI Technology, „36.

Internationales Wiener Motorensymposium 2015”, Vienna 2015.

[124] Wyzwania zrównoważonego rozwoju w Polsce, red. J. Kronenberg, T. Bergier, Fundacja Sendzimira, Kraków 2010.

[125] Yim W.M., Amith A., Bi–Sb alloys for magneto-thermoelectric and thermomagnetic cooling, „Solid-State Electronics An International Journal”

1972, Vol. 15, Issues 10, p. 1145–1165

[126] Yim W.M., Rosi F.D., Compound tellurides and their alloys for peltier cooling–A review, „Solid-State Electronics An International Journal” 1972, Vol. 15, Issues 10, p. 1121–1134.

[127] Zlatic V., Hewson A.C., Properties and Applications of Thermoelectric Materials. The Search for New Materials for Thermoelectric Devices, Springer Dordrecht 2008.

[128] www.car-engineer.com (dostęp elektroniczny z dnia 23.01.2016 r.).

[129] www.cel.put.poznan.pl (dostęp elektroniczny z dnia 10.01.2016 r.).

[130] www.electric-vehiclenews.com (dostęp elektroniczny z dnia 10.01.2016 r.).

[131] www.energy.gov (dostęp elektroniczny z dnia 12.02.2016 r.).

[132] www.enesko.pl (dostęp elektroniczny z dnia 22.02.2016 r.).

[133] www.ford.pl (dostęp elektroniczny z dnia 12.01.2016 r.).

[134] www.renaultrucks.com (dostęp elektroniczny z dnia 28.01.2016 r.).

[135] www.scania.com (dostęp elektroniczny z dnia 19.01.2016 r.).

[136] www.volvotrucks.com (dostęp elektroniczny z dnia 20.01.2016 r.).

Analysis of a drivetrain efficiency increase through the application of thermoelectric generator

The doctoral dissertation presents an experimental analysis of the possibility to increase the drivetrain system efficiency through exhaust gas energy recuperation. In the first part of the dissertation constituting its genesis the legal regulations requiring car manufacturers to reduce fuel consumption are presented – the rules governing the road CO2 emissions of the fleet. Then an analysis of opportunities to reduce fuel consumption (increasing the overall efficiency) was made as well as analysis of methods that are used by the world's car manufacturers in order to meet the legal requirements in this regard. Initially the focus was put on the structural changes that contribute to fuel consumption and emissions reduction. It has been shown that most manufacturers follow the strategy of downsizing in their drive units. In addition to structural changes in internal combustion engines new innovative technologies that reduce the occurring thermal and mechanical losses are being implemented. Hence methods of recovering energy from the exhaust gases are being developed. The dissertation presents technologies that are used and examples of solutions. The work focused mostly on thermoelectric generators for automotive applications.

The research part of the dissertation was divided into three sections. The first section concerns determining the energy balance of the internal combustion engines exhaust systems in different categories of vehicles based on measurements carried out in real driving conditions and on engine dynamometer stations. For the purpose of the dissertation, a method of determining the energy loss in the exhaust systems and the amount of energy supplied with the fuel to the internal combustion engine was developed. The obtained results allowed for outlining the base assumptions for designing a prototype thermoelectric generator. It was then used as a basis for the assembly of a generator model. This was the second stage of the research part of the dissertation. The final element of the dissertation was the measurements of energy recovery from internal combustion engines exhaust gases for two engines, SI and CI, using the developed design. Tests for the diesel engine were performed on a dynamic engine brake in the NEDC certification test and in a test driving cycle. In the case of the SI engine the tests were performed at defined engine operating points on a static engine dynamometer station. The efficiency of waste energy recovery was determined based on the measurement results and demonstrated a positive impact of using a thermoelectric generator on the overall efficiency of the drivetrain with the combustion engines.