• Nie Znaleziono Wyników

Podsumowanie zmian struktury warstwy w wyniku procesów korozji

W dokumencie Index of /rozprawy2/10916 (Stron 120-133)

7.6 Zmiana struktury warstwy aSiCN(H) na stalach po ekspozycji

7.6.4 Podsumowanie zmian struktury warstwy w wyniku procesów korozji

Warstwa aSiCN(H) osadzona na stopach chromowo-niklowych zmienia skład chemiczny i strukturę w wyniku oddziaływania ośrodka korozyjnego (r. Ringera). Składniki warstwy ulegają utlenianiu (głównie azot, krzem i wodór) oraz roztwarzaniu (głównie azot). W warstwę ponadto wbudowują się składniki podłoża, zwłaszcza w przypadku stopów klasycznych (S304,. S316) oraz stopu duplex (S324).

121

8 Wnioski

Odporność korozyjną stopów chromowo-niklowych w wodnych roztworach chlorków można podwyższyć wprowadzając krzem jako dodatek stopowy lub poprzez osadzenie warstwy amorficznej aSiCN(H) techniką PECVD.

• Krzem jako dodatek stopowy może przejmować rolę chromu i determinować przebieg procesu pasywacji, istotnie zmieniając strukturę i właściwości warstwy pasywnej.

• Stężenie krzemu w stopie, zmieniające mechanizm procesu pasywacji zależy od mikrostruktury stopu.

• Dla stopu dwufazowego austenityczno – ferrytycznego (324), niewielkie stężenie krzemu (1,2% at.) jest wystarczające do zmiany mechanizmu procesu pasywacji i skutkuje wysokim stopniem segregacji oraz wzbogaceniem warstwy pasywnej w krzem. Stopień wzbogacenia (xSiw warstwie / xSi w stopie) wynosi ~50. • Dla stopu austenitycznego S326 zawierającego 10% at. Si stopień wzbogacenia

wynosi ~60.

• Amorficzna warstwa wieloskładnikowa aSiCN(H) zabezpiecza odporność korozyjną badanych gatunków stali w wodnych roztworach soli przy podwyższonej temperaturze, zwłaszcza na korozję lokalną.

• Najlepsze właściwości ochronne warstwy aSiCN(H) obserwowano w przypadku stali klasycznych S30403 i S31615.

• Zróżnicowane zachowanie się warstwy związane jest z wpływem podłoża na jej mikrostrukturę.

122

LITERATURA

1. Liu Y.F., Mu J.S., Xu X.Y., Yang S.Z.; Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process; Mater. Sci. Eng. A (2007);458:366-370

2. Roy A.K., Virupaksha V.; Performance of alloy 800H for high-temperature heat exchanger applications; Mater. Sci. Eng. A (2007);452:665-672

3. Macák J., Sajdl P., Kučera P., Novotný R., Vošta J.; In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water;

Electrochim. Acta (2006);51:3566-3577

4. Szklarska-Smialkowska Z., Janik-Czachor M.; Electrochemical investigation of the nucleation nad porpagation of pits in iron-chromium alloys; Brit. Corr. (1969);4:138-145 5. Yang S., Macdonald D.D.; Theoretical and experimental studies of the pitting of type 316L stainless steel in borate buffer solution containing nitrate ion; Electrochim. Acta (2007);52:1871-1879

6. Malik A.U., Siddiqi N.A., Ahmad S., Andijani I.N.; The effect of dominant alloy additions on the corrosion behavior of some conventional and high alloy stainless steels in seawater; Corros. Sci. (1995);37:1521-1535

7. Stefanov P., Stoychev D., Stoycheva M., Marinova T.; XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L; Mater. Chem. Phys. (2000);65:212-215

8. Lorenz K., Medawar G.; Über das Korrosionsverhalten austenitischer Chrom-Nickel( Molybdän-)Stähle mit und ohne Stickstoffzusatz unter besonderer Berücksichtigung ihrer Beanspruchbarkeit in chloridhaltigen Lösungen; Thyssen Forsch. (1969);1:97-108 9. Sugimoto K., Sawada Y.; The role of molybdenum additions to austenitic stainless steels

in the inhibition of pitting in acid chloride solutions; Corros. Sci. (1977);17:425-445 10. Olsson C-O.A.; The influence of nitrogen and molybdenium on passive films formed on

the austeno-ferritic stainless steel 2205 studied by AES and XPS; Corros. Sci. (1995);37:467-479

11. Tsujikawa M., Noguchi S., Yamauchi N., Ueda N., Sone T.; Effect of molybdenum on hardness of low-temperature plasma carburized austenitic stainless steel; Surf. Coat.

Technol. (2007);201:5102-5107

12. Hultquist G., Seo M., Leitner T., Leygraf C., Sato N.; The dissolution behaviour of iron, chromium, molybdenum and copper from pure metals and from ferritic stainless steels.

Corros. Sci. (1987);27:937-946

13. Newman R.C.; The dissolution and passivation kinetics of stainless alloys containing molybdenum—1. Coulometric studies of Fe-Cr and Fe-Cr-Mo alloys;. Corros. Sci. (1985);25:331-339

14. Shu J., Bi H., Li X., Xu Z.; The effect of copper and molybdenum on pitting corrosion and stress corrosion cracking behavior of ultra-pure ferritic stainless steels; Corros. Sci. (2012);57:89-98

15. Lothongkum G., Wongpanya P.; Morito S., Furuhara T., Maki T.; Effect of nitrogen on corrosion behavior of 28Cr–7Ni duplex and microduplex stainless steels in air-saturated 3,5 wt% NaCl solution; Corros. Sci. (2006);48:137-153

16. Hertzman S., Roberts W., Lindenmo M.; Microstructure and properties of nitrogen alloyed stainless steel after welding treatments; Proceedings of duplex stainless

123 17. Olefjord I., Wegrelius L.; The influence of nitrogen on the passivation of stainless steels;

Corros. Sci. (1996);38:1203-220

18. Newman R.C., Shahrabi T.; The effect of alloyed nitrogen or dissolved nitrate ions on the anodic behaviour of austenitic stainless steel in hydrochloric acid; Corros. Sci. (1987);27:827-838

19. Behjati P., Kermanpur A., Najafizadeh A.; Influence of nitrogen alloying on properties of Fe318Cr312Mn3XN austenitic stainless steels; Mater. Sci. Eng. A (2013);588:43-48 20. Banaś J., Głownia J., Kalandyk B., Stypuła B.; Corrosion and passivity behaviour of

duplex stainless steels with high nitrogen content; 3rd Kurt Schwabe Corrosion

Symposium: Nvel materials and methods for improvement of corrosion resistance; Zakopane, Polska (2000):235-240.

21. Banaś J., Mazurkiewicz A.; The effect of copper on passivity and corrosion behaviour of ferritic and ferritic – austenitic stainless steels; Mater. Sci. Eng. A (2000);277:183-191 22. Hermas A.A., Ogura K., Adachi T.; Accumulation of copper layer on surface in the

anodic polarization of stainless steel containing Cu at different temperatures;

Electrochim. Acta. (1995);40:837-844

23. Hermas A.A., Ogura K.; Effects of alloying additions on the spontaneous passivation of stainless steels containing copper at different temperatures; Electrochim. Acta. (1996);41:1601-1609

24. Jiangnan Y., Lichang W., Wenhao S.; The effect of copper on the anodic dissolution behaviour of austenitic stainless steel in acidic chloride solution; Corros. Sci. (1992);33:851-859

25. Hermas A.A.; Microstructure , corrosion and mechanical properties of 304 stainless steel containing copper , silicon and nitrogen; J. Mater. Sci. (2001);6:3415-3422

26. Garfias-Mesias L.F., Sykes J.M.; Effect of copper on active dissolution and pitting corrosion of 25 % Cr duplex stainless steels; Corros. Sci. (1998); 54:40-47

27. Ghiban B,, Ghiban N.; Silicon influence on thr corrosion behavior of stainless steels; Sci.

Bull. Ser. B Chem. Mater. Sci. (2000);62:79-86

28. Wilde B.E.; Influence of Silicon on the intergranular corrosion behavior of 18Cr-8Ni stainless steels; Corros. (1988);44:699-704

29. Wilde B.E., Armijo J.S.; Influence of silicon and manganese on corrosion behavior of austenitic stainless steels; Corros. NACE (1968);24(12):393-402

30. Kasparova O. V.; Peculiarities of intergranular corrosion of silicon-containing austenitic stainless steels; Protect. of Metals (2004);40:475-481

31. Stypula B, Kasprzyk D, Hajos M.; Corrosion behaviour of stainless sreel in hot concentrated sulfuric acid - effect of fluoride impurities; Arch. Metall. Mater.; (2009);54:305-318

32. Motała R., Grzesiak P., Hłyń T., Stypuła B., Lebet R.; Badania szybkości korozji różnych gatunków stali w wieży absorpcji międzustopniowej WA I - instalacja typu metalurgicznego. Cz. 2, Drugi rok ekspozycji; XIII Sesja Kwasu Siarkowego; Poznań, Polska (2005):197-210

33. Kajimura H., Usuki N., Nagano H.; Dual layer corrosion protective film formed on Si bearing austenitic stainless steel in highly oxidizing nitric acid; Symposium on Pssibity

and its Breakdown; Paris, France,(1997):332-343

34. Robin R., Miserque F., Spagnol V.; Correlation between composition of passive layer and corrosion behavior of high Si-containing austenitic stainless steels in nitric acid;. J.

124 35. Holtzer M., Staronka A.; Korrosionsbestandigkeit von Cr-Ni Stahlguss (typ 18/9 bzw.18/13) mit Erhohtem Silicumgehalt in konzentrierten Salpetersaurelosungen;

Werkstoffe und Korrosion (1987);38:431-438

36. Holtzer M.; Effect of carbon and silicon on the structure and corrosion resistance of 18Cr-8Ni cast steel in concentrated solutions of nitric acid; Werkstoffe und Korrosion (1990);41:25-29

37. Stypuła B., Grzesiak P., Hajos M., Dominik K.; Pasywacja i depasywacja stali wysokostopowych w stężonym kwasie siarkowym; Kwas siarkowy - nowe możliwości; Poznań, Polska, (2008):167-178

38. Stypuła B., Banaś J., Grzesiak P., Kowalski K., Lebet R.; Odporność korozyjna wysokostopowych stali austenitycznych w stężonym kwasie siarkowym; Kwas siarkowy

na progu integracji europejskiej; (2001):173-185

39. Lei M.K., Zhu X.M.; Plasma-based low-energy ion implantation of austenitic stainless steel for improvement in wear and corrosion resistance; Surf. Coat. Technol. (2005);193:22-28

40. Souza R.M., Ignat M., Pinedo C.E., Tschiptschin A.P.; Structure and properties of low temperature plasma carburized austenitic stainless steels; Surf. Coat. Technol. (2009);204:1102-1105

41. Weber T., de Wit L., Saris F.W., Koniger A., Rauschenbach B., Wolf G.K., Krauss S.; Hardness and corrosion resistance of single-phase nitride and carbide on iron; Mater.

Sci. Eng. A (1995);199:205-210

42. Stepuch-Galik A., Stypuła B.; Corrosion resisance of nitriding surface of stainless steel;

International Conference on Enviromental Degradation on Engineering Materials;

Gdańsk, Polska;(1999):424-429

43. Flis J., Mankowski J., Zakroczymski T.; Elemental composition and corrosion resistance of plasma nitrided stainless steels; Corros. Sci. (2000);42:313-327

44. Kliauga A.M., Pohl M.; Effect of plasma nitriding on wear and pitting corrosion resistance of X2 CrNiMoN 22 5 3 duplex stainless steel; Surf. Coat. Technol. (1998);98:1205-1210

45. Gil L., Brühl S., Jiménez L., Leon O., Guevara R., Staia M.H.; Corrosion performance of the plasma nitrided 316L stainless steel;. Surf. Coat. Technol. (2006);201:4424-4429 46. Prasad G.R., Daniels S., Cameron D.C., McNamara B.P., Tully E., O’Kennedy R.;

PECVD of biocompatible coatings on 316L stainless steel; Surf. Coat. Technol. (2005);200:1031-1035

47. Sun Y., Enhancement in corrosion resistance of austenitic stainless steels by surface alloying with nitrogen and carbon; Mater. Lett. (2005);59:3410-3413

48. Li D., Guruvenket S., Azzi M., Szpunar J. A., Klemberg-Sapieha J.E., Martinu L.; Corrosion and tribo-corrosion behavior of a-SiCx:H, a-SiNx:H and a-SiCxNy:H coatings on SS301 substrate; Surf. Coat. Technol. (2010);204:1616-1622 49. King S.W., Bielefeld J., French M., Lanford W. A.; Mass and bond density

measurements for PECVD a-SiCx:H thin films using Fourier transform-infrared spectroscopy; J. Non. Cryst. Solids (2011);357:3602-3615

50. Nakayamada T., Matsuo K., Hayashi Y., Izumi A., Kadotani Y.; Evaluation of corrosion resistance of SiCN films deposited by HWCVD using organic liquid materials; Thin

Solid Films (2008);516:656-658

51. Harada T., Nakanishi H., Ogata T., Kadotani Y., Izumi A.; Evaluation of corrosion resistance of SiCN-coated metals deposited on an NH 3 -radical-treated substrate; Thin

125 52. Peter S., Bernütz S., Berg S., Richter F.; FTIR analysis of a-SiCN:H films deposited by

PECVD; Vacuum (2013);98:81-87

53. Januś M, Stypuła B.; Warstwy C:N:H i SiCxNy(H) na powierzchni tytanu i stopu Ti-6Al-4V; Inżynieria Biomateriałów (2006);9:133-135

54. Kasprzyk D., Stypuła B.; Wpływ warstw SiCN(H) nakładanych na stale chromowo-niklowe (S30403 i S32404) na ich odporność korozyjną w roztworze Ringera; Ochrona

przed korozją (2013);56:543-546

55. Pech D., Schupp N., Steyer P., Hack T., Gachon Y., Heau C., Loir A-S. Schanchez-Lopez J.C.; Duplex SiCN/DLC coating as a solution to improve fretting—Corrosion resistance of steel; Wear (2009);266:832-838

56. Monnartz P.; Iron-chromium alloys with special consideration of resistance to acids;

Metallurgie (1911);8:161-176

57. Lizlovs E.A., Bond A.P.; Anodic polarisation of some ferritic stainless steels in cloride media; J. Electrochem. Soc. (1969);25:445

58. Lizlovs E.A., Bond A.P.; Polarisation behaviour of high-purity 13 and 18% chromium stainless steels; J. Electrochem. Soc. (1972);119:219

59. Marcus P.; On some fundamental factors in the effect of alloying elements on passivation of alloys; Corros. Sci. (1994);36:2155-2158

60. Steigerwald R.F., Bond A.P., Dundas H.J., Lizlovs E.A.; The new Fe-Cr-Mo ferritic stainless steels; Corros. (1977);33:279-295

61. Horvath J., Uhlig H.H.; Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe and related stainless steels; J. Electrochem. Soc. (1968);115:791

62. Armijo J.S., Wilde B.E.; Influence of Si content on the corrosion resistance of austenitic Fe-Cr-Ni alloys in oxidizing acids; Corros. Sci. (1968);8:649-664

63. Ijzermans A.B.; Pitting corrosion and intergranular attack of austenitic Cr-Ni stainless steels in NaSCN; Corros. Sci. (1970);10:607

64. Uhlig H.H.; The adsorption of passivity and flade potential; Z Electrochem. (1958);62:626-632

65. McBee C.L., Kruger J.; Nature of passive films on iron-chromium alloys. Electrochim.

Acta (1972);17:1337

66. Macdonald D.D.; The Point Defect Model for the Passive State; J. Electrochem. Soc. (1992);139:3434-3449

67. Sieradzki K., Newman R.C.; A perkolation model for passivation in stainless Steels; J.

Electrochem. Soc. (1986);133:1979

68. McCafferty E.; Graph theory and the passivity of binary alloys; Corros. Sci. (2000);42:1993-2011

69. Legrand M., Diawara B., Legendre J-J., Marcus P.; Three-dimensional modelling of selective dissolution and passivation of iron–chromium alloys; Corros. Sci. (2002);44:773-790

70. Bastidas J.M., Torres C.L., Cano E,. Polo J.L.; Influence of molybdenum on passivation of polarised stainless steels in a chloride environment; Corros. Sci. (2002);44:625-633 71. Haupt S.; A combined surface analytical and electrochemical study of the formation of

passive layers on Fe/Cr alloys in 0,5M H2SO4; Corros. Sci. (1995);37:43-54

72. Kirchheim R., Heine B., Hofmann S., Hofsäss H.; Compositional changes of passive films due to different transport rates and preferential dissolution; Corros. Sci. (1990);31:573-578

126 73. Olefjord I., Brox B., Jelvestam U.; Surface Composition of Stainless Steels during Anodic Dissolution and Passivation Studied by ESCA; J. Electrochem. Soc. (1985);132:2854-2861

74. Glover T.J.; Recent developments in corrosion-resistant metallic alloys for construction of seawater pumps; Mater. Perform. (1988);27:51-56

75. Bernhardsson S.; The corrosion resistance of duplex stainless steels; Duplex Stainless

Steel `91; Beaune Bourgogne, Francja; (1991):185-209

76. Kim S-T., Jeon S-H., Lee I-S., Park Y-S.; Effects of rare earth metals addition on the resistance to pitting corrosion of super duplex stainless steel – Part 1; Corros. Sci. (2010);52:1897-1904

77. Clayton C.R., Lu Y.C.; A bipolar model of the passivity of stainless steel: The role of Mo addition; J. Electrochem. Soc. (1986);133:2465-2473

78. Schneider A., Kuron D., Hofmann S., Kirchheim R.; AES analysis of pits and passive films formed on Fe-Cr, Fe-Mo and Fe-Cr-Mo alloys; Corros. Sci. (1990);31:191-196 79. Vignal V., Olive J.M,. Desjardins D.; Effect of molybdenum on passivity of stainless

steels in chloride media using ex situ near field microscopy observations; Corros. Sci. (1999);41:758-773

80. Leygraf C., Hultquist G., Olefjord I., Elfström B.O., Knyazheva V.M., Plaskeyev A.V., Kolotyrkin Y.M.; Selective dissolution and surface enrichment of alloy components of passivated Fe18Cr and Fe18Cr3Mo single crystals; Corros. Sci. (1979);19:343-357 81. Olefjord I; The passive state of stainless steels; Mater. Sci. Eng. (1980);42:

161-171

82. Hashimoto K., Asami K., Kawashima A., Habazaki H., Akiyama E.; The role of corrosion-resistant alloying elements in passivity; Corros. Sci. (2007);49:42-52

83. Liu C.T., Wu J.K., Influence of pH on the passivation behavior of 254SMO stainless steel in 3,5% NaCl solution; Corros. Sci. (2007);49(5):2198-2209

84. Olsson C-O.A., Landolt D.; Passive films on stainless steels-chemistry, structure and growth; Electrochim. Acta. (2003);48:1093-1104

85. Lu Y.C., Ives M.B., Clayton C.R.; Synergism of alloying elements and pitting corrosion resistance of stainless steels; Corros Sci. (1993);35:89-96

86. Osozawa K., Okato N.; Effects of alloying elements, especially nitrogen, on the initiation of pitting in stainless steel; Passivity and its breakdown on Iron and Iron-base alloys,

USA-Japan Seminar, NACE; Houston, USA; (1976):135-139

87. Bojinov M., Influence of molybdenum on the conduction mechanism in passive films on iron–chromium alloys in sulphuric acid solution; Electrochim. Acta. (2001);46:1339-1358

88. Lu Y.C., Bandy R., Clayton C.R., Newman R.C.; Surface enrichment of nitrogen during passivation of a highly resistant stainless steel; J. Electrochem. Soc. (1983); 130:1774-1776

89. Willenbruch R.D., Clayton C.R., Oversluizen M., Kim D., Lu Y.; An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel; Corros. Sci. (1990);31:179-190

90. Stepuch-Galik A., Stypuła B.; Właściwości elektrochemiczne staliwa austenityczno-ferrytycznego azotowanego plazmowo; Ochrona przed korozją (2003);46:196-199 91. Peled P., Itzhak D.; The surface composition of sintered stainless steel containing noble

127 92. Seo M., Hultquist G., Leygraf C., Sato N.; The influence of minor alloying elements (Nb, Ti and Cu) on the corrosion resistivity of ferritic stainless steel in sulfuric acid solution; Corros. Sci. (1986);26:949-960

93. Ogura S., Sugimoto K., Sawada Y.; Effects of Cu, Mo and C on the corrosion of deformed 18Cr-8Ni stainless steels in H2SO4/NaCl solutions; Corros. Sci. (1976);16:323-337

94. Hermas A.A., Ogura K., Takagi S., Adachi T.; Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel. Effects of alloying additions;

Corros. (1995);51:3-10

95. Itzhak D., Peled P.; The effect of Cu addition on the corrosion behaviour of sintered stainless steel in H2SO4 environment; Corros. Sci. (1986);26:49-54

96. Ujiro T., Satoh S., Staehle R.W., Smyrl W.H.; Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media; Corosion. Sci. (2001);43:2185-2200 97. Hu B., Bai P., Dong Z., Cheng J.; Effect of Cu addition on corrosion resistance and

shape memory effect of Fe-14Mn-5Si-9Cr-5Ni alloy; Trans. Nonferrous Met. Soc. China (2009);19:149-153

98. Kim S., Park Y.; Effect of copper addition on corrosion behavior of high-performance austenitic stainless steel in highly concentrated sulfuric acid solution — Part 1; Corros. (2007);63:114-126

99. Brigham R.J., Tozer E.W.; Effect of Alloying Additions on the Pitting Resistance of 18% Cr Austenitic Stainless Steel; Corros. (1974);30:161-166

100. Honda T., Yokosuka T., Arai Y.; Effect of silicon on intergranular corrosion of stainless steel in nitic solutions; Corrosion NACE; New Orelans, USA; (1997):114

101. Grzesiak P., Stypuła B., Lebet R.; The influence of chloride and fluoride ions on the corrosion of high alloy steel X1NiCrCuN25.20.5 and 00H17N21Si in production lines of concentrated sulfuric acid; Electrochemistry in molecular and microscopic dimensions; Duesseldorf, Niemcy; (2002):166

102. Krawiec H.; Corrosion behaviour and structure of the surface layer formed on austempered ductile iron in concentrated sulphuric acid; Corros. Sci. (2006);48:595-607 103. Stypuła B., Kasprzyk D.; Wpływ zanieczyszczeń jonami fluorkowymi w stężonym

kwasie siarkowym na odporność korozyjną stali skwasoodpornych; XXXI konferencja

naukaowa z okazji Święta Odlewnika: Nowoczesne technologie w odlewnictwie; Kraków, Polska; (2007):155-159

104. Thomashov N.D., Chernova G.P., Marcova O.N.; Effect of supplementary alloying elements on pitting corrosion susceptibility of 18Cr 14Ni Stainless steel; Corros. (1964);20:361

105. Wang W-F., Wu M-J.; Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC–Si stainless steels; Mater. Sci.

Eng. A (2006);425:167-171

106. Bullard S.J., Larson D.E., Dunning J.S.; Oxidation and corrosion resistance of two Fe-8Cr-16Ni-Si-Cu alloys; Corros. (1992);48:891-897

107. Dobrzański L.A.; Materiały inżynierskie i projektowanie materiałowe. Podstawy nauki o

materiałach i metaloznawstwo; WNT- Wydawnictwa Naukowo-Techniczne Sp.z o.o.; (2006):334

108. Czerwinski F.; Thermochemical treatment of metals (2012); http://dx.doi.org/10.5772/51566

128 109. Renevier N., Collignon P., Michel H., Czerwiec T.; Low temperature nitriding of AISI 316L stainless steel and titanium in a low pressure arc discharge; Surf. Coat. Technol. (1999);111:128-133

110. Muraleedharan T.M., Meletis E.I.; Surface modification of pure titanium and Ti6Al4V by intensified plasma ion nitriding; Thin Solid Films (1992); 221:104-113

111. Renevier N., Czerwiec T., Collignon P., Michel H.; Diagnostic of arc discharges for plasma nitriding by optical emission spectroscopy; Surf. Coat. Technol. (1998);98:1400-1405

112. Baldwin M.J., Fewell M.P., Haydon S.C., Kumar S., Collins G.A., Short K.T. Tendys J.; Rf-plasma nitriding of stainless steel; Surf. Coat. Technol. (1998);98:1187-1191

113. Sun Y., Li X.Y., Bell T.; X-ray diffraction characterisation of low temperature plasma nitrided austenitic stainless steels; J. Mater. Sci. (1999);34:4793-4802

114. Yin R.; Carburization of 310 stainless steel exposed at 800 – 1100°C in 2 % CH4/H2 gas mixture; Corros. Sci. (2005);47:1896-1910

115. Ueda Y., Kanayama N., Ichii K., Oishi T., Miyake H.; Metallurgical characteristics of the plasma (ion) -carburized layer of austenitic stainless steel SUS316L; Surf. Coat.

Technol. (2005);193:50-54

116. Moller W., Richter E., Parascandola S., Telbizova T., Gunzel R.; Surface processes and diffusion mechanisms of ion nitriding of stainless steel and aluminium; Surf. Coat.

Technol. (2001);136:73-79

117. Ceschini L., Chiavari C., Lanzoni E., Martini C.; Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behaviour; Mater. Des. (2012);38:154-160 118. Czerwiec T., Renevier N., Michel H.; Low-temperature plasma-assisted nitriding; Surf.

Coat. Technol. (2000);131:267-277

119. Kuczynska-Wydorska M., Flis J.; Corrosion and passivation of low-temperature nitrided AISI 304L and 316L stainless steels in acidified sodium sulphate solution; Corros. Sci. (2008);50:523-533

120. Thaiwatthana S., Li X.Y, Dong H., Bell T.; Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel; Surf.

Eng. (2002);18:433-437

121. Tsujikawa M., Yamauchi N., Ueda N., Sone T., Hirose Y.; Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel; Surf. Coat. Technol. (2005);193:309-313

122. Sun Y,; Haruman E. Influence of processing conditions on structural characteristics of hybrid plasma surface alloyed austenitic stainless steel; Surf. Coat. Technol. (2008);202:4069-4075

123. Awad Y., El Khakani M.A., Aktik C.; Structural and mechanical properties of amorphous silicon carbonitride films prepared by vapor-transport chemical vapor deposition; Surf. Coat. Technol. (2009);204:539-545

124. Gunther M., Schutz A, Glatzel U., Wang K., Bordia R.K., Krenkel W. Motz G.; High performance environmental barrier coatings, Part I: Passive filler loaded SiCN system for steel; J. Europ. Ceramic Soc. (2011);31:3003-3010

125. Mingolo N., Tschiptschin A. P, Pinedo C.E.; On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel. Surf Coat. Technol. (2006);201:4215-4218

129 126. Stypuła B., Stepuch-Galik A., Kowalski K., Januś M., Bernasik A.; Korozja wysokostopowego staliwa azotowanego plazmowo; Ochrona przed korozją (2005);48:66-71

127. Williamson D.L., Davis J.A., Wilbur P.J.; Effect of austenitic stainless steel composition on low-energy, high-flux, nitrogen ion beam processing. Surf Coat. Technol. (1998);103-104:178-184

128. Zhu X.M., Lei M.K.; Pitting corrosion resistance of high nitrogen f.c.c. phase in plasma source ion nitrided austenitic stainless steel; Surf. Coat. Technol. (2000);131:400-403 129. Gontijo L.C., Machado R., Kuri S.E., Casteletti L.C., Nascente P. P.; Corrosion

resistance of the layers formed on the surface of plasma-nitrided AISI 304L steel; Thin

Solid Films (2006);515:1093-1096

130. Lei M.K., Zhu X.M.; Comparative corrosion resistance of plasma-based low-energy nitrogen ion implanted austenitic stainless steel; Surf. Coat. Technol. (2007);201:6865-6868

131. Lei M.K., Zhu X.M.; In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels; Biomaterials (2001);22:641-647

132. Dong H., Qi P-Y., Li X.Y., Llewellyn R.J.; Improving the erosion–corrosion resistance of AISI 316 austenitic stainless steel by low-temperature plasma surface alloying with N and C; Mater. Sci. Eng. A (2006);431:137-145

133. Williamson D.L., Ozturk O., Wei R., Wilbur P.J.; Metastable phase formation and enhanced diffusion in f.c.c. alloys under high dose, high flux nitrogen implantation at high and low ion energies; Surf. Coat. Technol. (1994);65:15-23

134. Sun Y.; Response of cast austenitic stainless steel to low temperature plasma carburizing; Mater. Des. (2009);30:1377-1380

135. Egawa M., Ueda N., Nakata K., Tsujikawa M., Tanaka M.; Effect of additive alloying element on plasma nitriding and carburizing behavior for austenitic stainless steels; Surf.

Coat. Technol. (2010);205:246-251

136. Sun Y.; Kinetics of low temperature plasma carburizing of austenitic stainless steels; J.

Mater. Process Technol. (2005);168:189-194

137. Liang W., Xiaolei X, Bin X, Zhiwei Y, Zukun H. Low temperature nitriding and carburizing of AISI304 stainless steel by a low pressure plasma arc source; Surf. Coat.

Technol (2000);131:563-567

138. El-Hossary F.M., Negm N.Z., Khalil S.M., Abd El-Rahman A.M., Mcilroy D.N.; RF plasma carbonitriding of AISI 304 austenitic stainless steel; Surf. Coat. Technol (2001);141:194-201

139. Raaif M., El-Hossary F.M., Negm N.Z., Khalil S.M., Schaaf P.; Influence of rf-power on the plasma carbonitriding of titanium; Mater. Sci. Eng. A (2008); (480):271-277

140. Abd El-Rahman A.M., El-Hossary F.M., Fitz T., et all: Effect of N2 to C2H2 ratio on r.f. plasma surface treatment of austenitic stainless steel; Surf. Coat. Technol. (2004);183:268-274

141. El-Hossary F., Negm N., Khalil S., Abd Elrahman A.M.; Formation and properties of a carbonitrided layer in 304 stainless steel using different radio frequency plasma powers;

Thin Solid Films (2002);405:179-185

142. Negm N. Z., Abd El-Rahman A.M., Hammad M.; Duplex treatment of 304 AISI stainless steel using rf plasma nitriding and carbonitriding; Mater. Sci. Eng. C (2009);29:1167-1173

130 143. Baranowska J., Franklin S.E., Pelletier C.G.N.; Tribological behaviour and mechanical properties of low temperature gas nitrided austenitic steel in relation to layer

W dokumencie Index of /rozprawy2/10916 (Stron 120-133)

Powiązane dokumenty