• Nie Znaleziono Wyników

Wnioski

W dokumencie Index of /rozprawy2/11659 (Stron 136-150)

 Wykorzystując metodę KOBO możliwe jest kształtowanie plastyczne wyrobów z odlewniczego stopu AZ91 (MgAl9Zn1) bez homogenizacji i wstępnego nagrzewania wsadu czyli w temperaturze pokojowej.

 Polegająca na wyciskaniu przez obustronnie obracaną matrycę metoda KOBO pozwala na drastyczne zwiększenie właściwości mechanicznych (Rm, Rp0,2, A) w statycznej próbie rozciągania próbek odlewanych do formy piaskowej, do formy metalowej (kokili), metodą półciągłego odlewania oraz prasowania w stanie ciekłym (squeeze casting) - szczególnie w odniesieniu do stanu lanego.

 Zwiększenie stopnia przerobu podczas wyciskania metodą KOBO istotnie podwyższa wytrzymałość i plastyczność odlewniczego stopu AZ91.

 Podwyższenie częstotliwości obrotu matrycy wpływa na zmniejszenie wytrzymałości i twardości próbek, natomiast przyczynia się do wzrostu ich plastyczności.

 Wyniki statycznej próby rozciągania zrealizowanej w temperaturze 300 i, 350°C dowiodły, że próbki odlewów piaskowych wyciskane w warunkach zmiany drogi deformacji (metoda KOBO) nabrały cechy materiałów nadplastycznych o wydłużeniu sięgającym nawet 577%.

 Średnia wielkość ziarna w strukturze odlewu piaskowego wyciskanego metodą KOBO ze stopniem przerobu λ=44,4, który wykazywał cechy nadplastyczne zmierzona w przekroju porzecznym wyniosła 2,08μm.

 Ewolucja struktury odlewanych wlewków, które wyciskano metodą KOBO obejmowała rozdrobnienie ziarn, efekt pasmowości polegający na wydłużeniu poszczególnych elementów struktury takich, jak roztwór stały, faza γ typu Mg17Al12, eutektyki i preeutektyki, skorelowanym z kierunkiem wyciskania, oraz obejmowała charakterystyczne zawirowania płynięcia pochodzące od cyklicznego skręcania wyciskanego stopu.

 Wyciskanie metodą KOBO wywołało w stopie AZ91 daleko idące zmiany w morfologii fazy γ typu Mg17Al12 w postaci jej rozdrobnienia, usytuowania w pasmach i globularyzacji.

Część prac badawczych zrealizowano w ramach projektu: „Zastosowanie innowacyjnych rozwiązań techniczno-materiałowych w budowie pojazdów inwalidzkich RETECH UOD-DEM-1-255/001 oraz w ramach zadania nr V.6.1Projektu strukturalnego „Zaawansowane materiały i technologie ZAMAT” nr: POIG.01.01.02-00-015/09

Literatura

[1] Wielki słownik języka polskiego PWN t. I-V 1, 2018 Wydawnictwo Naukowe PWN. [2] Gulajew A.P., Metaloznawstwo, Wydawnictwo „Śląsk”, Katowice 1969.

[3] Libura W., Płynięcie metalu w procesie wyciskania, AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2008.

[4] Wendorf Z., Metaloznawstwo, Wydawnictwo Naukowo-Techniczne, Warszawa 1976.

[5] Kaczyński J., Prowans S., Podstawy teoretyczne metaloznawstwa, Wydawnictwo Górniczo-Hutnicze, 1972.

[6] Dobrzański L.A., Metalowe materiały inżynierskie, Wydawnictwo Naukowo-Techniczne, Gliwice – Warszawa 2004.

[7] Oczoś K.E., Kawalec A., Kształtowanie metali lekkich, Wydawnictwo Naukowe PWN, Warszawa 2012.

[8] Przybyłowicz K., Strukturalne aspekty odkształcania metali, Wydawnictwo Naukowo Techniczne, Warszawa 2002.

[9] Taylor G. I., Plastic strain in metals, Journal of the Institute of Metals 62 (1938), 307–324.

[10] Taylor, G.I, The Mechanism of Plastic Deformation of Crystals, Part I.- Theoretical. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 145, (1934), 362–387.

[11] Orowan E., A type of plastic deformation new in metals, Nature 149, (1942) 643–644.

[12] Orowan E., Symposium on Internal Stresses in Metals and Alloys, London : The Institute of Metals 451, (1948).

[13] Polanyi M., Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte, Zeitschrift für Physik 89 (1934), 660.

[14] Burger J. M., Some considerations on the fields of stress connected with dislocations in a regular crystal lattice, Proceedings of Konshat Nederlands Akademie Wetensch. 42 (1939), 293-324. [15] Wessels E. J. H., Nabarro F. R. N., A theory of unstable glide in the presence of a dense dislocation

forest Acta Metallurgica 19, (9) (1971), 915-921.

[16] Neuhauser H., Collective micro shear processes and plastic instabilities in crystalline and amorphous structures, International Journal of Plasticity 9, (4), (1993) 421-435.

[17] Basiński S. J., Forest hardening in face centered cubic metals, Scripta Metallurgica 8, (11), (1974), 1301-1307.

[18] Jackson P. J., Dislocation structures produced by cross-slip, Dislocation Modelling of Physical Systems Proceedings of the International Conference, Gainesville, Florida, USA, June 22–27, (1980,1981), 337-341.

[19] Jackson P. J., Plastic relaxation of internal stresses in a dislocation microstructure, Acta Metallurgica 33, (3), (1985), 449-454.

[20] Jackson P. J., Nixon W. E., Mitchell J. W., Latent hardening and dislocation density in α-phase Cu-Al alloy crystals, Acta Metallurgica 25, (12), (1977), 1539-1542.

[22] Płonka B., Korczak P., Remsak K., Rajda M., Nowoczesne, Zaawansowane Technologie Wytwarzania Wyrobów ze Stopów Magnezu Metodami Przeróbki Plastycznej, Szybkobieżne Pojazdy Gąsienicowe (42) nr 4 (2016), 41-49.

[23] Kurz G., Pakulat S., Bohlen J., Letzig D., Rolling twin roll cast magnesium strips with varied temperature and degree of deformation, Materials Today: Proceedings 2 (2015) 39–44.

[24] Bergea F., Krügerb L., Ullmanna M., C. Krbetscheka, Kawalla R., Anisotropy of the mechanical properties of twin-roll cast, rolled and heat-treated AZ31 as a function of temperature and strain rate, Materials Today: Proceedings 2S (2015), 233–241.

[25] Zhaoa Hu, Peijie Li, Liangju Hea, Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy strip, Journal of Materials Processing Technology 211 (2011), 1197– 1202.

[26] Richter K., Haase R., Schieck F., Landgrebe D., Tempered forming of magnesium alloys using the example of roll forming, Materials Today: Proceedings 2S (2015), 60–66.

[27] Neh K., Ullmann M., Oswald M., Berge F., Kawalla R., Twin roll casting and strip rolling of several magnesium alloys, Materials Today: Proceedings 2S (2015), 45–52.

[28] Minoa T., Asakawa M., Lee D., Fujiwara T., Matsuzaki K., Kobayashi M., Twin-roll strip casting of AZ61 magnesium alloy and improvement of formability by structure-control rolling, Journal of Materials Processing Technology 177 (2006), 534–538.

[29] Liang Chen, Mengchao L., Guoqun Zhao, Jixue Zhou, Cunsheng Zhang, Microstructure evolution of AZ91 alloy during extrusion process with various ram velocity, Vacuum 150 (2018), 136-143. [30] Faraji G., Mashhadia M.M., Kim H.S., Mechanical and Microstructural Properties of Ultra-fine

Grained AZ91 Magnesium Alloy Tubes Processed via Multi Pass Tubular Channel Angular Pressing (TCAP), Journal of Materials Science Technology 30 (2014), 134 – 138.

[31] Perez-Prado M.T., Del Valle J.A., Ruano O.A., Achieving high strength in commercial Mg cast alloys through large strain rolling, Materials Letters 59 (2005), 3299 – 3303.

[32] Perez-Prado M.T., Del Valle J.A., Ruano O.A., Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scripta Materialia 51 (2004), 1093–1097.

[33] Faraji G., Mashhadia M.M., Kim H.S., Microstructure inhomogeneity in ultra-fine grained bulk AZ91 produced by accumulative back extrusion (ABE), Materials Science and Engineering A 528 (2011), 4312–4317.

[34] Wanga Q., Chena Y., Liua M., Lina J., Roven H. J., Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression, Materials Science and Engineering A 527 (2010), 2265–2273.

[35] Chen B., Lin D., Jina L., Xiao-Qin Zenga, Chen Lu, Equal-channel angular pressing of magnesium alloy AZ91 and its effects on microstructure and mechanical properties, Materials Science and Engineering A 483–484 (2008), 113–116.

[36] Fintova S., Kunz L., Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation, Journal of the mechanical behavior of biomedical materials 42 (2015), 219–228.

[37] Gubicza J., Máthis K., Hegedu Z., Ribárik G., Tóth A. L., Inhomogeneous evolution of microstructure in AZ91 Mg-alloy during high temperature equal-channel angular pressing, Journal of Alloys and Compounds 492 (2010), 166–172.

[38] Giuliano G., Superplastic Forming of Advanced Metallic Materials. Methods and Applications, 2011 Woodhead Publishing Limited.

[39] Del Valle J.A., Optimization of the microstructure for improving superplastic forming in magnesium alloys, Materials Science and Engineering: A 467 (2007), 165-171.

[40] Sahoo M., Technology For Magnesium Castings: Design, Products and Applications, American Foundry Society Schaumburg, IL USA 2011.

[41] Fusheng P., Yang M., Chen X., A review on casting magnesium alloys: Modification of Commercial Alloys and Development of New Alloys, Journal of Materials Science and Technology 32 (2016),.1211-1221.

[42] Luo A. A., Magnesium casting Technology for structural applications, Journal of Magnesium and Alloys 1 (2013), 2-22.

[43] Mordike B. L., Ebert T., Magnesium Properties — applications — potential, Materials Science and Engineering A302 (2001), 37–45.

[44] Ziółkiewicz S., Gąsiorkiewicz M., Ocena odkształcenia granicznego stopu magnezu AZ91, Obróbka Plastyczna Metali XXIV, Nr 2 (2013), 57-67.

[45] Bronicki M., Czekaj E., Fajkiel A., Lech-Grega M., Reguła T., Zmiany właściwości mechanicznych stopu magnezu AZ91 w zależności od metody wytwarzania oraz sposobu i parametrów obróbki cieplnej, Przegląd Odlewnictwa, t. 59, nr 1–2 (2009), 48–55.

[46] Reguła T., Czekaj E., Fajkiel A., Saja K., Lech-Grega M., Bronicki M., Application of Heat Treatment and Hot Extrusion Processes to Improve Mechanical Properties of the AZ91 Alloy, Archives of Foundry Engineering 10 (2), (2010), 141–146.

[47] Rajendran N., Mitka M., Lech-Grega M., Misiołek W. Z., Effect of tool geometry on the velocity and strain rate fields in continuous extrusion of magnesium AZ91 alloy, 17th International Conference on Metal Forming, Metal Forming 2018, 16-19 (2018), Toyohashi, Japan Procedia Manufacturing 15 (2018), 264-271.

[48] Tan M., Liu Z., Quan G., Effects of Hot Extrusion and Heat Treatment on Mechanical Properties and Microstructures of AZ91 Magnesium Alloy, Energy Procedia 16 (2012), 457–460.

[49] Thirumurugan M., Kumaran S., Extrusion and precipitation hardening behavior of AZ91 magnesium alloy, Trans. Nonferrous Met. Soc. China 23 (2013), 1595-1601.

[50] Kima S., Jong Un Leea, Ye Jin Kima, Byoung Gi Moonb, Bong Sun Youb, Ha Sik Kimb, Sung Hyuk Parka, Improvement in extrudability and mechanical properties of AZ91 alloy through extrusion with artificial cooling, Materials Science and Engineering A 703 (2017), 1–8.

[51] Mg Showcase 11, Winter 2010, Page 4.

[52] Dobrzański L., Tański T., Dobrzańska-Dankiewicz A., Król M., Domagała-Dubiel J., Struktura i własności stopów Mg-Al-Zn, Politechnika Śląska, Volume 5 (11) 2012, 1-322.

[54] Orman M., Ormanowa Z., Technologia Magnezu i jego stopów, Wydawnictwo Śląsk Katowice 1965.

[55] Froehlich P., Lorenz T., Martin G., Brett B., and Bertau M.„Valuable Metals—Recovery Processes, Current Trends, and Recycling Strategies” 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2544-2580.

[56] Hosseini T., Selomulya C., Zhang L.,Comparison of Magnesium Oxide Extraction from Victorian Brown Coal Fly Ash and Steel Making Slag Using Regenerative, Ammonium Chloride, Konference paper Chemeca 2013: Challenging Tomorrow, Barton, ACT; Engineers Australia; 2013.

[57] http://onyxmet.pl/?route=product/category&path=69_79&sort=rating&order=DESC, Data:11.12.2019.

[58] Rzadkosz S., Bonderek Z., Smorawiński Z., Fajkiel A., Dudek P., Reguła T.: rozdział III.3. Stopy metali lekkich, Poradnik Odlewnika, Tom 1 Materiały pod redakcją Sobczak J.J; Wydawnictwo Stowarzyszenia Technicznego Odlewników Polskich, Kraków 2013.

[59] Ciba J., Trojanowska J., Zołotajkin M., Prawie wszystko o pierwiastkach Wydawnictwo Politechniki Śląskiej Gliwice 2005.

[60] ASTM B951 – Standard Practice for Codification of Unalloyed Magnesium and Magnesium-Alloys, Cast and Wrought.

[61] PN-EN 1753:2001, Magnez i stopy magnezu – Gąski i odlewy ze stopów magnezu.

[62] Skrzypek S., Przybyłowicz K.: Inżynieria metali i ich stopów, Wydawnictwo AGH, Kraków, 2012. [63] Polmear I. J., Light Alloys. From Traditional Alloys to Nanocrystals, Fourth edition.

Batterworth-Heineman (imprint of Elsevier) 2007.

[64] Backer H.: Alloys phase diagrams. ASM International, Materials Park, OH, 1992.

[65] Mondolfo L. F., Metallography of aluminium alloys, John Wiley and Sons, New York, 1943. [66] Celotto S., TEM Study of continuous precipitation in MgAlZn alloy, Acta Materialia 48 (2000)

1775-1787.

[67] Braszczyńska-Malik K., Discontinuous and continuous precipitation in magnesium–aluminium type alloys, Journal of Alloys and Compounds 477 (2009) 870–876.

[68] Braszczyńska-Malik K., Precipitates of γ–Mg17Al12 Phase in AZ91 Alloy, Magnesium Alloys - Design, Processing and Properties, InTech 2011.

[69] Emley E.F., Principles of Magnesium Technology, Pergamon Press. Oxford-London-Edinburg-New York-Paris-Frankfurt, 1966. (wyd. ros.: Izd. Metallurgiya, Moskva 1972).

[70] ASM International Handbook. Properties and selection of Nonferrous Alloys and Special Purpouse Materials, Vol 2 1990.

[71] Busk R.: Magnesium Alloys. In book: Aluminum Alloys – Contemporary Research and Applications. Edited by: A.K. Vasudevan and R.D. Doherty. Treatise on Materials Science and Technology 31, Academic Press, Inc. (1989), 663-679.

[72] Dudek P., Fajkiel A., Reguła T., Czekaj E., Mielniczuk J., Wpływ dodatku złomu obiegowego na właściwości mechaniczne odlewów ciśnieniowych ze stopów magnezu, Prace Instytutu Odlewnictwa Tom 54, (3), (2014), 29-41.

[73] Quinlin J., Jeong – Pil Eom, Su – Gun Lim, Won – Wook Park, Bong – Sun You, Grain refining mechanism of a carbon addition method in a Mg – Al magnesium alloy, Scripta Materialia 49 (2003), 1129-1132.

[74] Peng Cao, Ma Qian, StJohn D. H., Native grain refinement of magnesium alloys, Scripta Materialia 53, (2005), 841-844.

[75] Ma Qian, P. Cao Discussions on grain refinement of magnesium alloys by carbon inoculation, Scripta Materialia 52, (2005), 415-419.

[76] Yano E., Tamura Y., Motegi T., Sato E., Effect of Carbon Powder on Grain Refinement of an AZ91E Magnesium Alloy, Materials Transactions 44, (1), (2003), 107-110.

[77] Kim Y.M. et al. Grain refining mechanism in Mg – Al base alloys with carbon addition, Scripta Materialia 57 (2007), 691-694.

[78] Ramachandran T.R., Sharma P.K., Balasubramanian K., Grain Refinement of Light Alloys, Proceedings of 68th World Foundry Congress, 7-10 February, Cennai, India.

[79] Saha S., Ravindran C., Effects of zinc oxide addition on the microstructure and mechanical properties of AZ91E Mg Alloy, International Journal of Metalcasting 9 (2015), 39-48.

[80] Lee Y.C., Dahle A.K., StJohn D.H., The role of solute in grain refinement of magnesium, Metallurgical and Materials Transactions A, 31A, 2000-2895,

[81] D.H. StJohn, Ma Qian, M. A. Easton, Peng Cao, Z. Hildebrand, Grain Refinement of Magnesium Alloys, Metallurgical and Materials Transactions A 36A, (2005), 1669-1679.

[82] R. Mohtadi, M. Matsui, T. S. Arthur, S. Hwang, Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery Angew. Chem. Int. Ed. 2012, 51, 9780 –9783

[83] Mg Showcase 12, Spring 2010, Page 4.

[84] Pistidda C., Bergemann N., Wurr J., Rzeszutek A., Møller K.T., Hansen B.R.S., Garroni S., Horstmann C., Milanese C., Girella A., Metz O., Taube K., Jensen T.R., Thomas D., Liermann H.P., Klassen T., Dornheim M., Hydrogen storage systems from waste Mg alloys Journal of Power Sources 270 (2014) 554-563.

[85] Lee Bray E.: MAGNESIUM, USGS science for a changing Word, 02.2013.

[86] Praca zbiorowa pod red. Jerzego J. Sobczaka, Prognozy i trendy rozwojowe w odlewnictwie światowym i krajowym, Instytut Odlewnictwa, Kraków 2016.

[87] www.afsinc.org/news/2016/06/07/metalcasting-roadmap-identifies-industry-rd needs.

[88] Gerald S. Cole Summary of Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium, From Magnesium Technology 2007.

[89] THE ROAD AHEAD – AUTOMOTIVE MATERIALS WWW.DUCKER.COM | 2016.

[90] Fajkiel A. Białobrzeski A., Dudek P., Reguła T., Nowoczesne stopy oraz metody odlewania magnezu w zastosowaniach motoryzacyjnych, Przegląd Mechaniczny, Rok wyd. LXVIII, Zeszyt 2 (2009), 30-36.

[91] Pan F., Yang M., Chen X., A rewiew on casting magnesium alloys: Modification of Commercial Alloys and Development of New Alloys, Journal of Materials Science and Technology 32 (2016), 1211-1221.

[93] Hussein R. O., Northwood D. O. „Improving the performance of magnesium alloys for automotive applications” High Performance and Optimum Design of Structures and Materials 531.

[94] Tharumarajah A., Koltun P., Is there an environmental advantage of using magnesium components for light-weighting cars?, Journal of Cleaner Production 15 (2007), 1007-1013.

[95] Mg Showcase 15, Winter 2011, Page 1. [96] Mg Showcase 20, Summer 2012, Page 1.

[97] IRB 360 FlexPicker® “Greater flexibility in a compact footprint”, abb.com/robotics, Data 14.09.2019. [98] http://asimo.honda.com/education-materials, Data:11.12.2018. [99] https://new.abb.com/products/robotics/industrial-robots/yumi, Data:11.12.2018. [100] http://www.navy.mil/submit/display.asp?story_id=85459, Data:11.12.2018. [101] https://newatlas.com/walk-man-firefighting-robot/53548/, Data:11.12.2018. [102] http://www.magnesiumsolutions.com/davincirobot.html, Data:11.12.2018. [103] www.fanuc.pl, Data:11.12.2018.

[104] Mg Showcase 11, Winter 2010, Page 1.

[105] magnesium-wheels.com, http://www.mbl.pl, Data: 08.12.2018. [106] https://ujet.com, Data: 08.12.2018.

[107] www.dtswiss.com, Data: 05.09.2019. [108] alliteinc.com, Data: 05.09.2019.

[109] www.luxfermeltechnologies.com, Data:11.10.2019.

[110] Mola R.: Modyfikacja warstwy wierzchniej magnezu i jego stopów, Kielce: Politechnika Świętokrzyska, 2016.

[111] Górny Z., Odlewnicze stopy metali nieżelaznych, WNT Warszawa 1992.

[112] Piątkowski J., Binczyk F.: Właściwości i Zastosowanie Odlewniczych Stopów Mg-Al, Archiwum Odlewnictwa 2, Nr 4, PAN Katowice 2002, 426-433.

[113] Bonderek Z., Chromik St. Odlewnictwo ciśnieniowe metali i formowanie wtryskowe tworzyw sztucznych, Wydawnictwo Naukowe AKAPIT, Kraków 2006.

[114] Białobrzeski A., Technologie specjalne odlewania ciśnieniowego, Wydanie I, Instytut Odlewnictwa, Kraków 1998.

[115] Magnesium alloy VSC Machine successfully begins trial operation at GM China Advanced Technical Center” www.greencarcongress.com/2014/04/20140404-vsc.html, Data: 18.11.2018. [116] Gupta R. D., Burton P., Brown Z., Microstructure and Mechanical Properties of Squeeze Cast

AZ91D Magnesium Alloy. SAE Technical Paper 2005-01-0330, SAE, Warrendale, PA, 2005. [117] Yue T.M., Chadwick G.A., Squeeze casting of light alloys and their composites, Journal of

Materials Processing Technology 58 (1996), 302-307.

[118] Długosz P., Darłak P., Wytwarzanie elementów lekkiego kompozytowego pancerza ochronnego metodą prasowania w stanie ciekłym (squeeze casting), Szybkobieżne Pojazdy Gąsienicowe 3 (2015),, 141-151.

[119] Sobczak J., Teoretyczne i praktyczne podstawy procesu prasowania w stanie ciekłym (squeeze casting) metali nieżelaznych, Prace Instytutu Odlewnictwa, XLIII, Zeszyt Specjalny Nr 41, Kraków (1993), 310 s.

[120] Górny Z. Sobczak J. Nowoczesne tworzywa odlewnicze na bazie metali nieżelaznych. Metalowe materiały kompozytowe. Wytwarzanie kompozytów metalowych. Wydawnictwo ZA-PIS, Wydanie I, Kraków 2005.

[121] Lewis D. Solidification defects revisited and semi-solid processing, JOM Journal of the Minerals, Metals and Materials Society 58, (6), (2006) 12.

[122] Ghomashchi M.R., Vikhrov A., Squeeze casting: an overview, Journal of Materials Processing Technology 101 (2000), 1-9.

[123] www.t-magcasting.com, Data: 28.11.2018.

[124] Zhaoa H., Li P., Hea L., Coupled analysis of temperature and flow during twin-roll casting of magnesium alloy strip, Journal of Materials Processing Technology 211 (2011), 1197–1202. [125] Szymanek M., Augustyn B., Kapinos D., Szymański W., Boczkal S., Płonka B., Technologia

wytwarzania wyrobów ze stopów lekkich przeznaczonych do pracy w warunkach ekstremalnych w środkach transportu lądowego, morskiego i powietrznego, Zaawansowane Materiały i Technologie ich Wytwarzania, Instytut Metali Nieżelaznych, Gliwice 2014.

[126] Zha M., Zhang H., Wang Ch., Wang H., Zhang E., Jiang Q., Prominent role of a high volume fraction of Mg17Al12 particles on tensile behaviors of rolled Mg–Al–Zn alloys, Journal of Alloys and Compounds 728 (2017), 682-693.

[127] Haga T., Development of a twin roll caster for light metals, The Journal of Achievements in Materials and Manufacturing Engineering 43 (2010), 393-402.

[128] Xibing Gong, Suk Bong, Kang Saiyi, Lia Jae, Hyung Cho, Enhanced plasticity of twin-roll cast ZK60 magnesium alloy through differential speed rolling, Materials & Design 30, (2009), 3345-3350.

[129] Liang D., Cowley B., The Twin-Roll Strip Casting of Magnesium, JOM 56 (2004), 26–28. [130] Koike J., Kobayashi T., Mukai T., Watanabe H., Suzuki M, Maruyama K. Higashi K., The

activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Materialia 51 (2003), 2055–2065.

[131] W. B. Hutchinson, M. R. Barnett Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals/ Scripta Materialia 63 (2010), 737–740.

[132] Graff S., Brocks W., Steglich D., Yielding of magnesium: From single crystal to polycrystalline aggregates, International Journal of Plasticity 23 (2007), 1957–1978.

[133] Braszczyńska-Malik K., Stopy magnezu i kompozyty na ich osnowie, Politechnika Częstochowska, Częstochowa 2017.

[134] Xie C. et al., Theoretical study on the f1012g deformation twinning and cracking in coarse-grained magnesium alloys. International Journal of Plasticity 82 (2016), 44-61.

[135] Battaini M., Deformation behaviour and twinning mechanisms of commercially pure titanium alloys. Monash University, Department of Materials Engineering (2018).

[136] Barnett M.R., Twinning and the ductility of magnesium alloys Part I: “Tension” twins/ Materials Science and Engineering A 464 (2007), 1–7.

[137] Alanevre K. K., Okotete E. A. „ Enhancing plastic deformability of Mg and its alloys - A review of traditional and nascent developments, Journal of Magnesium and Alloys 5 (2017), 460–475. [138] Chapuis A., Driver J.H., Temperature dependency of slip and twinning in plane strain

compressed magnesium single crystals, Acta Materialia 59 (2011), 1986–1994.

[139] Jing-yuan L., Jian-xin X., Jun-bing J., Zhi-xiang W., Microstructural evolution of AZ91 magnesium alloy during extrusion and heat treatment, Trans. Nonferrouse Met. Soc. China 22(2012), 1028-1034.

[140] Galiyev A., Kaibyshev R., Gottstein G., Correlation of plastic deformation and dynamic recrystallization in magnesium alloys ZK60 Acta mater. 49 (2001), 1199–1207.

[141] Jiang M.G., Xu C., Yan H., Fan G.H., Nakata T., Lao C.S., Chen R.S., Kamado S., Han E.H., Lu B.H., Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion, Acta Materialia 157 (2018), 53-71. [142] Al-Samman T., Gottstein G., Dynamic recrystallization during high temperature deformation of

magnesium, Materials Science and Engineering A 490 (2008), 411–420.

[143] Tan M., Liu Z., Quan G., Effects of Hot Extrusion and Heat Treatment on Mechanical Properties and Microstructures of AZ91 Magnesium Alloy, Energy Procedia 16 (2012), 457 – 460.

[144] Kim S., Lee J., Kim Y., Moon B., You B. S., Kim H. S., Park S. H., Improvement in extrudability and mechanical properties of AZ91 alloy through extrusion with artificial cooling, Materials Science & Engineering A 703 (2017), 1–8.

[145] Jing-yuan L., Jian-xin X., Jun-bing J., Zhi-xiang W., Microstructural evolution of AZ91 magnesium alloy during extrusion and heat treatment, Trans. Nonferrous Met. Soc. China 22 (2012), 1028-1034.

[146] Chen L., Liang M., Zhao G., Zhou J., Zhang C., Microstructure evolution of AZ91 alloy during hot extrusion process with various ram velocity, Vacuum 150 (2018), 136-43, 26.

[147] Gubicza J., Defect structure in nanomaterials, Woodhead Publishing Limited, 2012.

[148] Máthis K., Gubicza J., Nam N.H., Microstructure and mechanical behavior of AZ91 Mg alloy processed by equal channel angular pressing, Journal of Alloys and Compounds 394 (2005), 194– 199.

[149] Segal V. M., Method of material preparation for subsequent working, Patent No. 575892, 1977. [150] Kim W.J., Park J.D., Kim W.Y., Effect of differential speed rolling on microstructure and

mechanical properties of an AZ91 magnesium alloy, Journal of Alloys and Compounds 460 (2008), 289–293.

[151] Raja A., Pancholi V., Effect of friction stir processing on tensile and fracture behaviour of AZ91 alloy, Journal of Materials Processing Technology 248 (2017), 8–17.

[152] Govindaraju M., Balasubramanian K., Chackinga U., Rao P., Effect of Severe Plastic Deformation and Heat Treatment on Toughness of Magnesium Alloys, Procedia Materials Science 6 ( 2014 ), 37 – 42.

[153] Kai M., Horita Z., Langdon T. G., Developing grain refinement and superplasticity in a magnesium alloy processed by high-pressure torsion Materials Science and Engineering A 488 (2008), 117–124.

[154] Zubaydi A., Zhilyaev A. P., Wang S. C., Reed P. A. S., Superplastic behavior of AZ91 magnesium alloy processed by high-pressure torsion, Materials Science and Engineering A 637 (2015), 1–11.

[155] Nie K.B., Wang X.J., Deng K.K., Xu F.J., Wu K., Zheng M.Y., Microstructures and mechanical properties of AZ91 magnesium alloy processed by multidirectional forging under decreasing temperature conditions, Journal of Alloys and Compounds 617 (2014), 979–987.

[156] Overman N.R., Whalen S.A., Bowden M.E., Olszta M.J., Kruska K., Clark T., Stevens E.L., Darsell J.T., Joshi V.V., Jiang X., Mattlin K.F., Mathaudhu S.N., Homogenization and texture development in rapidly solidified AZ91E, consolidated by Shear Assisted Processing and Extrusion (ShAPE), Materials Science & Engineering A 701 (2017), 56–68.

[157] Segal V. M., Rezhnikov V. I., Dobryshevsky A. E., Kopylov V. I., Plastic forming of metals by simple shear, Russian Metallurgy (METALLY) (Engl. Transl.) 1 (1981), 99-105.

[158] Segal V. M., Severe plastic deformation: simple shear versus pure shear, Materials Science and Engineering A338 (2002), 331-344.

[159] Segal V. M., Slip line solutions, deformation mode and loading history during equal channel angular extrusion, Materials Science and Engineering A345 (2003), 36-46.

[160] Pantělejev L., Štěpánek R., Man O., Thermal stability of bimodal microstructure in magnesium alloy AZ91 processed by ECAP, Materials Characterization 107 (2015), 167–173.

[161] Yamashita A., Horita Z., Langdon T. G., Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation, Materials Science and Engineering A300 (2001), 142–147.

[162] Yuan Y., Maa A., Jiang J., Lu F., Jian W., Song D., Zhu Y. T., Optimizing the strength and ductility of AZ91 Mg alloy by ECAP and subsequent aging, Materials Science and Engineering A 588 (2013), 329–334.

[163] Khani S., Aboutalebi M. R., Salehi M. T., Samim H. R., Palkowski H., Microstructural development during equal channel angular pressing of as-cast AZ91 alloy, Materials Science and Engineering A 678 (2016), 44–56.

[164] Richert J., Richert M., A new method for unlimited deformation of metals and alloys, Aluminium 62 (1986), 604–607.

[165] Richert J., Optymalne warunki odkształcenia plastycznego materiałów metodą cyklicznego wyciskania ściskającego (CWS). Cz. 1, Inżynieria Materiałowa 4 (2000), 156–160.

[166] Richert M., The effect of unlimited cumulation of large plastic strains on the structure-softening processes of 99.999 Al, Materials Science and Engineering. A 129 (1990), 1–10.

[167] Edalati K., Horita Z., A Review on High-Pressure Torsion (HPT) from 1935 to 1988, Materials Science and Engineering A 652 (2016), 325–352.

[168] Erbel, S. Mechanical properties and structure of extremely hardened copper. Matals Technology 6 (1979), 482-486.

[169] Kawasaki M., Langdon T. G., The significance of strain during processing by high-pressure torsion, Materials Science and Engineering A 488 (2008), 341-348.

[170] Zhilyaev A. P., Langdon T. G., Using high-pressure torsion for metal processing: Fundamentals and applications, Progress in Materials Science 53 (2008), 893-979.

[171] Abdulov R.Z. Valiev R.Z., Krasilnikov N.A., Formation of submicrometre-grained structure in magnesium alloy due to high plastic strains, Journal of Materials Science Letters 9 (1990),

W dokumencie Index of /rozprawy2/11659 (Stron 136-150)