• Nie Znaleziono Wyników

A simplified theory of skin friction and heat transfer for a compressible laminar boundary layer

N/A
N/A
Protected

Academic year: 2021

Share "A simplified theory of skin friction and heat transfer for a compressible laminar boundary layer"

Copied!
77
0
0

Pełen tekst

(1)

THE COLLEGE OF AERONAUTICS

CRANFIELD

A SIMPLIFIED THEORY OF SKIN FRICTION AND

HEAT TRANSFER FOR A COMPRESSIBLE

LAMINAR BOUNDARY LAYER

by

(2)

v:, .^ '^^ Kanaals»f»at 10 - D£,LFT M)TB WO. 9 3 . Jcmijanr. .1959. T H E C O L L E G E O P A E R O W A U T I O S C R A N F I E L D

A simplified theory of skin friction and heat transfer for a compressible

laminar boundary layer

b y

-G. M. Lilley, 11.Sc, D.I.C. of the

D e p a r t a c n t of Aerodynamics

SU1.MAEY

The oonrpressible LaiT±nar boundary l a y e r e q i a i i o n s f o r a p e r f e c t gas i n s t e a d y flow a t a r b i t r a r y ext^^rnal I'ach number and xvall t e m p e r a t u r e

d i s t r i b u t i o n are solved approximately by the ccmbined use of t h e Stewartson-IllingvTOrth transformation and a p p l i c a t i o n of L i g h t h i l l ' s method to y i e l d the skin f r i c t i o n and r a t o of heat t r a n s f e r .

Appendices are added \7hich give the necessary modifications to the method f o r t h e s e p a r a t e cases of very lovf P r a n d t l nvunber and f o r t h e flow-near a separation p o i n t . A f u r t h e r appendix describes Spr'.lding's method for improving the accuracy of t h e xvall value of shear s t r e s s and r a t e of heat t r a n s f e r d i s t r i b u t i o n s along a M/DII having a non-uniform tempoacature d i s t r i b u t i o n .

This paper was f i r s t -written i n January, 1959. A fev; minor a l t e r a t i o n s have been done during proof reading January, 19éO,

(3)

CCJOTEOTS ' Page Summary 1 L i s t of Si^mbols 4 1 . Introd\Jotion 7 2. Basic equations 9 3 . Ste-wai'tson-Illijngvvarth transformation 10

4 . Von Mises' transformation 13 5. Approximate solution of t h e transformed equation

of motion ^6 6. P l a t p l a t e a t zero pressxire gradient and constant

wall temperature 21 7. In5)roved r e l a t i o n be^v/een -wall shear s t r e s s and

' Mach number for v a r i a b l e -wall tenperatiore 22 8. Approximate i n v e r s i o n of t h e vrall shear s t r e s s

i n t e g r a l equation 22f 9. Approximate r e l a t i o n bet-ween -vTall shear s t r e s s

and Mach nimiber -v;-hen the -wall temperature

i s constant 27 10. Approximate s o l u t i o n of t h e transformed s t a g n a t i o n enthalpy eq-uation 32 1 1 , . Acknowledgements 37 ^ 12, Conclu'sions 37 References 3C Appendices

1. Hea.t transfer for fluids of very low Prandtl number 2^2

2. Heat transfer near a separation point 45 3. Approximate inversion of the v/all shear stress

(4)

3

-CO.MENTS (Continued) Page Appendices

if. Improved r e l a t i o n s f o r skin f r i c t i o n and heat t r a n s f e r 52 5 , Skin f r d c t i o n i n a l i n e a r adverse pressure gradient 58

6, Evaluation of a c e r t a i n i n t e g r a l 6l Pigures 1 t o 9

Tables 1 , 2 , 3 , 4 , 5

(5)

List of Symbols a speed of sovmd

a constant (see equ. k2) b constant (see equ.40) o constant (see equ. 37)

C^,C^_. Specific heats at constant pressure and constant volume

P V J.. T

•^ respectively C

ju T o

f(x), g(x) functions of x (see equ. 4'f")

P(x), G ( X ) , H ( X ) , J ( X ) functions of x (see equ, 34 snd 35)

f x

G(X, M^) = Z - I S(z, f) dü^ (z)

o 1

h stagnp.tion entlialpy i entlialpy

J(x) function of x (see equ. D.5) k thermal conductivity

Ic. Stanton heat transfer coefficient

K(X), K(X) functions of x (see equ. D.11 rndD.12) 1 body reference length

m external velocity gradient index M Mach number

n v/all temperature gradient indeot p pressure; Heaviside operator

ft rate of heat trj-insf er per unit area

Q^ overall rate of heat transfer (— / ^ (x) dx) •'o

(6)

- 5 L i s t of S.-^'mbols (Continued) S ( x ) = ^ 7 ^ ^ ) \7 X t = r (x) I X ^a ' ^ a ^ a

t i n d e p e n d e n t -variable ( s e e equ.,22 and 51) T Temperature

( u , v ) v e l o c i t y components i n c o m p r e s s i b l e flow

(U,V) v e l o c i t y components i n t r a n s f o r a i e d ( i n c o m p r e s s i b l e ) f levy ( x , y ) c o o r d i n a t e s i n c o m p r e s s i b l e flow ( Z , Y ) c o o r d i n a t e s i n t r a n s f o r m e d ( i n c o i i i p r e s s i b l e ) flow z durrmy v a r i a b l e of i n t e g r a t i o n z = u^ - U^ 1 y r a t i o of s p e c i f i c h e a t s 3. 7? = X - * /i - v i s c o s i t y V k i n e m a t i c v i s c o s i t y P d e n s i t y cr P r a n d t l number ^ stream function

T -wall shear stress w

r (x) X

^' 1 1 1

(7)

List of Symbols (Continued) Subscripts

0 stagnation -vc-JLue

1 val-ue outside the boundary layer \7 value at the wall

(8)

7

-1 • Introd.uction

Por bodies t r a v e l i n g a t very higji speeds through the atmosphere t h e r e e x i s t s neijr the b o ^ nose extensive regions of _aminar boundojry

l a y e r flo<,7. There i s , t h e r e f o r e , considerable i n t e r e s t i n finding rapid • accurate methods f o r estimating -the sldji f r i c t i o n ond heat t r a n s f e r i n a

Irminar boundary l a y e r of a p e r f e c t gas a t high speeds under conditions of a r b i t r a r y v e l o c i t y and -vi-a-ll ternperature d i s t r i b u t i o n s . Although i n p r a c t i c a l problems r e a l gas e f f e c t s are l i k e l y t o be of inrportance in t h e higher speed ranges, yet under c e r t a i n conditions, s o l u t i o n s obtained assuming t h e f l u i d in t h e boundary Layer i s a perfect gas, mny be used i n preliminary c a l c u l a t i o n s , provided they are i n t e r p r e t e d c o r r e c t l y .

I t i s g e n e r a l l y accepted t h a t t h e r a p i d accurate estimation aP t h e o v e r a l l c h a r a c t a r i s t i c s of a coiiTpressible laminar boundrr^'- l a y e r , f o r a r b i t r a r y d i s t r i b u t i o n s of e x t e r n a l veloci-fcy and -wall tenperature (or heat t r a n s f e r ) , i s best perfornEd by t h e use of the momenttun and energy

i n t e g r a l equations. For the case when the P r a n d t l nuiiiber (o) equcJLs

u n i t y ond the v i s c o s i t y - temperature index ( w) equals uni-ty Curie (l958b) describes a modified Pohlhausen method, analogous t o Thvmite's method i n incaiipressible flow, by wlxLoh the sl<±n f,riction can be evaluated for the case of heat t r a n s f e r with uniform wall tcanperature, and i n Curie (1958^) f o r non-miiform v.-all t e n p e r a t u r e . An e a r l i e r paper by Curie (1957a-) describes a s i m i l a r method f o r t h e case cf zero heat t r a n s f e r . For the l a t t e r case other methods e x i s t including those of Young (l949) and Tani (1954). Young's method has been extended by Luxton and Ycung (l958) t o deal m t h the e f f e c t of heat t r a n s f e r . For the s p e c i a l cases w = 1 and C = 1 , 0,7 Levy ( l 9 5 4 ) , and when w = o" = 1 Cohen and Reshotko (l95éa, 1956b), gi-ve r e s u l t s for e r b i t r a r y pressvire d i s t r i b u t i o n and cons-tant wall temperatirre. The v;ork of Le-»y stems from the Illing^.7orth (1949) T?:^ilst t h a t of Cohen and Reshotko stems from the Stevrartson (1949) transformation of t h e compressible boundary l a y e r equations whereby, for cr = u = 1 and zero heat t r a n s f e r , the oonrpressible flow equations are transformed

e x a c t l y i n t o t h e incompressible flo\7 equations. Thus knovm s o l u t i o n s of t h e l a t t e r equations can be used t o solve corresponding conipressible flow-problems. A modified form of t h i s transformation for a r b i t r a r y o* has been

described by Rott (1953) ''^-nd vaxs tised by Tani ( l 9 5 4 ) .

An a l t e r n a t i v e approach has been used by L i g i i t h i l l (l950) fcr finding the skin f r i c t i o n and heat t r a n s f e r from a v/all of non-imiform temperature, The method, wMch nnkes use of Von Mises' form of the boundary'- l a y e r

equations and uses a l i n e a r approximation t o t h e v e l o c i t y d i s t r i b u t i o n near

t h e w a l l , i s applicable t o low Ma.ch n-umber flov/s of -variable e x t e r n a l » v e l o c i t y and t o high Mach nimiber flov/s of imif orm e x t e r n a l v e l o c i t y ,

L i g h t h i l l has applied t h i s method t o the problon of the vrall t a n p e r a t u r e d i s t r i b u t i o n on a f l a t p l a t e a t high Mach numbers v*iich i s l o s i n g heat by r a d i a t i o n only. Tifford ( l 9 5 l ) , pJid Tribxis and Klein ( l 9 5 5 ) , hive modified L i g j i t h i l l ' s method t o incliJde a b e t t e r approximation t o t h e v e l o c i t y d i s t r i b u t i o n near t h e v/all and so provide a more accurate method

(9)

f o r r e t a r d e d flov/s, i n v/idch t h e l i n e a r approxim-.tion t o t h e v e l o c i t y d i s t r i b u t i o n i s inadequate, A modified and improved frxjm of Tii'ford' s c o r r e c t i o n has been given by Spalding (1958), who shows t h a t with t h i s new c o r r e c t i o n the e r r o r i n t h e L i g h t h i l l method for I.eat t r a n s f e r can be reduced to l e s s tha.n 2,5% r e g a r d l e s s of pressure gradient, Liepmann (1958) has rederived L i g h t h i l l * s formula f o r t h e r a t e of heat t r a n s f e r using rn energy i n t e g r a l approach. Other methods, such as Chapman and Rubesin (1949), Schuh (1953^ Mid Imai (l958), for solving t h e heat t r a n s f e r

i n compressible flow i n Vidiich t h e v/all tonperature d i s t r i b u t i o n i s expressed as a polynomial i n x (the d i s t a n c e along the surface) do not have t h e

rrnge of a p p l i c a t i o n of L i g h t h i l l ' s method,

Illingv/orth (1954) has extended L i g h t h i l l ' s method t o deal vdth v a r i a b l e freestream and Vv'all t e n p e r a t u r e d i s t r i b u t i o n i n a compressible flow v/hen o" = a> = 1, However i n a p p l i c a t i o n s he considered only the case of constant v/all teirperature and mainstream v e l o c i t y d i s t r i b u t i o n s expressed as polynonials i n x.

The aim of the p r e s e n t paper i s t o produce an approximate r a p i d method for solving t h e compressible flav/ boundary l a y e r equations f o r a r b i t r a r y external Mach ntmiber aiad vi/all temperature d i s t r i b u t i o n . The P r a n d t l number (o) v d l l be taken as a r b i t r a r y , though not small compored vdth u n i t y , and although i t i s asstjned M a T across t h e boundary l a y e r

a more accurate -viscosity-tenrperature dependence for the vrall -viscosity v d l l be taken as suggested by ChapmD.n and Rubesin (1949), The proposed method makes use cf t h e Stev/artson-Illingworth transformation, but not r e s t r i c t i n g i t s use to zero heat t r a n s f e r , v/hereby the transfarmed equations are solved by the method of L i g h t h i l l (1950). A fev/ ex!?Jiiples of i t s a p p l i c a t i o n a r e given and the r e s u l t s are conpared vdth other known s o l u t i o n s . I t i s found t h a t even i n t h e severe t e s t of the a p p l i c a t i o n of t h e method t o t h e case of a small adverse pressure gradient t h e accuracy i s probably adequate for engineering purposes. The accuracy of t h e method can be improved by t h e a d d i t i o n of S p a l d i n g ' s c o r r e c t i o n and a b r i e f

account of t h i ö has been included in an appendix t o t h e p r e s e n t paper, I n other appendi.cos t h e r a t e of heat t r a n s f e r i s evaluated \asing d i f f e r e n t approximatioiis t o the v e l o c i t y d i s t r i b u t i o n close t o t h e v/all for the tv/o c a s e s ,

(a) -very a n a l l P r a n d t l nxMaer and ( b ; a t a s e r r a t i o n p o i n t .

(10)

9

-2, Basic equations

The steady two-dimensionr'.l bound.ar3- l a y e r equations of c o n t i n u i t y , motion and energy for a perfect gas t\re r e s p e c t i v e l y

ÈPÜ . 9pv _ 0 (1) a X + 6y - ^ -'

9u 9u 1 9 / 9 u \ /^\

''^ -SE

-^ ^^

^y+

^ ^ ^ to = -^ V# W +

'^W/ ^^^

v.iiere i i s t h e enthalpy and C i s the P r a n d t l number. Suffix (l ) denotes the 1OCP2 conditionr outside t h e boundoj:y l a y e r .

I f t h e flow e x t e r n a l t o the boundary l a y e r i s i s e n t r o p i c (and only t h i s case v / i l l be considered i n t h i s paper)

\ * ^ / 2 = const. (4)

or i f a i s the l o c a l speed cf sound and y i s the r a t i o of the s p e c i f i c heats

a'' + ^ ^ u^ = const, ( 4 ' ) The stagnation enthalpy (or as i t i s sometimes c a l l e d the s p e c i f i c t o t a l

energy) equation i s found by multiplying (2) by u and adding i t t o equc^-tion ( 3 ) . I f the stagnation enthalpy

h = i + u^2 the r e s u l t i s •

' " i * - f = f, [^ Ij(h-Cw) f)] (5)

The boundary conditions t o be applied are a t

(11)

and at

y = ~

9u OT

y = ~ u = u (x) T = T (x)

"Sy ~ 3y 0 ,

v/here suffix (x) denotes the V7all value ( y = 0),T is the v/all

shear stress and ö i s the r^te of heat transfer per unit area f ran the wall to the fluid in the boundary layer.

The -viscosity-temperature relation is assumoito be gi-ven by a la\7 of the form

/i ~ T where (w) is a constant, chosen so that in the range of temperatures considered the -viscosity agrees vdth that obtained from the more a.ccurate Sutherland relation . The Prandtl number (ö") is assu-iied to oe constant.

3. Stewartson - Illingv/orth transformation

In the compressible flay a streajn function (^) caji be introduced T/hich satisfies -the equation of continuity ( l ) . Thus

pu _ _9!^ . £v _ ^ (Q o " o

v/hore p is the density at sane constant reference condition.

No-// Stewartson (1949) oJ^d IllingV7orth (l949) hr<.ve shov-m tl-iat by means of the transformation from (x,y) coordinates in the compressible flor/ to (X,Y) coordinates, v/here

y-i (x)\ dx X = X ' o

o / V

(7)

ai^ Y = - i ~ - / ^ ^ ^ ^ dy a p o

If 77 " ^ ^^ equated bctv/een the Sutherland and the approximate viscosity relation i t i s found tliat w = v3 •>• /*^uf,h^ so that u varies

2(1 + T/_ ) betv/een the values / ^ u t h , 1.5 to 0.5

(12)

- 11

(Note 0

3y-i •"^—r G- P y -1 _ 1 ^1 a p o ^o

the equations cf motion and energy become respectively

I K + aY - h ""i dX ^ Vx ^ 9A V''o'^o ^ ^ /

3h 3h ^o '^o 9 r _pjf 3 / , . l i s i ^ 1

v/here U ( X , Y ) = | | = u ( x ^

a / x ) u^(x) a

and U.(X) = f—rS. , I7e f u r t h e r note t h a t

1' V x )

a2 + y^ M? - af + - ^ U^ = c o n s t , ,

^ const / . ^ \

o

and i f (a ) i s chosen a s t h e stagnation speed of sound i n t h e extcarnal flow ( i . e . sirffix (o) r e f e r s t o sta.gna.tion conditions i n the i s e n t r o p i c e x t e r n a l flov/)

( 1 0 ' )

Thus i n tlie transformed flovy the constant f l u i d p r o p e r t i e s outside the boiondcry l a y e r are talcen a t the sta.gnation -values of t h e given

compressible flov/. a^ 1 a^ o = 1

2 al

0

"?

(13)

o o

e q u a t i o n s ( 8 ) and ( 9 ) a r e e x a c t l y t h e e q u a t i o n s f o r an i n o c m p r e s s i b l e flow h a v i n g v e l o c i t y coniponents (U,V) i n c o o r d i n a t e s ( X , Y ) , p r o v i d e d t h e h e a t t r a n s f e r t o t h e Vi/all i s zc2?o. P o r i n t h a t c a s e o n l y h = c o n s t = h^ , I t follov7s t h a t known boundary l a y e r s o l u t i o n s i n i n c o m p r e s s i b l e flow ( X , Y ) c a n be u s e d t o f i n d t h e s o l u t i o n of c o r r e s p o n d i n g c o m p r e s s i b l e flows ( x , y ) . Ho7/ever t h i s method of a t t a c k o n l y a p p l i e s t o t h e c a s e of z e r o h e a t t r a n s f e r and -when o" = w = 1 . I t cannot be vised when h e a t t r a n s f e r i s p r e s e n t and vihen cr and w a r e not e q u a l t o u n i t y .

I n t h e g e n e r a l c a s e equ, ( 8 ) and (9) c a n be v / r i t t e n TT ^ do and U

^ = (1 - s) u,

3S dU^ dX •I. V _9S di V _ o _ 9 o- 3Y V. o "5Y S

(0 f )

9 (^q (1-0-) U l a ? ^

SÏ\^

+ 2 " ^ " T T " /

a

n.

(11) (12) Vifhere

J5o

^ ^ T = C (X, Y ) , and

1 -V,

S i n c e /i ~ T C 0)

-ikT

b u t i n f i n d i n g s o l u t i o n s t o ( l l ) ajid ( 1 2 ) we w i l l assume C i s i n d e p e n d e n t of Y, a l t h o u g h n o t n e c e s s a r i l y of X, I n t h e finaJL answer we w i l l choose a -value of C v/hich g i v e s a b e s t f i t \ d t h knovm e x a c t s o l u t i o n s , E q u a t i o n s ( l l ) a n d (12) c a n nov/be m o d i f i e d , so t h a t C(x) i s e l i m i n a t e d , b y changing e q u a t i o n (7) t o r e a d X /•A a P X = / C(a) -i—- d-z. / ^ ^ a p J n o -^O

Hov/ever no advantages are gained as v/ill be seen in the next section.

The equations in this form were obtained by Cohen and Reshotko (1956b), For the case O" = 1, constant vrall temperature, and U '" A the equations were solved numerically.

Similar equations have baen obtained by Hayes (1956) for the case of imperfect gases, where -the transformation formulae between ( X , Y ) and (x,y) include a general term a(x) in place of a, / and a method for finding a(x)

is given. For a perfect gas a(x) becomesjf h, A ) , which is equal to a^ /

(14)

13

-4 , Von I vises' trajisforma.tion

Equations ( l l ) and ( l 2 ) i n terms of tlo independent -variables (X,Y) can be transformed i n t o equa.tions i n (X, \^ ) by means of Von Mises' transformation. This g i v e s , r e s p e c t i v e l y ,

i = s ^ , . „ - 0 (13)

o ^

since 0 i s a function of X only, and v/here Z = U* (X) - U*(X, f),

Equations (l3) and (14) are t h e transformed boundary la.yer equations for a pseudo-incompressible flo\7 having a density ajid kinematic -viscosity

of P and V r e s p e c t i v e l y . Along and a.cross the boundajy l a y e r a p r o p e r t y S, analogous t o tenporature i s con-vected and diffused,

Illingvyorth (1954) gives similr.ir equations t o (13) and (l4) above, e::cept t h a t i n Ms case he -uses (x,f ) as independent v a r i a b l e s and

puts 0"= G = 1, Illingv/orth uses g i n place of S and h f i n place of Z. Now ^ ~' • - <" -^

S (X,f ) ^

dX " "^ •' o so tliat equation (l3) can b e w r i t t e n

'X ^, fX

r X

cj / Y ,v > d U ^ ( X ) 9 / ,\ • ^^^ (z)

3X I ( 2 - £ S(z, ^) dU^ (z) ) = i^^ UO g ^ (Z - £ S ( z , 0 ) d U ; (z))

v/here f o r compactness t h e i n t e g r a l s a r e v / r i t t e n i n S t i e l t j e ' s form. But a t If- = 0

f^ fX

/ s(z, ff) auj (z) = / s(z,o) du; (z)

•' o .'o and a t \^ = 00 , since S(X,co ) = o

/ :

X

S(z,tf' ) d U^ (z) = 0. I t can a l s o be shown t h a t

(15)

—^ \ S(z,^f ) d u j (z) = O I t f o l l o w s t h a t n e a r ^P- = O v/e c a n v ; r i t e eq-usction ( l 5 ) a p p r o x i m a t e l y a s ax = "o ^ ° - ^ ^(^'^) (^6> 3 G(X.!^) ^ 9 ' 9iS' rX v/here G ( X , I ^ ) = Z - / S ( z , 0 ) d U * ( z ) v / h i l s t f o r l a r , e -va4ues of ^ i t h a s a. s i m i l a r form v d t h rX G(X,^) = Z - j S ( z , ^ ) d U j ( z ) .

The boundary c o n d i t i o r i s f o r G(X,\f'), f o r v/hich ( l 6 ) i s t o be s o l v e d , a r e t h e r e f o r e

^X

If- = 0

G(X,^) . U^ (X) - ƒ S(z,o) dU^ (z)

\f' = 00 G(X,\^) = 0 X H 0 G ( X , 0 ^ 0 v / h i l s t n e a r ï' = 0 'X

G(X,,^) = Uj (X) - U'' (X,^) - ƒ (1 -h^(z)/h^) d u j (z)

o rX h ( z )

= u; ( + 0 ) - u^ (x,^) ^ ƒ - ^ d u ; (z).

o •• E q u a t i o n ( l 6 ) , Vvdth t h e above b o u n d a r y c o n d i t i o n s , i s o n l y a.pproximately e q u a l t o (13) f o r a l l v a l u e s of f , a l t h o u ^ i t i s ex:ict a t if- = 0 aaid

^ =r CO , S i n c e t h e s o l u t i o n of t h e e q u a t i o n of motion n e a r y = 0 (^f- = O) i s

o n l y r e q i d r e d ( s e e p a r a g r a p h 5 belo\7) i t v.dll be assumed t h a t , f o r t h i s

p u r p o s e , e q u a t i o n (16) v d l l be found a d e q u a t e . ( S e e f i r s t footno-fce on page 1 5 , A s i r r i p l i f i e d form fqp e o v n t i o n (14) v d l l nov/ b e obta^ined. S i n c e

z _ i ^ f, }M_ „^ N a^ a^ / 2 = -— h , = (1 + -—- -, U. ) . y-1 TT2 > • ' • 2 a ' ^ ' / v 'JA \ o 1 + ~2~j^2 Ui o \y -^) o i t c a n b e v , r i t t e n y-1 U 3X ~ cr 3

'' '° c.i (uf) = - ( ^ . c f - i 4 - - , ) - H ( u ^ ) 07)

^•^' 9^ '^ ^ o-U^ o ^ vM U f ; 3 ^ ^" 3 ^ °^ ^1 ^ * 2 a2

(16)

15

-"When O" = 1 -the r i g h t hand side of equation (17) v a n i s h e s . Por other values of cr , since U,Z are kncn-m functions of (X,i^), having been foT:ind from ( l 6 ) , equatioii ( l 7 ) oan be solved "oj tlie 'luethod of v a r i a t i o n of parameters' . I n •the case of an inconpressible flow, IT i s independent of ,1 and -the r i g h t hand side of (17) then gives the h e a t tr^uisfer c o r r e c t i o n -term t o allov/ for

the reco"very enthalpy. I t v d l l be assumed tliroughout -tliis paper t h a t the recovery enthalpy i s independent of the v/all tenperature d i s t r i b u t i o n and •that the r a t e of h e a t t r a n s f e r a t the w a l l can be obtained fi*om the s o l u t i o n t o (17) vd-th the r i g h t hand side put equal to z e r o , or*

Tlie above discussion hovye-ver onl;^ a p p l i e s to the case v/hen heat t r a n s f e r t o or from the v/all i s p r e s e n t . Ylhen the v/all heat t r a n s f e r i s zero the term on the r i g l i t hand side of equation (17) c o n t r i b u t e s s i g n i f i c a n t l y to -the value of S near -the v/all. Prom the v/orks of Pohlhausen (1921) for incompressible flcn7, and Brainerd and Emnions (1941) ^or coinpressible flor/ both f o r the f l a t pla-fce i n zero pressure gradien-t, and from the v/ork of Tifford and Chu (1952) i n conipressible flow with a pressure g r a d i e n t , we find -that the value of S

w i s approximately given by S„ = (1 -o-i) w o 1 + ^ if 2 1

a t l e a s t f o r values of the P r a n d t l n-umber near u n i t y . Thus v/hen cr ;^ 1 the v/all temperature v a r i e s according t o -tlie e x t e r n a l v e l o c i t y even v/hen the heat t r a n s f e r i s z e r o .

USSfe^^-J-s. I ^ i"-^6qu.(ll) S{X)f) and C(X,if') are replaced by constant mean values S (X) and C ( x ) , evaluated a t some ' intemiediate' entlialpy, an equation

s i m i l a r t o (16) can be derived. lica/ever such an equation cannot have -the same boimdary conditions l i s t e d above. In the l a t e r sections h (x) v,dll be

-v/

replaced by an intermediate en-fclialpy c o n s i s t e n t -vd-th, but not equal t o , the intermediate enthalpy a t -lyhich C i s eval-ua-ted, b u t -tlie boundary condition

G(X,CO)=0 v d l l always be used. In t h i s v/ay the value of G ( X , 0 ) can be

eniployed f o r a l l values of h.(X) including h (x)=0,

Footnot^e ^2.^ I n s e c t i o n 11 belov/ i t i s argued t h a t S i n equ,(18) should be replaced by tlie difference between the ac-fcual S and -tliat for zero heat t r a n s f e r . This v d l l be an adequate apj)roximation i n many problems. Hov/e-ver i t must not be overlooked t h a t (I7) can be solved exactly i f U(X,i/^) i s obtained from ( 1 6 ) ,

(17)

5» Approximate s o l u t i o n of the transformed eqijr.ticai of moticgi

The approximate fonn of t h e equr^tion cf motion in terms of Von Mises' v a r i a b l e s vra.s found above (equiticjn 16) to be

wliere G(X,OO) = 0 and near ^ = 0

rX h (z)

G(X,^) = u ; (0) -U^(X,^) + j ' ^ -f— dU^ (z) .

This equation i s simila.r to Von Mises' equation for the v e l o c i t y f i e l d i n cji incompressible lajaiin--^r boundary laj^er. I t i s i d e n t i c e l with i t i f G i s replaced by Z = U^ - I j s and C = "^1.

I f only the vroll shear s t r e s s C . ) i s required as a function af U2(x) and h ( x ) , and not the v e l o c i t y profile; o-ver t h e e n t i r e boundary' l a y e r , an ap5)roxima.te solution of ( l 6 ) can be obtained "by rex^lacing U by i t s approxima.te form near the v/all. Tnla method of approach %7as used, by Page and Falkner ( l 9 3 l ) i n obtainijig approximate s o l u t i o n s of t h e incompressible energj'- equation i n t h e case of varia.ble v/adl teniperature, and by L i g h t h i l l (195O) f o r aTjproximate s o l u t i o n s of both the equations of motion ajnd energy i n incoinprossiblo flov/. I f we then follow L i g h t h i l l ' s method of s o l u t i o n v/e find on using the approximate form for U(X,if') near the surfa.ce, namely,

(s^ ino^

u

u

5G

•Sx

0 2 u 1 and If- = / U dY ) Jo (X) C (X)^ *^ ^ (19) t h a t ^ ^ ^ ^ ' W ( X ) C ( X ) ^ * - - ^ (20) vdth the boujidary conditions G ^ 0 a.s ^ ^ co , and a s X ^ 0, and

rX h (z) 2T (X) _/ G = U^ (0) + / -f— d u ; (z) - - ^ f + 0 ( / ^ ) (21)

' 0 1 o

0.

K A s i m i l a r method vms used by Illingv/orth ( l 9 5 4 ) , T^*IO used t l i i s a.pproximation i n the ccmpressible flov/ eqijatp ons i n Von Mises farm.

(18)

17

-If

t = / J - ^ y . ) c (z) dz

o ^ o

(22)

and p is the Heaviside op<:ra.tci''""' corresponding to /QL., then equation (20) becomes

i ^ (23)

pG = 1^ 3^2

This equation i s similar t o eq-uation (66) i n the pa.per by L i g i i t h i l l (1950) and s a t i s f i e s siirdlar boimdary condi-fcions. The s o l u t i o n of (23) s a t i s f y i n g (21 ) i s tlierefore (see L i g h t h i l l )

G = ( | p ^ ) ' fh'^y. 1 4 ( f P ^ ^ ' ) ut(o)

h (z) w h . dz .2 ± Y% + l 3 P '

(f)!

I.?, é p^ / )

3 •> 2 T (X) W^ ' (24)

Since G •* 0 as \ir •* <o t h e c o e f f i c i e n t s of I 2. and I2 must be equal and opposite and t h e r e f o r e f^ h ( z ) , ^^ /?N, 2

U(o)^ * - r ^ 'iUj(z) = V - ^ P"^" r(X) (25)

' i o h^ 1 2-3 ( 4 ) ! /^. ' ' X ^ fe) v/^ r

(t - t, )•

dX d X 3^, 2

(-f)!(Vo)^

0 (x^) V ^ i )

^ ^

j r j z ) C(z)' dz

dX (26)

H I:: and I g are Bessel functions, 3 " 3

3ü£ The opera.ti.onal form of a function f ( t ) v d l l be denoted by f ( p ) , viiere

(19)

This i n t e g r a l eoua-tion f o r t h e v.nll shear s t r e s s i s i d e n t i c a l vdth L i g h t h i l l ' s equation C69) if C = 1 and h = h , ( i n L i g h t h i l l ' s equation t h e § power of P U was omitt ed) .

I f v/e put U ~ X^ and h = const, in equation (26) v/e caji ocmpare the r e s u l t s -idth -those of Cohen end Reshotko (1956). I t can be shewn t h a t e r r o r s of l e s s than ^(M in the value of T are obtained for causes of

w

a c c e l e r a t e d flovy and v/all entlxilpies ( i ) of the same order, or g r e a t e r than t h e mainstream stagnation enthalpy. I n cases of r e t a r d e d flov/ or very cool surfaces t h e e r r o r s i n c r e a s e ajid t h e r e f o r e a c o r r e c t i o n term must be added t o iriprove t h e accuracy as outlined in s e c t i o n 9 and in appe:idices 4 and 5.

Jn the p r e s e n t section t h e a n a l y s i s -tvill be continued vdthout any attempt being made t o improve t h e accuracy,

The conipressible flow solution i s nov/ obtained by a p p l i c a t i o n of t h e Stewartson-Illingworth transfcrma.tion (7) t o equation ( 2 6 ) . I f v/e p u t , for convenience, y = 1,4

then t h e necessary transforma.tion r e l a t i o n s a r e ax ^ 1

^ ^ (1 4- M ; ( X ) / 5 ) *

(27)

U (X) = a^ M (x) (28)

v/here, consistent vdth t h e other approximations, C i s i d e n t i c a l to C,

9 2y — 1

K I n t h i s equation ~ ^ — and i n the equa.tions belov/ ^ y - 1

(20)

19

-Thus equation (26) becomes

/ , r^ h (z) \

-o ( ^^°) ^ 4 "V- ^ '^^'V

''(-l)!(Vo)' ''o °K)'^' ^4(i ^ <(^)J^

(30) I f suffix (a) denotes an a r b i t r a r y constant reference condition ajid

't (x) = T (x)

W^ V/^ A 3 P iU U

a '^a a then equation (28) ca.n bo v.ritten

M«(of . £ 4 1 aH:w =

M : ( ^ ) ,

> d 1

£ 3/of M^(x)V^ / / V , X-» ^"^

f -ajlA ^^ 2 [

„ H L I L ,

I I § / VVo ^ / ax

( r n r - j X , 1 z^ (1 + M Ü ) f^

V/ O / \ ' 5 (30') v/here / a \ 2 / " i^ \ V 3 ' / P ^ a ' \ / ^ / T A i \ ^ / 3 / 10/_ a y \ P /i y = V P i" a3 / = \ T /i / / ^' + ' V 5 ' 0 0 0 0 0 0 a o ^ I f f u r t h e r we now replace fp° by ( TTT ) e t c . and noting t h a t

(21)

T h h T

r -

TT = ï" '-^ -r = ^ * "^5

•w w- v/ a ^ equation ( 3 0 ' ) becomes

a

34.2 r *w(-,)'^' / \ ( ^ ) \ ^ /1*M^(x,)

W^ 1' 1 + Mf/c / (-1)! •'o x / \ a / \ 1 + M J / 5 ± 1-cj , . 7/, \ " ^ / r ^ t ( z ) 2 / i x-2" M + M%^ ^. / ^ 't

' i - ^ - ( i T z ) ) ^ ^ 1 dz dx, (31)

•; •'x^ 2^'^ \ V ^ v \^ + M j ( z ) / 5 / / which i s a convenient non-dimensional form of t h e i n t e g r a l equation f o r t (x) i n terms of M (x) and h ( x ) .

3^ . 2 1,^4^2. 2 , ^-,o

( - § ) ! ~~ ^-^^^ =

T.lien y = 1 equ-^.tion (31) red-uces t o a form s i m i l a r to t h a t in a heated or cooled incompressible floiy. I n tliis case since a = a = a and

J. 1 0 a 1^ = c o n s t . ,

^1 M\^ CbllL ^a^"^

-t ^ a ' , \ 1

3 1:± / 1 1-« ^^'*3

^^ ^ px t ( x ) /2 i ( x ) 2 / z»^ t ( z ) 2 / i rr \

.3i_.__2 / w^ 1 ^ w^ 1 ^ f / _ i / ^ / -^1 \ dz I dx (31')

(22)

21

-Thus f i n a l l y , i n t h i s s e c t i o n , Xfhen y = 1 , a = ^ v/e find t h a t

u

(+o)

Y r^ i

(z) / u ( z )

(^j^)\ rbt

d i -u a 2

3^.2 / - V i i ' ^ ' / ƒ " v ^ ) ' ^•*

i-ihich gives t h e approximate extension t o L i g h t h i l l ' s equation (7)) t o allov/ for v a r i a b l e v/all t e n p e r a t u r e . Equation (31") shows, as no-ted by many workers, t h a t i n an incompressible tmiform flow (u. = const) t h e

skin fricjtion parameter, t , i s independent of the -wall temperature. 6, P.lat p l a t e a.t zero pressure gra.dient and constant v/all tempera.ture

I f M = M (+o) i s t h e constant e x t e r n a l Mach number t o the boundary

a 1

l a y e r on a f l a t p l a t e \iJiose constant v/all enthalpy i s i^^, then from equa.tion (31 ) vye find t h a t

K

w' 1

3^

( 4 ) !

2 A

1 - w

= 0.312

(^Y

1 - 0 ) (32)

This r e l a t i o n i s s i m i l a r to t h a t given by Young (1948) except t h a t 0,312 i s repLTced by 0.332 (Blasius» value)

i j _

and \ i s replaced by ( 0 , 4 5 + 0 , 5 5 •— + O.O36 ll? cr ^),

K

a °'

a

t o give the b e s t f i t with Crooco's exact r e s u l t s .

This comparison suggests t h a t a more a c c u r a t e form of t h e i n t e g r a l equation (31) can be obtained i f

± A

•^—-— i s replaced by u n i t y , and -r- on the r i g h t hand side

(4)1 _ "-a —

i (x) J. i s replaced by (0,45 + 0.55 T^^— + O.O36 H? <T 2).

(23)

Por t h e vinheated inoannressible flov/ case (M •» O and h * h ) m w 1 ' L i g h t h i l l (1950) showed t h a t v/hen u (x) = ox e r r o r s af l e s s than about I5ê i n t h e value of t vAien m > 0 v/oild be obtained i f the constant i n equation (31) vra.s s u i t a b l y mod-ified,

7. Improved r e l a t i o n bctv/een wall shear s t r e s s and Mach number f o r Vfiriable -wall tanpera-ture

I n view of t h e coniparison between r e s u l t s obtained from equation (31) and t h e exact r e s u l t s f o r the fla.t p l a t e t h e following improved form f o r

(31) i s proposed ( y = 1,4) e /-x

•^K(-/^ / !...(-.) . . t X ^ . , . . . "A

fx t {^x ) / i ( x ) i \ -^—- '

1 7T^ ( 0.45 4. 0.55 f^—^ + 0,036 M^ a-2 J ^ / I

+ M ; ( X ) / 5 \

'' J- /1-w\ 7/. ^

' - ^ ^ ' " ' / i ( ^ ) i x " ^ — V i + M V 5 V^ >

( 0.45 + 0,55 rr— + ^'^36 M^ o- 2 ( 1— 1 dz J

\ \ ^ / v>, +M'(z)/y' /

. . ^

(33)

R e s u l t s f o r values cf y other t h a n 1,4 can s i m i l a r l y be obtained. Por instajit Vi*ien y = 1 the terms i n (1 + M*/5) vanish a s v/ell a s t h e term invol-ving t h e P r a n d t l number,

H L i g h t h i l l quoted t h e modified value of the constant a s 1,157 "but a b e t t e r values vrould be 0,98.

(24)

23 -I f v/e p u t ' P(x) ' ' G ( X ) H(x)

/M(o)\'' r \ . ( z ) /M(z)\''

=

(0.45

+

0,55

- V - +

°-°5^

K '^^)

a

i (x) 1 '^'t

= (0,45 + 0.55 -f— + 0,036 M* 0- 2)

a then (33) becomes P(x) / 1 .. I f (x)/3X A V i + M ^ ( x ) / 3 /

p t,/x) / ' , ,xt (.)4 ,-i '

'L TT =(==.' (/ "i ''(^'^) *=. (*)

1 X,

v/here, i n g e n e r a l , P ( x ) , G(X) and H(X) v/ill be known functions of x and eq-uation (34) i s "to be inverted t o find t ( x ) ,

(25)

8, Approximate inversiori of t h e v/o.31 shear s t r e s s integyal equation L i g h t h i l l (1950) has shoi-.n hov/ t h e incompressible form of (33) or (34) can be inverted i f as an approximation

ƒ.

H(Z) dz i s replajsed by

=f -^

t ( x . ) 2 H(x.)

(

\ W 1 1

X - X,; V ' . The r e s u l t i n g s o l u t i o n

f a r t^^(x) i n the case u , ( x ) = ox differed from the exact s o l u t i o n by "^^ 1 C^ when m > 0, I f then e r r o r s of t h a t order of magni-tude are acceptable T/e can r e p l a c e equation (33) or {3li) (but r e t a i n i n g the constant term

3 ^ 2 ")

VW

J

t y ( - ! ) !

V3

3^ 2 r V ^ ) J ^ )

'T-I S

05)

x , ^ ( x - X , ) \U) 2 ± K l - w ) / I + M^(x)/ \ T^ere j ( x ) = ( 0 . 4 5 + 0 . 5 5 - ^ + O.O36 M O" 2) ( 1 L2. ]

a \ 1 + M /„ /

73

V 5

which i s i n v e r t i b l e a s \{x) j ( x ) ' ^ -V3 or t (x) T/^ ' J ( T ) " ^ —^—r-— 2 •"3 r / M , ( o )

(2.3^(4)!) L ^

M J - ^xh^^(z) d M^(z) M^ Jo "1 ( x - z ) ^ ( 2 . 3 \ ( 4 ) ! ) ' / M , ( o ) Y 2 r ' ' \ ( z ) h /M/z) Y -1

V M — > ^ Jo 7 — W A'M—y

a ° ( x - z ) * \ a / , (36)

(26)

25 -NOVT 2.3^ , (-4)! = 0,360 s o tha.t e q u a t i o n (36) becomes t ( x ) 0,360

i-Xx)

v/ 1 1-u 0.45 + 0 , 5 5 - f + 0,036 M* o- 2 1 + MJ(X)^3 ( 3 6 ' ) M , ( o ) x * M Jo (x-z)^ ' M ( Z ) d » J -M a 4 On comparison of e q u a t i o n (3^^) v d t h e x a c t s o l u t i o n s f o r t h e f l a t p l a t e a t z e r o p r e s s u r e gr-adient we s e e t h a t t h e c o n s t a n t 0 , 3 6 0 s h o u l d b e r e p l a c e d b y 0 , 3 3 2 .

Hov/ever L i g h t h i l l (1950) h a s shown t h a t i n i-ncompressible f l o v / w i t h u , ( x ) = e x t h e e r r o r introduced, b y eq-uation ( 3 6 ' ) -varies from + 8,k.fo vixen m = 0 t o - 10,6/? v/hen m = co , A l s o t h e a c c u r a c y i s p o o r v/hen m i s n e g a t i v e . Prom t h e s e r e s u l t s i t would a p p e a r t h a t l i t t l e a c c u r a c y v / i l l be g a i n e d b y a change i n t h e v a l u e of t h e oonstajit 0,360. F o r t h e s p e c i a l c a s e Tviien M = M (+0) and 1 * H ; ( ^ ) / 5 = 1 + cx m (37) , v/here m > 0, t h e n H, (x) ' M = 1 4 . ^ (1 + M S , ) X ' " a M

V5^

a and / M ' ' ( X ) \ ^

_d {-V-)= °('' * K^

dx \ M^ ^ ^ a m X m-i (38) (39)

(27)

I f i n a d d i t i o n

\Uo) - h./x)

= b X n (40)

, where n > 0,

then eqtif.tion (3^^) becomes

tXx)

v/ 1 1 + M

l^s^

V^ ' (0.45 * 0.55 ^ ^ * 0.056 M > 4) ^ ^ ^ * "^'^Vs ^ '

a )

'72

MJ(X)

ir

- 1 h (+o) T/^ -' h (+o) - h (x) W^ ' V/^ ''

"^ (-4)!

( m - l ) !

m. ( n + m (n + m • 1 ) ^ (^-)! 1 - § ) ! -* 3. 4 (41) The values cf t h e constants f o r various values of m and n a r e given in t a b l e 1. (Similar r e s u l t s for other forms of external v e l o c i t y

d i s t r i b u t i o n and v/all enthalpy d i s t r i b u t i o n caji e a s i l y be obtained), As aji exanrple we have taken m = 1 i n both an a c c e l e r a t e d and a r e t a r d e d f l a v and, n = 1 and. 10. These res-ults a r e p l o t t e d i n f i g u r e s 6 and 7 respecti-voly. Since eqijation (41 ) does not contain the c o r r e c t i o n terras, discussed i n the next paragraph, i t i s unlilcely t h a t tlie numerical accuracy of t h e s e r e s u l t s v/ill be good. Ila'/ever t h e res-ults do show some interesting^; t r e n d s . I n a c c e l e r a t e d flow, v,^en the V^TII t e n p e r a t u r e i s roughly constant except neaj? x = 1, (n = 1 0 ) , t h e skin f r i c t i o n i s greater a t a c e r t a i n d i s t a n c e f ran t h e o r i g i n than for t h e case vdiere t h e v/all tejnperature f a l l s lineai:ly frcm t h e o r i g i n , n = 1, On the other hand

i n r e t a r d e d flov/ v/e find tha.t sepa.ra-tion i s earlie.r when t h e v/all temperature i s roughly constant. These ca.lculaticns do not i n fact p r e d i c t sei)a.ration f a r the ca.se n = 1 al-bhough beyond "/l = 0.4 t h e value cf t i s very small, Hov/ever t h e s e p a r a t i o n po-.'.nt i s not v/ell p r e d i c t e d i n t h e a^ove a n a l j ' s i s , as -vdll be shov/n i n tlie next pa.ra.gra.ph, and a small c o r r e c t i o n term must be introduced i n order t o inipro-/-e t h e accuracy. But t h e pred.iction tliat t h e v/all must be cooled s i g n i f i c a n t l y , immediately dov/nstream of the o r i g i n , i n order t o delay s e p a r a t i o n i s an important conclusion,

(28)

2 7

-9» Approximate r e l a t i o n betv/een tfte -v?a.ll shear s t r e s s and Macïh number •VThen t h e v;a.31 tenrpGr^atm-'e i s constajit

When t h e VTall tanpera-ture i s constant and _ d dx m, ra=0 m a X m (42)

equation (36^) becomes ( i f M (+o) = M )

.2*160.

1 4 >| , (0.45 + 0.55 ^ + 0,036 M^ cr ^ ) 1 ^

1-tJ \1 +

MJ

/ 5 ^

'72 1 -»• TT (3 a„ X + 2.25 a x** + 1.9286 I x ' + 1.7357 \ x* + 1.6022 S ai?) n o 1 s 9 4 (43)

I

V/here 0,360 must be replaced by 0,332 i f agreement vdth the exact solution i s desired when M = M = c o n s t .

1 a

A more accurate s o l u t i o n can be obtained following t h e method o u t l i n e d i n appendix 4 . I n t h e s p e c i a l case of zero heat t r a n s f e r vihen M ( + O ) Ï; M and cr = u = 1 we f i n d thxit 1 * 1 1 ^ , , N ' / 2

-! a ^ ^

2 t (x) = . ,

^ + V 5

,,2 dx ^ a dx M

V 2 ^ ( 4 ) t = ' 7 ^ L

d ' a (x^ - -.^) -a:\ 3 z . . . ( 4 3 ' )

K This form of Mach nimiber d i s t r i b u t i o n i s chosen t o f a c i l i t a - t e t h e evaluation of t h e i n t e g r a l i n equ, ( 3 6 ' ) . However any otlier Mach number d i s t r i b u t i o n can be e q m l l y v/ell be used.

(29)

and v;hen M *, i s s u b s t i t u t e d from equaticn (k2) ' "a 2 t (x)

= (--^-^f [( )^

^ 1 + Mwc ^ L «» = o - Dl(.1

a x

mf1

i

•)(-„I,^^)

r

- mf1\ / a X ^ \ / m

ntrO

)(-i-S)..'(;is')(..

KfcrO

m=o -n 1

]l|Mty;

(43") -where 16 1 2 8 . ( - | - ) ! ' = 0.1511 and values of m

^.(^)!(4)!

(^)! (-§)!

P^!

0 3.533

are given i n the folloiving t a b l e , 1 2 3 2.687 2,314

Our r e s u l t s above can now b e conipar-ed with those of Luxtcan and Yoxaig (1958) and others for -^-arious d i s t r i b u t i o n s of Mach nuiriber. Thus v/hen

or = td = 1 and M,

M

- = 1+71

X/_ , where 1 i s a reference l e n g t h , and the v/all teniperature i s constant \re obtain from equation (43)

5.

2 t (x) = 0.720 ( . ^ W ' 1 + M

/5

h V

^-

^

(6S

+4.5

5*) j

^ * t;

(44) where x = / I ,

(30)

29

-2 t (x) = w^ '

1 + M 2 ^ / 2

S i m i l a r l y f a r zero heat t r a n s f e r (h = h ) , v/e obtain frcan equation (43")

x(l + x ) ' \|[S'(1 4.x)« +

l ' —

(440

^ 1 + M 1/5 - 2 \ 3 0.1511 (1 + 7.066 5 + 5.374 x^ ) vdi,ich oan be v/ritten approxin-iately

3 4

(w)

2 t (x) ;^ 0.624 (1 + f ( x ) ) (1 + 7,066 X + 5.374 x ) v/ vAiere f (S) = F 1 + ^ ^ ( l + ^ ) 1 .3 ^/'-•^ 1 x 2 ( i + x)^* , and g (x}= - 5 - ^ ^ , X ^ ; 77oè6 X T 3 ' . 1 7 4 l ? T ^ / 2

From equations (Vh') and ( W ) i^e see t h a i an inrproved form of (Z^) i s , i f 2 t (o) = 0.664,

W"

2 t (x) ~ 0,664

1 + I (6 5 + 4.5 x"*) J

(W)

for acro^ heat t r a n s f e r , vAiile f o r the case of heat t r a n s f e r i t i s suggested

'/5 tliat"§^/,-. i s replaced by .K W h. 6 Y/O

5 \\

5

7

1 - 1 wo v/ (see appendix 5),

These modified r e l a t i o n s are p l a t t e d DJI f i g u r e 1 together v/ith Luxton and Young's resiiLts. The agreement i s vary good. The conclusion from both s e t s of r e s u l t s i s tlia.t marked red.uctions i n sldn f r i c t i o n a r e obtained by ccraling of tlie v/all.

I n a retajrded flow, H = M (I - ^ l ) , r e s u l t s can be obtained i n a * 1 a^ I ly

similar v/ay. Thus from eq-uation (43) v/ith tlie above c o r r e c t i o n term added, v/e obtain t h e r e s u l t s p l o t t e d i n f i g u r e 2. S e m r a t i o n i s delaj^ed by

cooling the v/all and i t i s a l s o noted t h a t t h e v/all shear s t r e s s m u l t i p l i e d by the square root of the Reynolds number, i n i t i a l l y increases s l i p h t l y i n the cooled v/csll case so t h a t for a cer-tain distance c_ f» V •'/x as i n t h e oase of tlie f l a t p l a t e i n zero pressure g r a d i e n t .

(31)

Luxton and Young (1958) ajid. others have considered the following retarded flov? case, u = u (^1 - / l ) , which is not so ameriable to treatment, "by the present method, as is the case of M = M (1 - / l ) . Tl-ie reason for this difference in appl.ication lies in the fact that for the linear velocity gLvadient equation (2f2) becomes an infinite series, v.h.ich is only slowly convergent even -when /l << 1.

?hen cr = CO - 1 (the case treated by Luxton and Young) the modified form of equation 36') becomes

2 t (x) w^ ' = 0,664

1 : 1 ^

1 + M' 1/5

'72

1 - 2 X -J

i

r* (i - X g) dz

(1 - ^ ) V 3 ( ^ ^ < - 5 ( , ^2|)''

(45)

For t h i s form of e x t e r n a l v e l o c i t y d i s t r i b u t i o n i t i s not convenient t o use equ. (43) since a very l a r g e number of terms fire r e q u i r e d for even si.iall values cïf x, T.1ien x « 1 and M = 4 the i n t e g r a l i n equ. (45)

a reduces t o 6 40,96 X

7.4

6 a

2 / 2 . 7 - 6,4 5^ 1 2 / 2 . 7 • • 6 , 4 : 9 \ \ + 6,4 X « 3 n dtp —T a^-l * 2 n (j[3 r."3 + 1/3 arc t a n

A

1 + 2

liJi

viicre a = — - — - - — , The exact value of the i n t e g r a l i s given i n 6,4 X

Appendix 6.

The r e s u l t s f o r t h e cases of zero heat t r a n s f e r and t h e cooled v/all •fdth i, = i , ai-e p l o t t e d i n figures3a and 3b resi)ectively and are compared v/ith the r e s u l t s of Luxton and Young, Ciui-le (l953b) and, Cohen and

Reshotko ( l 9 5 6 ) . The agreement v/ith Luxton and Young's r e s u l t s i s good for zero h e a t t r a n s f e r b u t not so good f o r the cooled wall c a s e s . The r e s u l t s a r e

lov/er, for small values of x, than those of the ' e x a c t ' s o l u t i o n obtained by F.P.L, for t h e cooled v/all c a s e , ^ t a.greement could be obtained i f a s l i g h t l y dtffei'ent value of [ i A i were used,

^ e n t h e pressi-ure d i s t r i b u t i o n , i n place of t h e v e l o c i t y d i s t r i b u t i o n , i s defined as a f\jnction of / I the above method needs only small modification,

(32)

31

-R e s u l t s a r e given i n Appendix 5 for the ca.se of a l i n e a r adverse p r e s s u r e gradient v/he:r"e i t i s shor/ti t h a t a rela!d-vely siirrple r e s u l t i s obtained, i n closed form, when y = 1,5 and t h e wall tempera-ture i s constant. Pigures 4 and 5 shov/ Jhe r e s u l t s obtained both from t le unmodified and t h e modified foriffilae"' for the oases of ze.ro heat tra.nsfer ond t h e cooled T/all r e s p e c t i v e l y , t o g e t h e r vdth the r e s u l t s obtained by o t t e r v/arkers f o r y = 1,4. In b o t h casos i t i s found t h a t only r e l a t i v e l y minor differences e x i s t between these r e s u l t s and those obtained using the

modified fcxrraula. ( i n making t h i s cctirparison i t i s aa^umed t h a t changing y from 1,4 t o 1,5 does not sericrosly modify the r e s u l t s ) ,

I n t h e l i g h t of t h e s e conparisons with other knovai accurB.te r e s u l t s f o r the case of consta.'-^t -vvaJ.1 t a n p e r a t u r e i t i s proposed t h a t in the genera.l case a mor.-, a-.-^rrate form of equation (36') i s v/hen y = 1,4, 2 t (x) = w^ •' (0.45 0,664 w / 1 + M k - ~ \ 1 + M

v5

M ( z ) ' - . ^ (46) where J ( z ) = 5 i (z) wo ^ ' 1: 5 7 i (z) wo^ ^

i

(z)

(47)

I t i s noted t h a t equation (46) can be a p p l i e d t o tlie cases of

a c c e l e r a t e d and retaxded flows as well as t o cases of constant and v a r i a b l e w a l l temperature. The effect of v a r i a t i o n s of cr and w fran u n i t y are a l s o approximately ?. .-•.v'.uded. I t might all.so be noted t h a t the r e s u l t above can be vised f o r a dlsücciated gas i n equilibrium, provided -the Leivis

number for the gas i s equal to u n i t y ,

Now from equa.tion (46) i t i s seen tliat separation occurs v/hen the terms inside the square bracket equal zero, and t h e r e f o r e f o r constant v/all teiTperatvL-e the dist;ance t o s e p a r a t i o n w i l l , in g e n e r a l , be a function botli of \/h. and M , af3 shovm by Gadd (l957b). I^Then M = M (I - / l ) , hov/ever, we see from P i g , 8 thg.t t h e d i s t a n c e t o separa-tion i s independent of M for a constant value of "V/h • The t r e n d s are simila.r t o t h o s e

X ^

shoT/n by Gadd for u = u (1 - / l ) apart from t h e l a t t e r r e s u l t .

K The c o r r e c t i o n t-;i;!i i s modified s l i g h t l y t o allow far the difference i n y between these r e s u l t a and the value of y = 1,4 used pre-viously,

(33)

A d i r e c t comparison of G a d d ' s r e s u l t s v d t h t h o s e o b t a i n e d from e q u , ( 4 5 ) h a s n o t b e e n made, a l t h o u g h c l e n r l y i n -this c a s e t h e d i s t a n c e t o s e p a r a t i o n w i l l be a f u n c t i o n of b o t h M and \/ii • The i n c r e a s e i n t l i e d i s t a n c e t o s e p a r a t i o n a s t h e v / a l l t e i a p e r a t u r e i s iov/ered i s i n ö u a l i t a t i v a a g r e s n e n t -with tiie r e s u l t s of I l l i n g i v o r t h ( l 9 5 4 ) a n d Gadd. ( 1 9 5 7 b ) . I n i n c o n i p r e s s i b l e flov/ t h e d i s t a n c e t o s e p a r a t i o n , a s a f u n c t i o n of v / a l l t e n p e r a . t u r e , f o r t h e e x t e r n a l v e l o c i t y d i s t r i b u t i o n u = u (1 - ^/l) i s p l o t t e d i n P i g . 9 t o g e t h e r w i t h t h e r e s u l t s of I l l i n g w o r t h ( l 9 5 4 ) and

t h e t e n t a . t i v e r e s u l t s of Gadd ( l 9 5 7 b ) . I t i s s e e n t h a t t h e p r e s e n t metliod p r e d i c t s s e p a r a t i o n d i s t a n c e s g r e a t l y i n e x c e s s of t h e l a t t e r r e s u l t s f o r t h e c o o l e d v / a l l whereas f a r t h e h e a t e d -wall t h e agreement i s b e t t e r ,

1 0 , A-pprcximate s o l u t i o n of t h e t r a n s f o r m e d s t a g n a t i c n e n t h a l p y equatican The approximate form f o r t h e t r a n s f o r m e d s t a g n a t i o n e n t h a l p y

equa.tian i n terms cf Von M i s e s ' v a r i a b l e s v/as found above ( e q u a t i o n I 8 ) t o b e

9X (x ölf" \ ^^

where S(X,co ) _ 0 , and S •» 0 a s ][ •• 0 , and

\(x) _ vx) rj:;:

s .

,

-

^

. . . ^ ^ . ^ ^ . (^)

a s ^P' •• 0, The r a t e of h e a t t r a n s f e r from t h e w a l l t o t h e f l u i d , i s

•W-' - "0 V - . . Y ^ 0

U x ) = 'K \dY

and t h e P r a n d t l n-umber ( cr) i s given b y ^^ 0

o- = k . o

I n tlie cja.se of z e r o h e a t t r a n s f e r we must u s e t h e f u l l e q u a t i o n (17) and v/e -write t h e s o l u t i o n of t h i s e q u a t i o n a s S (X, f),

I f i n a f i r s t a p p r o x i m a t i o n , t h e c h a n g e s i n t h e v e l o c i t y d i s - t r i b u t i c n U(X, i^) and. C(x) a r e n e g l e c t e d be-tx?een tlie c a s e s of h e a t t r a n s f e r a n d

z e r o h e a t t r a n s f e r , ^ v/e s e e t h a t a s o l u t i o n of t h e complete e q u a t i o n (17) i s S = S «* S , v-iiere S (X, if') s a t i s f i e s t h e f o l l o v d n g e q u a t i o n , (v/hich i s a n improved form of ( 1 8 ) ,

H T h i s i s ta nt am ou n t t o s a j d n g t h r . t t h e v / a l l s h e a r s t r e s s i s approxima^tely independent of h e a t t r a n s f e r . T h i s i s trvie i n a n i n c a n p r e s s i b l e f l a / / , s i n c e t h e v e l o c i t y d i s t r i b u t i o n i s t h e n i n d e p e n d e n t of t h e t e m p e r a t u r e d i s t r i b u t i o n , I t i s however n o t t r u e i n t h e c a s e cf t h e p s e u d o - - ' n c o m p r e s s i b l e flov/, vAiose e q u a t i o n of m o t i o n i s ( 1 3 ) , on a c c o u n t cjf t h e t e r m i n S, The e r r o r \ d . l l b e g r e a t e s t when t h e v / a l l i s c o o l e d . But b e c a u s e we a r e going t o assume t h a t a good a p p r o x i m a t i c n t o t h e r a t e of h e a t t r a n s f e r c a n be o b t a i n e d from a c r u d e a p p r o x i m a t i o n t o t h e v e l o c i t y d i s t r i b u t i o n , v/e -vdll c o n c l u d e , v d t h o u t p r o o f , t l i a t t h e e r r o r s due t o t h e one a p p r o x i m a t i o n a r e no g r e a t e r t h a n t h e e r r o r s due t o t h e o t h e r .

(34)

• 33

-8B 1

Gv-)

(49)

with t h e boundary conditions S • • O as f ^ co ^ and as X -•• O, and

(50) h _ (X) - h (X) -WO ^ ' w -^

n

~ E —

2 if-1 if-1 ' O W

as ^ H o, h i s t h e v/all enthalpy a t zero heat t r a n s f e r . v/O

I f , follov/ing L i g h t h i l l , we assume t h a t an approximate s o l u t i o n of

(49) i s found by using an approximate form for U(X, \^), such as equation ( l 9 ) , and put

t =

X

cij)

'o equation 49 becomes n - / 2 /^ r (z) dz P,.. \ o w^ ' o c. (51)

P s.

_9

i

3 S

3 f (52) v/here p i s t h e Heaviside operator co]n.-esponding t o -rr , This equation f o r S and i t s boundary conditions a r e s i m i l a r t o L i g h t h i l l ' s equation (21) f o r t h e tenperat-ure d i s t r i b u t i o n i n an inccmpressible flow. The s o l u t i o n of (52) s a t i s f y i n g (50) Ic-a.ds t o

^w

^l"7^7^) " '"' (4)! ^ V h ;

or

yx) = 1 ^ 4 3t_i

( 3 0 - ) ^ ( ^ ) . C(z) / r ^ ( z ) dz X

ƒ C(z)/yz) dz

o o -Videre t h e l a t t e r integ^ral i s a S t i e l j e s i n t e g r a l .

Y d(h (X ) - h (X ) V; {53)

(35)

If v/e na-/ transfonü equation (53) back into the compressible flow coordinates (x,y) then for y = 1,4 v/e find tliat

^s^)

V (hUo)^hUo)''^'a^a^'a w^ wo' vr ' (^)! 33 0-3 X 1 — T X 4 1

—r

X 4 X / i a

TTz)

W^ '' -^ w^ ' X, ^ 7 2 ^ V-O)

"T"

v/ V ï j z ) / I +Mf/^ \ V 4 v/^ 4 1 a

TTz)

v/^ ' 1-co 2 Ë/L 1 + M^(2)/5 1 + Mt(x)/3

4

dz

\V4

1 + M*' ^"^^ J dz 1 + M , ( z ) ^ 5 ^ 1 "5 d(h (x ) - h (x ) ) ^ w'- 1 "^ wo'' 1 ^ ' ( h (+0) - h ( + 0 ) ) V w^ ' v/o^ ' ' • • w t » » c I (54)

and can be e\'aluated vdien t , M , i a,re given as functicais of x, v/' 1 ' v/ ^

YHien M = const. = M v/e found, from equa.tion ( 3 6 ' ) tliat 0,360

[0.i

1-0) 2

VT ^ 1 (x) , ±v,

.45 + 0.55 T^— + 0.036 i r a« I - a a J

liiieixs the term i n the denominator replaced \yV.^^ U+ a/5^ "y/''"^^ , h = i

1 a

I f v/e then assume t h a t t and h / /^ .,,2 \

•w vli (1+ M V.) '^ w^ a y

can '-«e tal'.en as constants during i n t e g r a t i o n we find fran (54) t h a t

% / - ) "X"' (0,360)^ (j)- " l - C O (h^(+o)-h^^(+o)) xl a a ""a Q" 3 5S ( l ) ! ( o , 4 5 + 0,55 t ^ + 0,036 l / cr^ ( x ) 1 +

a[Vx,) -h^^(x,)j ^

o (1 - ( " V , ) ^ ) ^ ( h , ( . o ) - h^^(.o; ) J 0,348 , a (55) 4, ( 0.360 , 3 r 1

(36)

^33

-The constant 0.348 d i f f e r s from t h e value 0.339 given by L i g h t h i l l (1950) for he used t h e more accurate value 0,332 i n the expression f o r t

w i n place of 0,360 used hjere.

As previously s t a t e d the value of h for zero heat t r a n s f e r ( h ) w ^ wo i s given approximately by the Pohlhausen r e l a t i o n

( 5 6 ' )

I f f u r t h e r the v/all tempera-ture i s constant then the Stanton heat t r a n s f e r coefficient (k. ) i s given by iVD

i

1 o r , " l l 1 f o r cr new uni-ty, 1 4. ^ M^ 0 - ^ 2 1 ( I - O ^ ) ^ M ; (x) W ^ M^ (x) where p /i w w a a ^ x = ) * ^a ^ a ^ ^a

is the unmodified value and

w

I n t h e case of a flow conmencing frcm a stagnaticn point t t e use of the reference Mach number (M ) i s not convenient unless i t i s , say, the

freestream Mach number,

An alter'native form of (54) v ^ c h i s s u i t a b l e i n t h i s case i s

1 -0) i -JL

y^o r x r _j

(t.Y l^^A^

(h,^(+o) - h , > o ) ) ^i ^ ^ ^ , • (±)! (30-)^ V^w / (1 ^ yiA^f/^9^

i ^ / \ w ^ ^ dz 1 ^ J o 3(34.ÓJ) - J ! ^ (1 . Mj(z)/3) ' - t ^ ^ - V

(37)

i ^ / ^ ) x ( z ) M ^ ( z ) / 2

I 3i3r5r

5C, (1 .^ Mj(z)^,_) 4 dz (h^(4.0) - h^^(+0) ) (58) -ïshere ' ' . ( x ) = r (x) v r ' \, X P /i u7 1 1 1

But i n p a r a g r a p h 8 v/e have found t h a t viiien t h e i v a l l t o n p e r a t u r e i s c o n s t a n t and M (+c) = O, >:(x) = 0,360 _ i 1 v/ X o ( x - z ) ^ d M ^ ( z )

Mt(x)

3. 4 p r o v i d e d -that i does n o t a p p r o a c h z e r o . w i \ ^ _ w 1

(55)

Thus v/hen M (x) = cx' (m > O) 3 1 - c o x(x) = 0.360 [^^ i \ 2 i -»7 (2m)j_H

(2n--i)!

:M

(60) and when m = 1 5f(x) = 1.112 ( w 3. •4 i i w 1 - C J 2 (61)

I f i n e q u a t i o n (58) v/e omit t h e t e r m s i n ^ + llf y^ and r e p l a c e them b y u n i t y , t h e n f o r const.ant v / a l l t e m p e r a t u r e ( n o t i n g t h a t ^ i s a p p r o x i m a t e l y

independent of x ) ajid assijming t h a t h , i s a c o n s t a n t ,

h - h V/ 'v/O 1 1 1 v/o 1 / 0 , 3 6 0 ( m + 1) 2 1 ^ 2

(£•! <^

1 - ( j 1.

' ^ ' • ' ( M L . H I L ^ '

(2n - f ) ! w (62)

But t h e l e f t liand s i d e e q u a l s k.,(x) ^ , v/here R = 1 ^ ^ ,

h X X ^ so t h a t ^-vhen m = 1 ^ (^) ^ 0.6.37^ K^a 0 - 3 0.637 ""zn T" ^^x ^ v/ p ^ w v/ p iti 1 1 i \ 2 1 w i ^4 w h 1 (63)

(38)

3 7

-IIcw for the case u ~ x Cohen and Reshotko (l956) find f o r

deduce t h a t

1

cr = CO = 1 (tvro-dimensional body)

k^(x) = -^f^^—Z vdillc Pay anu Riddoll (1958) o- • -'^^

/ P U \ ° ' ^

V

\ 0 ^U I V "W \ • • x) = —**:--—— I -~ for a i r under equilibrium

0,6^ \ p H J

o" V R 1 1 X

d i s s o c i a t i o n conditions vdth the Lewis number equal t o u n i t y ,

The difference between the values of the constants 0,637 and 0.54 i s partHy the r e s u l t of u?ing t h e -value of 1.112 as the constant i n the sliear s t r e s s parameter term. Of g r e a t e r importance i s the difference i n

/ P /^ \

the powers of f -^—" J, The r e l a t i o n s are only similar when u has a

^ 1 1 ''^

value near 0 , 4 . However i f the -viscosity i s e-valuated frcm the Sutherland formula i t i s found, on comparison vdth t h e r e a t i o n u ~ T t h a t w v a r i e s frcm 1.5 a t very low temperatures to 0*.5 a t very h i ^ teniperatures.

/

P

Ut \^ ?Kr\^

Thus t h e r e l a t i o n I • "^ ) U ^ J may not i n f a c t d i f f e r markedly

. , 0.1 ' "' '

from 1 —^'—1 a t high temperatures. 1 1 ^

I n appendix 4 Spald:l-^g's method i s described whereby tb^ accuracy of t h e above c a l c u l a t i o n s can be im.proved,

11<> Aclmov/ledr^ement

The c a l c u l a t i o n s v/ere performed by Miss R, P u l l e r and Mrs, Lennard, 12, Ccnolusiona

The compressible flov/ laminar boundary l a y e r equations have been solved approximately f a r a r b i t r a r y p r e s s u r e gradient and w a l l temperature d i s t r i b u t i o n

hy

(a) reducing t h e compressible flov/ equations t o eqintions s i m i l a r t o t h e incanpressible flow equations using the Sv/etartson-Illingivorth transformation, and

(b) sol-vdng t h e r e s u l t i n g equations by L i g h t h i l l ' s method t o obtain t h e slcin f r i c t i o n and r a t e of heat t r a n s f e r ,

(39)

The method i s p r o b a b l y s u f f i c i e n t l y a c c u r a t e f o r e n g i n e e r i n g p u r p o s e s i n r e g i o n s of nega.ti-ve presi^ure g r a d i e n t and f o r s m a l l a d v e r s e p r e s s u r e g r a d d e n t s , p r o v i d e d s e x n r a t i a n i s not approached. The method

i s hov/e-ver improved i n a.ccuracy i n t h i s r e g i o n by u s i i g t h e m o d i f i c a t i o n t o L i g h t h i l l ' s method i n t r o d u c e d b y S p a l d i n g ( 1 9 5 8 ) . RIirriREMOSG 1 . B r a i n e r d and 1941 T a n p e r a t u r e e f f e c t s i n a l a m i n a r EmmoriS 1942 c o m p r e s s i b l e - f l u i d boundary l a y e r a l o n g a f l a . t p l a t e . J.Appl.Mech. V o l . 8 (1941) p p . 1 0 5 - 1 1 0 . E f f e c t of v a r i a b l e v i s c o s i t y on Boundary l a y e r s , v/ith a d i s c u s s i o n of d r a g measurements. J,Appl.Mech. Vol. 9 ( l 9 4 2 ) p p . 1 - 6 , 2 . Chapnan D . R . , and 1949 Rvibesin, H.ïï,

3 . Cohen C . B , , and 1956a R e s h o t k o , E. 4 . Cohen, C B . , and 1956b R e s h o t k o , E. 5 , C u r i e , N, 1957a 6 . C u r i e , N. 1958a 7 . C u r i e , N. 1958b Tenipera-ture and v e l o c i t y p r o f i l e s i n t h e c o m p r e s s i b l e l a m i n a r boundary l a y e r -vdth a r b i t r a r y d i s t r i b u t i o n of s u r f a c e t e n p e r a - t u r e . J n , A e r o , S c . V o l . 1 6 , p p . 5 4 7 - 5 6 5 . S i m i l a r s o l u t i o n s f o r t h e c o m p r e s s i b l e l a m i n a r boundary l a y e r w i t h h e a t t r a n s f e r and p r e s s u r e g r a d i e n t . N.A.C.A. r e p . 1 2 9 3 ( f o r m e r l y N.A.C.A. T.N. 3325 ( 1 9 5 5 ) ) . The c o m p r e s s i b l e l a m i n a r b o u n d a r y l a y e r v d t h h e a t t r a n s f e r a n d a r b i t r a r y p r e s s u r e g r a d i e n t .

N,A C,A, r e p . 1294 (fon-nerly N.A.C.A. T.N.3326 ( 1 9 5 5 ) ) . A m o d i f i e d P o h l h a u s e n method f o r sol-!:ition of l a m i n a r boundary l a y e r s . P a r e I I Comp-.-essible flov/ w i t h z e r o h e a t t r a n s f e r . A.R.C 19342 ( l 7 t h J a n e 1 9 5 7 ) . Heat t r a n s f e r i n stea.dy c o n i p r e s s i b l e flow p a s t a w a l l w i t h n o n - u n i f o r m t c a n p e r a t u r e . A . R . C , 2 0 , 0 0 7 ( I 8 t h March 1 9 5 8 ) , The s t e a d y ccanpressible l a m i n a r boundary l a y e r , v d t h a r b i t r a r y p r e s s u r e g r a d i e n c and loniform v/all t e m p e r a t u r e .

(40)

3 9 -References (Cpntinued) 8, Page, A , , and F a l k n e r , V,M, 9. Gadd, G.E. 10, Gadd, G.E, 11, Gadd, G E. 12, Gadd, G.E. 15. I n a i , I . l 6 . Levy, S. 1931 1956a 1956b 1957a l95'/b 13. IllingKrcrth, C.R, 1949 14. I l l i n g w o r t h , C.R. 1954 1958 1954

R e l a t i o n betv/een heat t r a n s f e r and surface f r i c t i o n f o r laminar flovT, R & M,1408,

An experimental i n v e s t i g a t i o n of heat t r a n s f e r effects on boundary l a y e r separation in supersonic flow, A.a.C. 18,597 (25th A p r i l 1956) A t h e o r e t i c a l i n v e s t i g a t i o n of t h e

e f f e c t s of Mach nuraber, Reynolds number, v/all temperature and sijrface curvature on laminar separation i n supersonic flov/. A R.C.I8,494 (13th June 1956).

The numerical i n t e g r a t i o n of t h e laminar ccmpressible boundary layer equations, vdth s p e c i a l reference t o the positicjn of separation v/hen t h e v/all i s cooled. A.R.C. C.P,312. A reviev/ of t h e o r e t i c a l work r e l e v a n t t o t h e problem of heat t r a n s f e r

e f f e c t s on laminar separation, A R.C. C.P,331.

Steady flovv in the laminar boundary l a y e r . Proc, Roy, Soo, (A) 199

p.533 - 558,

Separation of a conipressible laminar boundary l a y e r ,

Quart, Mech, and Appl, Maths. Vol, VII p . 8 - 34.

On the hea.t t r a n s f e r to constant property laminar boundary layer v/ith pov/er function freestream v e l o c i t y and wall temperature d i s t r i b u t i o n s . Quart. App, Maths, Vol. XVI No. 1 p. 33 - 45.

Effect of large temperature changes (including -viscous heating) upon laminar boundary l a y e r s vdth v a r i a b l e freestreajn v e l o c i t y ,

(41)

References (Continued) 17. Liepmann, H.TiT. 1958 18, L i g h t h i l l , M.J. 1950 19. Luxton, R . E , , and 1958 Young, A.D, 20, Morgan, G.¥,, 1958 Pipkin, A . C , and ïïamer, 17. H. 21, Pohlhausen, K, 22. R e t t , N, 23. Sch-uh, H. 24, Spalding, D.E, 25. Stavartson, K, 26. T.ani, J , 1921 1953 1952 1958 1949 1954 A simple derivation of L i g h t h i l l * s heat trajisfer formula,

J n , Fluid Mech, Vol. 3 p a r t 4 p.357 - 360.

Contribution t o the theory of heat t r a n s f e r througli a laminar boundary l a y e r ,

Proc. Roy, Soc, ( A ) Vol, 202 p . 359-377. Skin f r i c t i o n i n tire ccmpressible laminar boundiir'^ layer vdth heat tra.nsfer and pressure g r a d i e n t . A.R.C, 20,336 ( 7 t h jtAly 1958).

On heat t r a n s f e r i n laminar boundary l a y e r f loivs of l i q u i d s having a very small P r a n d t l numbca:, J n , Aero. Sc, Vol. 25, No. 3 pp.173 - 180,

Der Y/flrmeaustausch zvdschen f e s t e n Kftrpem und Pl-Ussigheiten mit k l e i n e r Reibung und k l e i n e r FörTneleitung,

Z, Angew, Math. Mecdi. Vol. 1 pp.115. Ccmrpressible laminar boundxiry l a y e r s

on a heat i n s u l a t e d body.

J n , Aero.Sc. vol. 20 pp. 67 - 68. On asymptotic s o l u t i o n s for t h e hea.t t r a n s f e r a t varying -wall tariperatures i n a laminar boundary l a y e r -with Har-jree's v e l o c i t y p r o f i l e s , J.Ae.Sc. Vol. 19 No. 5 pp. 341-348, Heat t r a n s f e r from surfaces of non-uniform temperature.

J n , F l u i d Mech. Vol.4 p a r t 1, p . 22 - 32.

Correlated incanpressible and c a r p r e s s i b l e boundary l a y e r s ,

Proc, Roy, Soc. ( A ) Vol. 200 p.84-100, On t h e approximate s o l u t i o n of t h e laminar boundary l a y e r equations, Jn,Aero,Sc. Vol. 21 No. f pp. 487-504,

(42)

41

-References (Continued)

27. Tifford 1951

28. Tiff card, A.N., and 1952 Chu, S.T, 29. T r i b u s , M., and 1955 l a e i n , J . 30. Young, A,D, 3 1 , Hayes, W,D, 1949 1956 In t h e theory of heat t r a n s f e r through s. laminar boundary l a y e r , . Jn.Aero.Sc. Vol. 18 No. 4 p.283.

On heat t r a n s f e r , reco-very f a c t o r s 'and spin for laminar flows,

Jn,Aero,Sc, Vol. 19. p.787-789. Forced convection throxogh a laminar boundary l a y e r o-ver an a r b i t r a r y surface vdth an a r b i t r a r y tanperature v a r i a t i o n .

Jn.Aero.Sc. Vol. 22, p , 6 2 ,

Skin f r i c t i o n in t h e laminar boundary layer i n conipressible flov/.

Coll,Aero. Cranfield, Rep,20 (l949) and Aero,Quart, Vol. 1 p.137-164. The laminar boundary l a y e r s vdth heat t r a n s f e r ,

J e t P r o p u l s i o n , Vol,26 No. 4 PP 270-274.

Cytaty

Powiązane dokumenty

P odobną dyskusję, przem ilczaną przez mass media, udało mi się zorganizować w Pracowni Dziejów W arszawy IH PA N przy czynnej pomocy Jana Górskiego i wybitnego

proposed ASMC for all the three joints are tabulated in Table I in terms of root mean squared error (RMSE) and normalized.. Due to lack of space, only the results from exp-5 with

As stated above, the shipowner wants to know what service performance he gets in return for the ship's fuel bill, but he simply cannot judge unless he has speed, revolutions and

Kartezjusz, polemi- zując z Regiusem, bronił się przed stawianymi mu zarzutami, pisząc, iż „[…] dla ciała ludzkiego bycie złączonym z duszą nie jest czymś

[r]

Dał on w iele informacji technicznych dotyczących w y ­ mienionych okrętów, toku ich projektowania itd.; przedstawił też zagadnienia kadr technicznych ówczesnego

Autor zwraca uwagę na dwa aspekty wykorzystania języka Python: jako platfor- my do tworzenia profesjonalnych rozwiązań dla branży naftowo-gazowniczej, a także jako darmowego,

The tested samples of engine oils collected after 300 h of flex fuel type engine operation retained their rheological properties on levels corresponding to 5W-30 viscosity class..