• Nie Znaleziono Wyników

9. Wnioski i plany na przyszłość

9.3. MoŜliwości dalszego rozwoju

W konsekwencji nałoŜenia pewnych ograniczeń na rozwiązywany w pracy problem badawczy, zagadnienie prognozowania właściwości manewrowych statków z napędem azymutalnym nie zostało w niej całkowicie wyczerpane. Na podstawie doświadczenia zdobytego w trakcie realizacji projektu oraz widocznej potrzeby, dalsze prace badawcze związane z tematem powinny dotyczyć m.in.:

o wpływu duŜego kąta dryfu na charakterystyki hydrodynamiczne kadłuba,

o wpływu płytkiej wody na charakterystyki swobodnego pędnika azymutalnego oraz na funkcje oddziaływań pomiędzy pędnikami a kadłubem,

o analizy wpływu poszczególnych elementów kadłuba, jak np. wielkość skegu centralnego oraz kształtu rufowej części kadłuba na właściwości manewrowe, w tym w szczególności na stateczność kursową,

o moŜliwości obliczeniowego wyznaczania pochodnych hydrodynamicznych kadłubów statków wyposaŜonych w pędniki azymutalne, których kształty zasadniczo róŜnią się od kadłubów statków z klasycznym układem napędowo-sterowym,

o moŜliwości zastosowania modularnego modelu manewrowania w przypadku statków z róŜnymi modyfikacjami napędu azymutalnego, jak np. układy wielopodowe oraz układy hybrydowe CRP-POD,

o włączenia do symulacji manewrowych zagadnienia kołysania i przechyłu bocznego, szczególnie biorąc pod uwagę duŜą prędkość kątową oraz mały promień zwrotu w cyrkulacji ustalonej.

Bibliografia

W bibliografii uŜyłem następujących skrótów oznaczających konferencje:

AMT - International Conference on Advanced Model Measurement Technology for EU Maritime Industry

CMHSC - Canadian Marine Hydrodynamics and Structures Conference

COMPIT - International Conference on Computer Applications and Information Technology in the Maritime Industries

MARSIM - International Conference on Marine Simulation and Ship Maneuverability OCEANS - Oceans Conference and Exhibition

SIMMAN - Workshop on Verification and Validation of Ship Manoeuvring Simulation Methods

SMP - International Symposium on Marine Propulsors

T-POD - International Conference on Technological Advances in Podded Propulsion

Abkowitz M. A. (1964): Lectures on Ship Hydrodynamics - Steering and Manoeuvrability, HyA Report No. Hy-5, Lyngby, Dania

Brix J. (1993): Manoeuvring Technical Manual, Seehafen Verlag GmbH, Hamburg, Niemcy Carrica P., Stern F. (2008): DES simulations of KVLCC1 in turn and zigzag manoeuvring with moving propeller and rudder, SIMMAN, Kopenhaga, Dania

Cho Y. R, Yoon B. S., Yum D. J., Lee M. S. (2007): Prediction of ship manoeuvrability in initial design stage using CFD based calculations, Journal of Ship & Ocean Technology, Vol.11, No.1, pp. 11-24

Deakin B. (1998): Model Tests to Assess the Manoeuvring of Planing Craft, 15th International Symposium on Yacht Design and Yacht Construction, Amsterdam, Holandia

Det Norske Veritas (2004): Rules for Ships, Section 8 Ship Manoeuvring Information, Hovik, Norwegia

Di Mascio A., Broglia R., Muscari R. (2009): Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods, Journal of Marine Science and Technology, Vol.14, No.1, pp. 19-29

Dudziak J. (2008): Teoria okrętu, Fundacja Promocji Przemysłu Okrętowego i Gospodarki Morskiej, Gdańsk

EBA (2008): www.Electric-Boat-Association.org.uk

Ebada A., Abdel-Maksoud M. (2006): Prediction of ship turning manoeuvre using Artificial Neural Networks (ANN), 5th COMPIT, Oegstgeest, Holandia

Eloot K., Vantorre M. (2003): Development of a Tabular Manoeuvring Model for Hull Forces Applied to Full and Slender Ships in Shallow Water, MARSIM, Kanazawa, Japonia

Eminente C., Coppola C. (2000): Computational evaluation of ship manoeuvring performance based on scale model tests, Meccanica, Vol.25, No.3, pp. 195-198

Funeno I. (2009): Hydrodynamic Optimal Design of Ducted Azimuth Thrusters, SMP, Trondheim, Norwegia

Głodowski R., Reichel M., Richards J. (2009): Studies on Pod Propulsors and Related

Górski W., Reichel M. (2007): Free sailing model tests of evasive action manoeuvre of a river cargo motor barge on shallow water, Polish Maritime Research, No 2007/S2, pp.95-97

Grygorowicz M., Szantyr J. A. (2004): Open Water Experiments with Two Pods Propulsor Models, T-POD, Newcastle, Wielka Brytania

Heinke H.-J. (2004): Investigation about the Forces and Moments at Podded Drives, T-POD, Newcastle, Wielka Brytania

Hess D., Faller W. (2001): Simulation of Ship Maneuvers Using Recursive Neural Networks, 23rd Symposium on Naval Hydrodynamics, Val de Reuil, Francja

Hydrotesting Alliance (2006): http://hta-noe.eu/

Islam M. F., Akinturk, A., Veitch, B., Liu, P. (2009): Performance Characteristics of Static and Dynamic Azimuthing Podded Propulsor, SMP, Trondheim, Norwegia

Islam M., MacNeill A., Veitch B., Akinturk A., Liu P. (2007a): Gap Effect on Performance of Podded Propulsors in Straight and Static Azimuthing Conditions, CMHSC, St. John’s, Kanada

Islam M., Molloy S., He M., Veitch B., Bose N., Liu P. (2006a): Hydrodynamic Study of Podded Propulsors with Systematically Varied Geometry, T-POD, Brest, Francja

Islam M., Taylor R., Quinton J., Veitch B., Bose N., Colbourne B., Liu P. (2004): Numerical Investigation of Propulsive Characteristics of Podded Propeller, T-POD, Newcastle, Wielka Brytania

Islam M., Veitch B., Akinturk A., Bose N., Liu P. (2007b): Experiments with Podded Propulsors in Static Azimuthing Conditions, CMHSC, St. John’s, Kanada

Islam M. Veitch B., Bose N., Liu P. (2006b): Numerical Study of Hub Taper Angle on Podded Propeller Performance, Journal of Marine Technology, Vol.43, No.1

Islam M. Veitch B., Liu P. (2007c): Experimental Research on Marine Podded Propulsors, Journal of Naval Architecture and Marine Engineering, Vol.4, No.2, pp.57-71

ITTC (1996): Manoeuvring Committee, Final Report and Recommendations to the 21th ITTC, pp.347-398

ITTC (1999): Manoeuvring Committee, Final Report and Recommendations to the 22th ITTC ITTC (2005): Manoeuvring Committee, Final Report and Recommendations to the 25th ITTC, pp.143-208

ITTC (2008): Recommended Procedures and Guidelines - Propulsion, Performance Podded Propulsion Tests and Extrapolation, 7.5-02-03-01.3

Inoue S., Hirano M., Kijima K., Takashina J. (1981): A practical calculation method of ship maneuvering motion, International Shipbuilding Progress, Vol.28, No325, pp.207-222

Im N.-K., Hasegawa K. (2002): Motion Identification using Neural Networks and Its Application for Automatic Ship Berthing under Wind, Journal of Ship & Ocean Technology, Vol.6, No.1, pp.16-26

IMO (1993): Rezolucja IMO A.751(18)

IMO (2002a): Explanatory notes to the standards for ship manoeuvrability IMO (2002b): Rezolucja MSC.137(76)

Jarosz A. (1974): Okrętowe baseny modelowe i urządzenia pomiarowe, Wydawnictwo Morskie, Gdańsk

Kaliciński J. (1993): Determination of Ship Hull Hydrodynamic Derivatives from the Oscillating Tests with Planar Motion Mechanism, Marine Technology Transactions, Vol.4, pp.85-95

Kang D., Hasegawa K. (2007): Prediction method of hydrodynamic forces acting on the hull of a blunt-body ship in the even keel condition, Journal of Marine Science and Technology, Vol.12, No1, pp.1-14

Kijima K., Nakiri Y. (2003): On the Practical Prediction Method for Ship Manoeuvring Characteristics, MARSIM, Terscheling, Holandia

Kim S.-Y., Kim Y.-G. (2000): Effects of Stern Hull Form on the Maneuverability for a Tanker, MARSIM, Orlando, USA

Kim S.-Y., Kim Y.-G. (2008): Prediction of Maneuvering Performance for KVLCC1 &

KVLCC2 Based on PMM Data, SIMMAN, Kopenhaga, Dania

Kose K. (1981): On a new mathematical model of maneuvering motions of a ship and its applications, International Shipbuilding Progress, Vol.29, No336, pp.205-220

Krasilnikov V., Pankratov D., Achkinadze A., Berg A., Ying S.J. (2006): Possibilities of a Viscous/Potential Coupled Method to Study Scale Effects on Open-Water Characteristics of

Krasilnikov V., Zhang Z., Hong F. (2009): Analysis of Unsteady Propeller Blade Forces by RANS, SMP, Trondheim, Norwegia

Lee S. K., Fujino M. (2003): Assessment of a Mathematical Model for the Manoeuvring Motion of a Twin-Propeller Twin-Rudder Ship, International Shipbuilding Progress, Vol.50, No.1 & 2, pp.109-123

Lijun Z., Yanying W. (2006): Discussion on Hydrodynamic Performance for Podded Propeller by Using Surface Panel Method, T-POD, Brest, Francja

Lloyd’s Register (1999): Provisional Rules for the Classification of the Manoeuvring Capability of Ships, London,

Longo J., Stern F. (2002): Effects of drift angle on model ship flow, Experiments in Fluids, Vol.32, No.5, pp.558-569

Ma C., Qian Z., Yang C.-J., Zhang X., Du D., Huang S. (2006): Numerical Prediction of Unsteady Performance of Podded Propellers, T-POD, Brest, Francja

Martins P. T., Lobo V. (2007): Estimating Maneuvering and Seakeeping Characteristics with Neural Networks, OCEANS, Aberdeen, Szkocja

Molland A. F., Turnock S. R. (2002): Flow straightening effects on a ship rudder due to upstream propeller and hull, International Shipbuilding Progress, Vol.49, No.3, pp.195-214 Moreira L., Guedes Soares C. (2003): Dynamic model of manoeuvrability using recursive neural networks, Ocean Engineering, Vol.30, pp.1669-1697

Mori M. (1995): A Note on Hull Form Design, Journal of Ship Science, Vol. 48, pp. 40-49 Nonaka K., Miyazaki H., Nimura T., Ueno M., Hino T., Kodama Y. (2000): Calculation of Hydrodynamic Forces Acting on a Ship in Manoeuvring Motion, MARSIM, Orlando, USA Ogawa A., Kasai H. (1978): On the mathematical model of manoeuvring motion of ships, International Shipbuilding Progress, Vol.25, No292, pp.306-319

Otzen J. F., Agdrup K. (2008): Manoeuvring Prediction Based on PMM Tests for Two Versiopns of a KVLCC Tanker, SIMMAN, Kopenhaga, Dania

Petersen J.B., Lauridsen B. (2000): Prediction of hydrodynamic forces from a database of manoeuvring derivatives, MARSIM 2000, Orlando, USA

Reichel M. (2007a): Manoeuvring forces on azimuthing podded propulsor model, Polish Maritime Research, Vol.14, No.2(52)

Reichel M. (2007b): Numeryczna prognoza sił hydrodynamicznych na swobodnym pędniku azymutalnym, Kongres Mechaniki Polskiej, Warszawa

Ruponen P., Matusiak J. (2004): Calculation method for the steering forces of a pod in hybrid propulsion, T-POD, Newcastle, Wielka Brytania

Sanchez-Caja A., Pylkkanen J. (2006): RANS Predictions for Flow Patterns Around a Compact Azipod, T-POD, Brest, Francja

Shoji K., Ramachandran R., Kurobe Y., Hashizume Y. (2002): PMM Tests in a Circulating Water Channel and Nonlinear Analysis, Journal of Marine Science and Technology, Vol.7, No.2, pp.86-90

Stettler J. W., Hover F. S., and Triantafyllou M. S. (2004): Preliminary Results of Testing on the Dynamics of an Azimuthing Podded Propulsor Relating to Vehicle Maneuvering, T-POD, Newcastle, Wielka Brytania

Stettler J. W., Hover F. S., and Triantafyllou M. S. (2005): Investigating the steady and unsteady maneuvering dynamics of an azimuthing podded propulsor, Transactions of the Society of Naval Architects and Marine Engineers, 113

Strøm-Tejsen J., Chislett M.S. (1966):A Model Testing Technique and Method of Analysis for the Prediction of Steering and Manoeuvring Qualities of Surface Vessels, HyA Report, No.Hy-7, Lyngby, Dania

Sutulo S., Guedes Soares C. (2007): Contribution of higher - order harmonics for estimating manoeuvring derivatives from oscillatory tests, International Shipbuilding Progress, Vol.54, pp.1-24

Szantyr J. A. (2001): Experimental measurements of the hydrodynamic characteristics of pod propulsor model, Polish Maritime Research, Vol.8, No4(30)

Szantyr J. A. (2004): A simple method for prediction of hydrodynamic forces on a pod propulsor, 16th Int. Conference on Hydrodynamics in Ship Design, 3rd International Symposium on Ship Manoeuvring, Gdańsk-Ostróda

Toxopeus S. (2009): Deriving mathematical manoeuvring models for bare ship hulls using viscous flow calculations, Journal of Marine Science and Technology, Vol.14, No.1,pp.30-38

Vantorre M. (2000): Captive Manoeuvring Tests with Ship Models: a Review of Actual Practice, Based on The 22nd ITTC Manoeuvring Committee Questionnaire, MARSIM, Orlando, USA

Vantorre M., Eloot K. (1997): Requirements for standard harmonic captive manoeuvring tests, Control Engineering Practice, Vol.6, No.5, pp.643-652

Woodward M. D., Atlar M., Clarke D., (2009), Application of the IMO manoeuvring criteria for pod-driven ships. Journal of Ship Research, Vol.53, No.2, pp.106-120

Woodward M., Clarke D., Atlar M. (2003): On the Manoeuvring Prediction of Pod Driven Ships, MARSIM, Kanazawa, Japonia

Xingrong S., Xuemei F., Rongquan C., Yuejin C. (2009): Study on Hydrodynamic Performance of Podded Propulsion in Viscous Flow, SMP, Trondheim, Norwegia

Yakovlev A. (2009): Calculation of Propulsion Pod Characteristics in Off-Design Operating Conditions, SMP, Trondheim, Norwegia

Yoshimura Y., Nakao I., Ishibashi A. (2009): Unified Mathematical Model for Ocean and Harbour Manoeuvring, MARSIM, Panama City, Panama

Yoshimura Y., Ma N. (2003): Manoeuvring Predictions of Fishing Vessels, MARSIM, Kanazawa, Japonia

Powiązane dokumenty