• Nie Znaleziono Wyników

Structural reuse of wind turbine blades through segmentation

N/A
N/A
Protected

Academic year: 2021

Share "Structural reuse of wind turbine blades through segmentation"

Copied!
12
0
0

Pełen tekst

(1)

Delft University of Technology

Structural reuse of wind turbine blades through segmentation

Joustra, J.J.; Flipsen, Bas; Balkenende, A.R.

DOI

https://doi.org/10.1016/j.jcomc.2021.100137

Publication date

2021

Document Version

Final published version

Published in

Composites Part C

Citation (APA)

Joustra, J. J., Flipsen, B., & Balkenende, A. R. (2021). Structural reuse of wind turbine blades through

segmentation. Composites Part C, 5, [100137]. https://doi.org/10.1016/j.jcomc.2021.100137

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

ContentslistsavailableatScienceDirect

Composites

Part

C:

Open

Access

journalhomepage:www.elsevier.com/locate/jcomc

Structural

reuse

of

wind

turbine

blades

through

segmentation

Jelle

Joustra

,

Bas

Flipsen

,

Ruud

Balkenende

Faculty of Industrial Design Engineering, Delft University of Technology, Delft 2628 CE, the Netherlands

a r t i c l e

i n f o

Keywords: Composite materials Circular economy Recovery Structural reuse Design Design strategies Wind turbine blades

a b s t r a c t

Compositematerialsoffermanyadvantagesduringtheusephase,butrecoveryattheendofalifecycleremains achallenge.Structuralreuse,whereanendoflifeproductissegmentedintoconstructionelements,maybea promisingalternative.However,compositesareoftenusedinlarge,complexshapedproductswithoptimised materialcompositionsthatcomplicatereuse.Asystematicapproachisneededtoaddressthesechallengesand thescaleofprocessing.Weinvestigatedstructuralreusetakingwindturbinebladesasacaseproduct.Anew segmentationapproachwasdevelopedandappliedtoareferenceblademodel.Therecoveredconstruction ele-mentswerefoundtocomplytogeometricconstructionstandardsandtooutperformconventionalconstruction materialsonspecificflexuralstiffnessandflexuralstrength.Finally,weexploredthereuseoftheseconstruction elementsinpractice.Together,thesegmentationapproach,structuralanalysisandpracticalapplicationprovide insightsintodesignaspectsthatenablestructuralreuse.

1. Introduction

Compositematerials,knownfortheirlightweightproperties,are of-tenusedtomakeproductsmoresustainable.Lightweightdesignsreduce fuelconsumptionintransportapplications,andtherebyeffectively re-ducethecarbonfootprint[1].Lightweightingalsoallowsefficient ma-terialuse,andmakeslargespansinbuildingandarchitectural appli-cationspossible[2].Compositesareusedtomaximiseperformanceof these structures.However,whenthecomplete lifecycleistaken into account,theenvironmentaladvantageofusingcompositematerials be-comeslessevident[3,4].

ThelifecycleperspectiveiscentraltotheCircularEconomy(CE) con-cept.TheCEaimstopreserveresourcesbykeepingproductsand mate-rials‘intheloop’.Thiscanbedonethroughextendingproductlifetime andrecoveringproducts,componentsandmaterialswhentheyreach theirendofoperationallife[5].Maintainingproductintegrity,through e.g.reuse,repairorremanufacturing,isconsideredmostdesirable. Ma-terialintegrity,i.e.recyclingofmaterial,isanecessitywhenproducts cannolongerbekeptalive.Preferably,recyclingretainsmaterial prop-ertiesandavoidsdowngrading[6,7].

Compositematerialsenablelongproductlifespansandrequirelittle maintenance.Highqualityrepairscanbemadeinsitu:restoringoriginal strengthandappearance[1,8].Reuseatproductlevelismoredifficult becausethematerialcompositionisoftenoptimisedtoaspecific ap-plication.Thismaximisestheperformanceintheusephase,but compli-catesreuseinanothercontext.Forexample,windturbinebladescannot

Abbreviations: CE,CircularEconomy;EoL,EndofLife;GFRP,GlassFibreReinforcedPlastics;UD,Uni-Directional;DB,Double-Bias.

Correspondingauthor.

E-mail address: j.j.joustra@tudelft.nl(J.Joustra).

readilybeexchangedbetweenwindturbines.Consequently,material re-cyclingremainsastheonlyrecoveryoption.

Recycling composite materials is challenging due to the way in whichvariousmaterialsarestructurallycombinedatasub-millimetre scale.Thermosetresinsandglassfibres,GlassFibreReinforcedPolymers (GFRP),constitutethemajorityofcompositematerialsintoday’smarket [9].Forthesematerials,co-firinginacementkilnremainstheadvised recoveryroute[10].However,theenergygainislow,thematerialislost forfurtheruseandtheeconomicperspectiveislimited[11–13].Thus, muchofthematerialislandfilled,resultinginalossofmaterialsand value;andassuchlandfillingisatthebottomofthewastemanagement hierarchy.Topreventsuchloss,landfillingofcomposites hasalready beenprohibitedinanumberofcountries[14,15].

Therearevariousexplorationsintocircularsystemsforcomposite materials.Forexample,currentresearchprogramsinclude demonstra-torsforcircularcompositeproducts[16,17]andrecoveryofEndofLife (EoL)windturbineblades[18].Moreoveranumberofcompanieshave developednewreprocessingmethodstoclosethecompositematerial loop[19–22].Atagovernmentallevel,theincreaseduseofcomposite materialsislikelytoleadtonewpolicytargetingrecycling[23–25].In themeantime,compositeproductsnearingtheirEoLpresenta press-ingproblem.Currentrecyclingcapacityisinsufficientwhileincoming decadesthecompositewastevolumewillincreasestrongly[26,27]. Bet-tersolutionstodealwithEoLcompositeproductsarethereforeurgently required.

Structuralreuse,alsoreferredtoasstructuralrecycling,isan attrac-tivealternativesolutionforEoLcompositematerials[28–32].Rather

https://doi.org/10.1016/j.jcomc.2021.100137

Received22September2020;Receivedinrevisedform1March2021;Accepted18March2021

2666-6820/© 2021TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(3)

Fig. 1.Schematicrepresentationof NREL5MWblade, showingairfoilsandmainsections[36,40].

thanshreddingtheproductandattemptingtoseparatereinforcements fromthematrix,asisdoneincurrentrecyclingprocesses,thecomposite isreusedasastructuralmaterial.Comparedtocurrentrecycling prac-tices,structuralreuserequiresrelativelylittlereprocessingeffortand, toalargeextent,retainsthematerialquality[29].Assuchitisa com-pellingalternativeroutetorecapturevalueandextendthelifetimeof thematerial.Reusecanbedonebydirectlyharvestinglargepartsorby cuttingconstructionelementsfromtheEoLproduct.

Structuralreusehasbeendemonstratedforwindturbineblades,see e.g.[29]foranoverview.Bladesareinterestingobjectsforthisreuse ap-proachastheyretainhighstructuralquality,evenafter20yearsofuse. Moreover,bladesconsistofmultiplematerialsandlayuptypes,which canbereusedinmanydifferentapplications.

Largestructuralpartshavebeenrepurposedforexampleforoutdoor applicationssuchasstreetfurnitureandaplayground[33].However thispracticeis regardedasbeingdifficulttoupscale.Thelarge size, complexshapeandcomplexmaterialcompositionallrestrictreuse op-portunities[34].Itisexpectedthatcutting-uptheselargestructuresinto practicalandusableconstructionelementslikebeamsandpanelswill diversifythepotentialapplications[28].

Inanearlierdesignstudyweexploredthereuseofconstruction ele-mentsfromawindturbineblade[35].Wefoundstructuralreusetobe feasible,butnewsegmentationapproachesneedtobeemployedtodeal withtheproduct’scomplexshapeandstructure.Inaddition,weexpect thattheyieldofreusableconstructionelementsfromabladecanbe higherand,withagoodpatterningapproach,thereuseprocesscanbe mademoreefficient.Thisgaverisetothefollowingquestions concern-ingstructuralreuseofcompositeproduct,whichareaddressedinthis paper:

• Howtodetermineasegmentationpatterntoobtainreusable con-structionelements?

• Howtocomparestructuralquality ofrecovered construction ele-mentstoconventionalconstructionmaterials?

• Whichdesignaspectsenableorlimitstructuralreuse?

2. Materialsandmethods

Forthisstudy,wetookwindturbinesbladesascaseproductasthese representarealandpressingrecyclingproblem.Westudiedstructural reuseofcompositematerialsfromawindturbinebladeusingthe fol-lowingapproach.First,segmentationpatternsforconstructionelements weredeterminedbasedonthestructuralandgeometricspecificationsof thewindturbineblade.Then,thestructuralpropertiesofthese construc-tionelementswereevaluatedandcomparedtoconventional construc-tionmaterials.Totestthereuseapproach,arelativelysimpleproduct wasmadefromretrievedpanels.Observationsmadeduringthisprocess werethenrelatedtodesigninsights.

2.1. Materials

Areferenceblademodelwasusedtoanalysebladedesignandto determinesegmentationpatternsandstructuralpropertiesofrecovered materials.TheblademodelwasdevelopedbytheNationalRenewable EnergyLaboratory(NREL)andSandiaNationalLaboratories,basedon astudybytheDutchOffshoreWindEnergyConverter(DOWEC)project [36–38].Thismodelwasused,becauseincontrasttocommercialblades, thisbladewasdevelopedforresearchpurposesanditsspecificationsare publiclyavailable[39].Theblademeasures61.5minlengthandwas designedfora5MWturbine.Turbinesofthissizearefoundboth on-shoreandoffshore,whichmakesitrepresentativeforcurrent installa-tions[27,37].

The blade consists of three sections from root to tip: inboard, midspanandoutboard (Fig.1) [36]. Thelargestbendingmomentis exertedontheinboardsection,wherethebladeisjoinedtotheturbine axis.Thissectionstartsatrotorradiusr=1.8m(takinghub diame-terintoaccount).Itisaplaincylinderwithawallthicknessof61mm, madeof asolidglass fibrereinforcedepoxy laminatewitha triaxial layup.Themidspanstartsatr=10mandendsatr=54.5m.Theshells, madewithasandwichlayup,taperfrom100to25mmthickness.The sparcapstaperfrom48to20mm.ThelayupconsistsoftriaxialGFRP skins,foamcoreandglassfibreaswellascarbonfibreUD reinforce-ments.Themidspansectioncomprisessixairfoilprofiles,fiveofwhich wereselectedfromtheDelftUniversity(DU)systematicairfoilseries. Theaerodynamicprofiletaperstowardsthetiptomeetaerodynamic andstructuralrequirements.Theoutboard(tip)sectionhasarelatively flatairfoilprofilebecauseithastocopewithhighairspeeds.In com-mercialblades,thissectionisoftenpre-benttopreventcollisionwith thetowerwhenthebladedeflectsunderload.

Thestructuralandaerodynamicperformanceprimarily determine thedesign(Fig.2)[34,37].Thesparcaps(3)andshearwebs(4)make upthemainstructuralelementsofthebladeandfunctionasaboxbeam toprovidelongitudinalstiffness.Thepanelsoftheleadingedge(2)and trailingedge(5)givethebladeitsaerodynamicshape.Thetrailingedge hasadditionalreinforcements(6)toalleviateedge-wisebending mo-ments. Thebladetop andbottomshellareproducedseparately and joinedattheleadingedge(1)andtrailingedge(7),aswellasontop andbottomoftheshearwebs(4).Thepanels(2,5,6)andshearweb (4)aremadewithasandwichstructure.Sparcaps(3)aremadewitha monolithiccarbonfibrelaminateandcoveredwiththesameGFRPface laminateasthepanels.

Weretrievedmaterialpropertiesforcalculatingthestructural char-acteristicsofbladesegmentsfromtheoriginalbladedesign specifica-tions[37].Specificationsmissingfromthedesignreportwere supple-mentedwithvaluesfromequivalentmaterialsintheCESEdupacklevel 3database[41].Table1 liststhematerialsandspecifications.Density

(4)

Fig.2. Cross-sectionalprofileofawindturbineblade, showingpartsandstructuraldesign.

Table1

Propertiesofmaterialsusedin5MWblade[37]usedtocalculatemechanicalpropertiesofrecoveredconstruction elements.Valuesmarked(a)aresupplementedfromCESdatabase,(b)calculatedfrommaterialdatasheets.

Material E-modulus Shear modulus Poisson’s ratio Density Tensile strength Compressive strength

[MPa] [MPa] [-] [Kg/mˆ3] [MPa] [MPa]

GFRP UD 41,800 2630 0.28 1920 972 702

GFRP Triax 27,700 7200 0.39 1850 700 292 a

GFRP DB 13,600 11,800 0.49 1780 144 a 213

Foam 256 22 0.3 200 5.6 a 4.4 a

CFRP UD 114,500 5990 0.27 1545 b 1546 1047

ofcarbonfibreUDwascalculatedusingfromthematerialdatasheets usingtheruleofmixtures[42–44].

2.2. Methods

Weinvestigatedstructuralreusebydevelopingasegmentation pat-tern,analysingthestructural performanceof theretrievedelements, andexploringtheirapplicationinpractice.Usingthesegmentation ap-proach,wecanexplorevariouscuttingpatternsandcalculatehow effec-tivetheyareindeliveringreusableconstructionelements.Thestructural analysisallowedacomparisonoftheretrievedelementswith conven-tionalconstructionmaterials.Exploringtheapplicationofreused con-structionelementsgaveinsightintoitspracticalfeasibilityandtherole ofdesign.

2.2.1. Segmentationpatterns

TheNREL5MWmodelwasanalysedforrecoveryofconstruction el-ementsbyevaluatingthestructureandform.TheNuMADwindturbine bladedesigntool[45],wasusedtocalculatetheweightofindividual partslikeleadingedgepanelsandsparcaps.Thecalculatedproperties wereverifiedwithdistributedbladepropertiesprovidedbySandia[37]. Inaddition,aphysicaldecommissionedbladewasinspectedto investi-gatepracticalimplicationsofconstructionandrecoverywhichwerenot addressedinthedesignreport[37].

Thesuccessionofaerodynamicprofilesalongthebladelength indi-cateswherethecross-sectionalprofileisconstantorwhereshape tran-sitionsoccur.Changesinpitchandchordlengthindicatethetwistand taperingofthebladesurface.Thetwistisconstantforthemajorityofthe bladelength,butthecross-sectionalcurvatureneededtobecalculated. Wecalculatedtheclosestdistancebetweenapointandalineusing vectorcalculus[46].Thecalculationstartedwithasetof3points:start pointA, endpointBandintermediatepointC(Fig.3a).Here,length ABcorrespondstothesegmentwidthwandthemaximum perpendicu-lardistancefromlineABtoapointConthecurveABcorrespondsto segmentdeflectiond.Theobjectiveofthefunctionwastoachievethe largestpossiblesegmentwidthwforagivencurvatured/wordeflection

d(Fig.3b).

Weappliedtwosegmentationapproachestodeterminepanel seg-mentationpatternsbasedoncurvatureanddeflection(Table2).The firstapproachisgovernedbyd/wanddeliverspanelswithequal cur-vature[47].Thesecondapproachisgovernedbydanddeliverspanels withequalsegmentdeflection.Thecuttingpatternisalignedwiththe blade’slongitudinalaxis,perpendiculartotheairfoilsection.

Fig.3. Calculatingpaneldeflection d betweenpointsAandBontheairfoil profile.

Table2

Boundaryconditionsfordimensionaldeviationofacurvedconstruction ele-ment,basedonNEN5461timberstandards[47].

Dimensional deviation NEN 5461 Curvature d/w Deflection d [m] Small d/w < 0.02 d/w < 0.02 d < 0.02 Medium 0.02 < d/w < 0.04 d/w < 0.04 d < 0.04 Large d/w > 0.04 d/w < 0.08 d < 0.08

The dimensional standards for construction timber wereused as boundaryconditionsasstandardshavenotyetbeenestablishedforthe recoveryofcompositematerials.Timberelementshapesdepend,like therecoveredcompositesegments,onraw materialshapeaswell as prospectiveapplicationareas.ThetolerancesaregiveninTable2.The goalofthesegmentationwastoobtainpanelswithawidthand curva-turesuitableforreuseasconstructionmaterial.

Thecross-sectionalsegmentshapealsodependsonthecutting an-gle,forexampleperpendiculartothelocalbladesurface,airfoilchord or panelchord.Althoughthisaffectsthecross-sectionalshapeof the resulting panels, calculation showsminimal effects oncutting losses (<<1wt%). Furthermore,thealignmentdoesnot affect segmentation patternsormaterialperformance,andisthereforenotfurtherdetailed intheseanalyses.Inpractice,thealignmentwilldependonthe process-ingcontext(i.e.cuttingtoolsandhandlingequipment)andintended panelreuseapplications.

(5)

2.2.2. Structuralproperties

Thematerialpropertiesoftherecoveredelementswerecalculated andcomparedtoconventionalmaterials.Thegoalwastoevaluatethe material’sperformanceandidentifypotentialapplicationareas.The ma-terialswerecomparedusingthelevel3databaseofGrantaCESEdupack 2019[41].Propertiesoftherecoveredmaterialswerecalculatedusing theGrantaCESHybridSynthesizerandthebladedesignspecifications giveninTable1.Thesandwichmaterialmodelwasusedforallpartsand properties,exceptforthedensity(𝜌)andflexuralmodulus(Eflex)ofthe

trailingedgereinforcements.There,themultilayermodelwasusedto accountfortheadditionalUDlayers.Thecalculationusedadistributed loadconditionandasegmentlengthof4.1m,whichcorrespondstothe spacingbetweenconsecutiveaerodynamicprofilesintheblademodel.

Toevaluatestructuralqualityatendofuse,weconsideredarangeof materialproperties,ratherthanasinglevalue.Fortheminimumvalue, weassumedthebladescanstilloperateunderthedesignloadcaseatthe pointofdecommissioning.Forthemaximumvalueweusedtheoriginal designspecifications,whichincludedadditionalsafetyfactors.Thusto gettheminimumvalues,theoriginaldesignspecificationsforstiffness andstrengthweredividedbytheirrespectivesafetyfactors.Toreflect thebladedesignspecifications,weusedthesafetyfactorsasstatedinthe originaldesignreport:1.485forstiffnessand1.755forstrength[37]. Thematerialdensityremainsconstantalongtheproductlifespan.

Thecalculatedvalueswerethenplottedonmaterialpropertycharts toenablecomparisonwithconventionalconstructionmaterials.The ma-terialswerecomparedbasedondensity(𝜌),flexuralmodulus(Eflex)and

flexuralstrength (𝜎flex)[44].Theseproperties combinedindicatethe

performanceof thematerialsforlightweight constructions loadedin bending[44].

2.2.3. Application

Toexploretheimplicationsofstructuralreuseinpracticeandthe roleofdesign,weconductedadesignstudyonadecommissionedwind turbineblade[35].Panelsfromabladewereusedtodesignasimple fur-nitureproduct,whichwassubsequentlybuiltandevaluated.Thestudy followedaresearchthroughdesignapproach[48,49]whichprovided richdataonrecovery,designandmanufacturing,aswellasonuser ac-ceptanceoftheresultingconstructionmaterials.Thedesignandreuseof thebladewereevaluatedusingapreliminarysetofdesignaspects[32]. Together,thesegmentationapproach,structuralanalysisandpractical applicationprovidedinsightsintodesignaspectsthatenablestructural reuse.

3. Resultsanddiscussion

Thestructuralreuseofcompositepartswasevaluatedusinga refer-encewindturbineblade.Thesegmentationapproachstartsbyassessing theproductshapeandstructure,followedbyamoredetailedapproach, whichtakeslocalcurvatureintoaccount.Thesegmentsarethen evalu-atedfortheirstructuralperformance.Thesegmentationandstructural evaluationprovideinsightintodesignaspectsthatfacilitatestructural reuse.

3.1. Segmentationpatterns

Theblademidspansection,whichcomprisesnearlythree-quartersof thebladelength,offersthebestopportunitiestoretrievecontinuously shapedconstructionelements.Inthissection,allprofilesareselected from thesamesystematicairfoilseries.Thelineardecreaseof chord length(3cm/m)andtwistangle(0.25°/m)indicatecontinuous taper-ingandtwistofthebladetowardsitstip(Fig.4).Together,theseform factorsallowforsmoothshapetransitionsalongthebladelength.Thus, constructionelementsrecoveredfromthemidspansectionwillhave rel-ativelystraightshapes,despitetheiraerodynamicorigins.

Tofindthetypesofconstructionelementsandtheirproperties,the bladestructurewasreconstructedforSection8,asshowninFig.6 and Table3.Thissectionispositionedinthemiddleoftheblade,atradius r=28.15m(Fig.5).Here,airfoilDU25-A17isusedwithachordlength of4.01m.Twocompositelayupstructureswereused:asandwichlayup forthepanelsandshearwebs(2,4,5and6),andamonolithic lami-nateforthesparcaps(3)aswellasbondingareasatLeadingEdgeand TrailingEdge(1and8).Thisstructuraldesignprovidesastartingpoint forsegmentation.

Asastartingpointforthepatterning,thebladecross-sectioncanbe dividedintotwotypesofconstructionelements:panels(63wt%)and beams(33wt%).Panelscanberecoveredfromtheleadingedgepanels, shearwebs,trailingedgepanelsandreinforcedtrailingedge(2,4,5 and6).Beamsarefoundin thespar caps(3).Alternatively,thespar capsandshearwebscanberetrievedas-is,tobereusedasbox-beam. Inthisstudy,wechosetotakethemasseparateparts,asthispermitsa clearerstructuralcomparison.

Somecuttinglosseswilloccur,causedbytheadhesivebondingareas (3wt%),taperingofthepanelsduetodecreasingchordlengths(1wt%) andprocessing(minimal).Theadhesivebondsattheleadingedgeand trailingedge(1and8)obstructrecoveryofconstructionelements.These

Fig.4. Twistangle[°]andchordlength[m]of theairfoilprofilesalongthebladelength.

Table3

Parts,weight,weightpercentage,structureandconstructionelementtypesfoundinbladesegment8.

# Part Materials Mass [kg] Weight [wt. %] Element type

1 Leading Edge Solid GFRP, adhesive 17 2% None

2 Leading Edge Panels Sandwich 151 14% Panel

3 Spar caps Solid GFRP & CFRP 340 33% Beam

4 Shear webs Sandwich 132 13% Panel

5 Trailing Edge Panels Sandwich 304 29% Panel

6 Reinforced Trailing Edges Sandwich 73 7% Panel

7 Cutting losses (tapering) Sandwich 16 1% None

8 Trailing Edge Solid GFRP, adhesive 9 1% None

(6)

Fig.5. Sketchofthebladeanditssections.Cross-Section8isusedforfurther analysis.

Fig.6. Structuralsegmentationoftheblade.

partshaveamixedmaterialscomposition,astrongcurvature,andthe structuretransitionsfromsandwichtomonolithic.Moreover,physical inspectionofadecommissionedbladerevealedpoorlydefinedbonding areasandabundantlyappliedadhesives,whichchallengesthe recov-eryofuniformmaterials.Taperingofthebladeresultsfromdecreasing airfoilchordlengthsandcausestriangularshapedoffcuts(7).Forthe weightcalculation,weassumedthesetobedeductedfromthetrailing edgereinforcements.Theprocessinglosseswerefoundtobenegligible; thewaterjetcutterusedintheapplicationtesthadajetdiameterof0.7 mm,andthusminimalcutlosses.Assuch,thesewerenotfurthertaken intoaccount.Still,evenafterexcludingthesebondingareasandoffcuts, 96%ofthissectioncouldbecutintoreusableconstructionelements.

However,itisnotrealistictoassumethat96%ofthecompleteblade canbereused;thisestimateisbasedonaprofileintheblademidspan, whichconstitutes58%ofthecompleteblademass.Thebladeroot(40 wt%)andtip(2wt%)cannotbedirectlysegmentedintoconstruction elements.Therootisacylinderwithanaveragediameterof4mand lengthof10m,itischallengingtocutduetoitsthickandsolidGFRP walls.Thebladetip ismadeofrelativelyflatairfoilsbutispre-bent topreventtowercollision.Thispre-bendaddstotheshapecomplexity andtherebycomplicatessegmentationandreuse.Thus,focusingonthe blademidspan,andaccountingforoffcuts,weexpectupto55wt%of thebladecanbesegmentedintoconstructionelements.

Theoriginaldesigndetermineswhatkindofconstructionelements can be recoveredintermsofsize, shapeandstructurallayup.These propertiesgraduallytapertowardsthetipofthebladewhichleadstoa largedistributionofpropertiesoftherecoverableconstructionelements. Inadditiontopropertiesimposedbytheoriginaldesign,thereuse ap-plicationcanalsopresentdesignrequirements.Theserequirementsare usuallydefinedintermsofsize,mass,stiffnessandstrength, accompa-niedbytolerancesandsafetyfactors.Thesecanthenbeusedas bound-aryconditionsforthesegmentationpattern.Toextendreuse opportu-nitiesbeyondasingleproduct,weusedconstructionindustrystandards forthispurpose[47].

Thesparcaps(3)andshearwebs(4)arepositioneddirectlyabove and aside from the blade reference axis, which is aligned with the maximum airfoil thickness. Along the midspan, the spar caps have a constantwidth of 0.6m.The shapeof these elements is predom-inantly determined bybladetwist andlayup thickness.Abeam, cut from thespar cap willtwist 0.002m permetrelength, which corre-sponds toa“verysmall” dimensionaldeviation[47].Thus,beam el-ementscanberecovereddirectlyfromthesparcap.Thesurface pan-els(2,5and6)however,haveamorecomplexdouble-curvedshape andneedfurtherassessment.Table4 andTable5 showtheresultsfor segmentationusingthetwoboundaryconditions, basedoncurvature

Table4

(7)

Table5

Segmentationpatternsformaximumpaneldeflectiond.

d/wanddeflectiond,fortolerancecriteriasmall,medium andlarge, respectively.

Table 4 shows the segmentation patterns and resulting segment widthsforbladeSection8withd/w<0.02,0.04and0.08respectively.

d/w<0.02resultsin13segments,ranginginsizefrom0.08to2.0m.The stronglycurvedleadingedgesectionisdividedinto9panelswithwidths under0.5m.Inthetrailingedgesection,wefindtwolargepanelsof1.5 and2.0mandtwosmallersegments.Thisclearlyshowshowcurvature affectssegmentwidth:astrongcurvaturemakesfornarrowsegments.

d/w<0.04resultsin8segments,withfoursmallpanelsaround0.3m wide,twomedium-sizedof0.6and0.8andtwolargepanelsof1.8and 2.0m.Ford/w<0.8wefound2panelsofabout1.2mandthetrailing edgedividesintotwopanelsof2m.Unexpectedly,thispatternalso de-liveredthenarrowestsegmentfortheseboundaryconditions,just0.08 mwide.

Suchanarrow segmentis theresultofthechosenpatterning ap-proach.Theleadingedgepanelisnowdividedinapanelwitha curva-tureof0.08andasmall“leftover” piece.Thisindicatesanopportunity toimproveonthesegmentationpattern;bynotgoingforthemaximum possiblewidth,theleadingedgepanelcouldbedividedintotwoormore smallerpanelswithalowercurvature.Thisisshowninthecutting pat-ternsford/w<0.04andd/w0.02.

Aswastobeexpectedfrom theairfoilcurvature,thenarrow seg-mentsarefoundat theleadingedge,andthewidersegmentsatthe trailingedgepanels.Themaximumwidthremainedthesameforall tol-erancebounds,asthispartisconfinedbetweenthesparcapandtrailing edgebondingarea.Wherethelowertolerancecriterionresultsinaset ofdistributedwidths,theuppertolerancelevelresultsina segmenta-tionpatternthatalmostdirectlyfollowsfromremovingsparcapsand bondingareas.However,thisincreasedwidthcomesatacost;thewide

panelshavealargecurvaturewhichmaylimitapplicationareaswhere thepanelscanbereused.

The boundary condition on deflection d showed similar results. Table5showsthesegmentationpatternsforSection8withamaximum deflectiondof0.02,0.04and0.08m.d<0.02mresultedinapattern of11segments,mostofwhichwerebeloworjustabove0.5mwide. Thetrailingedgesectiondeliverstwowiderpanelsof1.4and1.8m.

d<0.04mresultedin7segmentswithwidthsalmostevenlydistributed between0.3and2.0m.Lastly,d<0.08malsohas7segments,twoof themarearound0.2mwide,twoaround1.1m,andthelargestat1.8 and2.0m.Hereagain,thelargesttoleranceboundresultedinthe nar-rowestsegment,just0.02mwide.Consideringthetaperingoftheblade andcuttingtolerances, anarrowstriplikethis islikely tobe lostin processing.

Thenarrowsegmentsfoundind/w<0.08andd<0.08mwereforthe samereason:theleadingedgepaneldeflectionwasjustoutsideofthe giventolerancebound,andwasthusdividedinapieceofmaximum width,andaverysmallremainder.Abetteroptionwouldbetodivide thepanelintotwoormoreelementswithalowerdeflection.Thusit maybe beneficial toapply multiple boundaryconditions onagiven cross-sectiontooptimisethecuttingpattern.

Thevaryingsegmentationpatternsprovideinsightsintherelation between boundaryconditionandpanelwidth. Thesegmentation ap-proachesshowthatthebladepanelscanbereusedwithinstandardized tolerances.However,italsoresultedinarangeofvariablepanelwidths andsomeun- orbarelyusablesegments.Thus,todeliverpractically reusablepanelstheboundaryconditionsneedtoberefined.Todoso, commonlyusedpanelwidthscanbeimposedasanadditionalboundary condition.Thesestandardwidthscanfunctionas‘bins’whencalculating theoptimalpattern.Combiningtheboundaryconditionsofcurvature

(8)

andpanelsizewillresultinasegmentationpatternforconstruction el-ementswithstandardsizeandaccuracy.Theboundaryconditionscan thenbeused toexplorepatternstofindone thatoptimallyusesthe availablematerialanddeliversreadilyreusableconstructionelements.

3.2. Structuralproperties

Withregardtothestructuralproperties,wefoundfoursandwich panellayupsandonesolidlaminatebeamintheblademidspan.Only theleadingedgepanelandtheshearwebhaveaconstantlayupalong theblade,theotherpartstapertowardsthebladetipbyreducingthe thicknessofthecorematerialandthenumberofplies.Table6 shows theresultingrangesforthickness,density,flexuralmodulusandflexural strengthofallbladeparts.Theminimumandmaximumthicknessare givenforeachpart,becausethethicknessofthecorematerial(foam) largelydeterminestheeffectivematerialproperties.

Thefollowingchartscomparethebladesegmentstoconventional constructionmaterials,usingtheequivalentmaterialproperties.Fig.7 setsouttheFlexuralmodulus(Eflex)tothedensity(𝜌).Thischartsshows thatthebladematerialshaveaflexuralmoduluscomparabletotimber. Fig.8plotstheFlexuralstrength(𝜎flex)versusdensity(𝜌).Noteworthyis

thatthebladeelementsarecharacterisedbytheirhighspecificstrength (𝜎flex/𝜌).Thesparcapsarepositionedinthetop-middleinbothcharts,

indicatingarelativelyhighspecificstiffnessaswellasstrength com-paredtoconventionalmaterials.Boththepanelsandthebeamsdonot fullyoverlaponbothcharacteristicswithotherstructuralmaterials,thus directsubstitutionofothermaterialsbytheretrievedbladematerialsis notevident.

Usingmaterialindices,wecomparedtheperformanceofthe mate-rialinspecificfunctions:panelsandbeams.Theperformanceindices

forabeamandpanelofminimummass,loadedinbending,are𝐸13𝜌 forstiffnesslimiteddesignand𝜎12∕𝜌 forstrengthlimiteddesign[44]. Theseindicesareplottedaslineswithrespectivelyslope3(Fig.7)and2 (Fig.8).Thelinesconnectmaterialsthathaveequalperformance regard-ingstiffnessandstrength,respectively.Materialsabovethelineexhibit betterperformance,whilematerialsbelowthelineperformlesswell.

Forstiffnesslimiteddesign(Fig.7)timberistheonlymaterialwitha materialindexsimilartotherecoveredbladesegments.Assuch,the re-trievedmaterialsoutperformallotherconventionalconstruction mate-rialsforlightweightconstructionsloadedinbending.Thisindicatesthat structurallyreusedcompositescanbeusedtosubstitutetimberpanels andbeamsinbending-dominatedstructures,andthattheywillenhance performancecomparedtoothermaterials.

Forthisreason,Ashby[44]andBeukers[2]arguefortheuseof com-positesinarchitecture.High-risebuildingsespeciallyrequirematerials with ahighstructuralefficiency, whichcomposites can fulfil. Archi-tectshavenowadoptedcompositepanelsforcladdingbuildingfaçades [8]andcompositesaregaininggroundininfrastructuralprojects,for ex-ampleinbridgesandlockdoors[50].However,thusfarthecostof com-positesincomparisontotoday’sbulkconstructionmaterialsremained prohibitive forlarge-scaleimplementation. Structuralreusehowever, hasthepotentialtolowerthematerialcostandassuchunlock compos-itesforapplicationinbuildingapplications.

Fig.8showsperformanceforstrengthlimiteddesign.Theblade pan-elsareabovetheperformanceindexline,thebeamsandtimberare in-tersectedbyitandallothermaterialsfallbelow.Thus,thebladepanels outperformallothermaterialsforconstructionsloadedinbending.The CFRPsparcapsperformequaltosometimbertypes.Thesparcap po-sition,tothetop-leftofGFRPmaterials,showsthehigherstrengthand lowerdensityofCFRPcomparedtoGFRP.

Table6

Propertiesofbladeparts,calculatedfrombladedesignspecifications,includingsafetyfactors,usingGranta CESEdupack2019.Theequivalentdensity,flexuralmodulus,andflexuralstrengthdependonthethickness ofthesandwich,whichisdominatedbycorematerialthickness.

Part Thickness Density 𝜌 Flexural modulus E flex Flexural strength 𝜎flex

[mm] [x10 2 kg/m 3 ] [Gpa] [x10 2 MPa] Leading & Trailing edge panels 26 5.6 9.8 – 14.6 5.1 – 8.9

96 3.0 3.2 –4.7 1.6 – 2.8

Trailing edge reinforced panels 26 5.9 15.1 5.1 – 8.9

103 4.1 6.7 1.6 – 2.8

Shear web panels 54 3.2 2 – 3 2.8 – 4.9

Spar cap beams 20 16.5 37.1 – 64.9 7 – 11.7

48 16.1 52.2 – 99 8.1 – 13.3

Fig.7. Comparingconventionalconstructionmaterialsto retrievedbladeelementsonFlexuralmodulus(Eflex)vs.

(9)

Fig.8. Comparingconventionalconstructionmaterialsto retrievedbladeelementsonFlexuralstrength(𝜎flex)vs.

Density(𝜌).

Fig.9. Comparingthestiffnessandstrengthperformance ofconventionalconstructionmaterialstoretrievedblade elementsforaconstructionloadedinbending.

Fig.9 setsoutthematerialindicesforlightweightdesign;the verti-calaxisforstiffness-limiteddesign,andthehorizontalaxisfor strength-limiteddesign[44].Thebestperformance,minimum massfora pre-scribedstiffnessandstrength,isfoundwhenmaximisingtheindices;at thetop-rightofthechart.Eventhoughtimbercanachievehigher per-formanceforstiffnesslimiteddesigns,thebladepanelsexcelin strength-limiteddesigns.Allpanelsarefoundatthetop-rightofthechart,which indicatestheseprovidethebestcombinationofstiffnessandstrength forlightweight designs.Assuch, theretrievedconstructionelements outperformallothermaterialsforalightweightconstructionloadedin bending.

Theshapeandmaterialpropertiesoftheretrievedsegmentsaremost reminiscentofpanelsandbeamsfoundinconstruction,infrastructure and,insmallersizes,furniture.Indeed,theoccasionalapplicationsfor whichthesematerialshavebeenusedaremostlyfoundinthesesectors [28,29].This“occasional” applicationisattributabletotherestrictions imposedbytheoriginalsizeandshape.

Thesafetyfactorswereusedtocalculatetheexpectedrangeof mate-rialproperties.Thesewereusedontheassumptionthatthebladewould stillbeinsafeoperationatthepointofdecommissioning.Still,the ma-terialwillhavesufferedfromfatigueandpotentialimpactdamage.This rangecouldbefurthernarroweddownthroughmodellingand

inspec-tion[51].However,determiningthedegradationofmaterialproperties throughfatigueandtheextentofdamageischallengingfor compos-ites[52,53].Insightsfromthefieldsoffatiguelifeprediction,structural healthmonitoringanddamageinspectioncouldimprovethedefinition ofpost-usematerialproperties.Also,identifiedweakenedareascould thenbeexcludedfromthecuttingpattern.

Usingcurvaturetodetermineasegmentationpatternandto evalu-atestructuralqualityusingmaterialindiceswerepromisingfirststeps that canbe developedfurther. Structuralanalysisshows thatthe re-trieved materialshaveexcellentproperties incomparison to conven-tionalconstructionmaterials.However,thestructuralshapeofthe com-positeproductisalreadydefined,whilethatofrawmaterialscanstillbe chosen.Inthestructuralcomparisoncharts,shapefactorscanbeusedto expandthematerialenvelopes[54],butsuchanextensivecomparison isoutsideofthispaper’sscope.Thedefinedshapesalsoaffectfinding therightapplicationfortheconstructionelements,aprocessthatneeds tobefurtherexplored.

3.3. Applications

Inadditiontothesizeandstructuralperformance,weneedto con-siderthepracticalusabilityofthematerial.Forreuseinpractice,the

(10)

Fig.10. Picnictable,madeofrecoveredbladesegments.

constructionelementswillhavetobemachined(cuttodesiredsizeand shape),joinedandfinished.Wetestedstructuralreuseinpractice,by designingandbuildingasimplefurnitureproductfromawindturbine blade,retrievedfromarecyclingcompany(Figure10).

CuttingcuredGFRPlaminatesrequiresspecialisedequipment.When developingthefurniture,weconsultedanumberofworkshopsfor pro-ducingtheprototype,butnonewaswillingtoprocessthematerial.The mainobjectionswere:toolingdegradation,personalhealthandsafety, andcontaminatingthedustextractionsystemandmachinerywithGFRP residue.Thisreflectstheconcernsraisedonreprocessingwindturbine bladematerialinearlierstudies[28,29].Wefoundwaterjetcuttingto addresstheseconcerns;thereisnoriskoftoolingdegradation,anddust iscollectedinthewaterfiltrationsystem.

The prototype was produced in two steps. First, the blade parts (sparcaps, shear websand panels)were separatedusing a portable waterjet cutterat therecycling company. Then,we hadthe compo-nentscutoutfromthepanelsusingaCNCwaterjetcuttingtable.These cutsweremadeperpendiculartothepanelchord,which resultedin near-rectangularpartcross-sections,especiallyforrelativelyflatpanels. Overall,wefoundthatwaterjetcuttingdeliveredgoodcuttingquality, highaccuracyandfewcuttinglosses(thejetdiameterwas0.7mm.).The piercingpointshowever,whereacuttingtrackstarts,neededtobe pre-drilled,topreventpressurebuild-upbetweencoreandbottomlaminate, andtherebydelaminationoftheGFRPfacesfromthecorematerial.

Threeconnectiontypeswereusedintheconstructionofthetable, wherespecialattentionwaspaidtopreventingwateringressduringuse andmaintainingstructuralintegrity.Slottedjointswereusedto min-imisescrewholes,andadhesivebondswereusedtoeliminatejointson exposed,horizontalsurfaces.Fasteners,placedonunexposedpositions, wereusedtofacilitatedis-andreassembly.

Thisconstructionwaschosenbecausethelargestthreattothe prod-uctinitsusephaseistheenvironmentalexposure.Thecorematerial ofthesesandwichpanelswasbalsawood,whichispronetomoisture degradation.Andthematrixmaterial,epoxy,issensitivetoUVageing. Sobyensuringnoholesonexposedsurfaces,theriskofwaterseepingin wasminimised.Acoatingwillshieldthematerialsfromhumidityand UVradiation.Theloadsduringusewillnotcauseanyproblems,because thesearewellbelowthoseinitsinitialapplicationinthewindturbine andthematerialsafetylimits.

Thepicnictablecanbe disassembledat theendofits usephase. Then,largepartscanbereused,becausethesearestillstructurallysound andlargelyunaffectedbythecuttingpattern,smallercomponentscan beprocessedintheGFRPrecyclingstream,asnoadditionalorforeign materialsareaddedorconnected. Fromthisapplication,welearned structuralreuseisfeasibleinpractice.Thebladedeliveredreusable con-structionmaterials,whichwereprocessablewithhighaccuracy,using therighttooling.

Prefab building could be another application areafor the recov-eredconstructionelements.Atypicaltimberframebuildingusestimber beamsandwoodpanels.These partsarefabricatedtospecifications, enablingquickassemblyon-site.Thesegmentationpatterncompliedto timberconstructionstandards,andpanelssizeswereinlinewithtrade standards.Thepanelscansubstitutethetimberaswellaswoodpanel partsgiventheirstructuralperformance.Theneedforspecialised cut-tingequipmentissolvedbypre-fabricatingpartsandeliminatingon-site rework.Thegainsmadeinweightcometothebenefitoftransportand installation.Prefabconstructionseeswide-spreaduseinvarious build-ingtypes,includingroofingandindustrialwarehouses,aswellaspublic buildingsandhousing.Thus,concerningdimensionalstandards, struc-turalquality,processingandscalability,weexpectprefabbuildingtobe apromisingsectorforreuseofbladesegments.

Thesegmentationpatterningmethod,structuralanalysisand appli-cationexampleprovideinsightsintowhatisneededforstructuralreuse. Thereuseofconstructionelementsreliesontheavailabilityof prod-uctspecifications.Determiningsegmentationpatternsrequiresdataon overalldimensionsand(aerodynamic)shapes.Thestructural compari-sonneedsmaterialsandlayupscheduleswhichalsoimplies identifica-tionoftheproductandcollaborationalongthevaluechain,toretrieve thisinformation.Thesefactorsmayseemevident,butinindustry prac-tice,intellectualproperty andcommercialconsiderationsmayprevail oversharinginformationamongstakeholders.Moreover,theusephase inflictswear,damageandfatigueontheproduct,introducingadditional uncertaintyaboutresidualmaterialqualityatendofuse.Additional in-formationonthematerialstate,e.g.through(embedded)monitoring, inspectionandcertificationmayreducetheseobstacles.

Thedesign ofwindturbine bladesis drivenbyaerodynamic and structuralperformance; thereisno roomfor designadjustmentsthat impairtheseelements.Thedesignaspectspresentedheredonotneed tohaveadverseeffectsonproductperformance,astheyarelargely con-textualandeasytoimplement.Thus,therecoverypotentialforasuch acomplexcompositeproductasablade,canbeimprovedbyrelatively simpleinterventions:

1) Documentingproductspecifications 2) Enablingtraceabilitythroughidentification 3) Sharinginformationalongtheproductvaluechain

3.4. Futureresearch

Toimproveontheproposedapproach,furtherresearchcould ex-pandonadditionalproduct(sectors),moredetailedproductfeatures, boundaryconditionsanddesign forreuse.Othersectors,likemarine andaviation,alsousehighendcompositeparts,andfacesimilarend oflifechallenges.Furtherresearchcoulddetailstructuralreuseofparts fromthesesectors.Additionalproductfeaturestoincludecouldbe com-positelayupschedules,3Dshapes,connectionsandsub-assemblies.The segmentationboundaryconditionscouldalsobeexpandedtomeet re-quirementsforsuccessiveapplicationsmoreaccurately.Wherepossible, elementsoftheapproachcouldbeimplementedinthedesignofnew products,topreparethemforreuse.

Thepresentedstructuralreuseprocesscouldbe adaptedto varia-tionsinbladedesignandmaterialscomposition,whichvarypermodel andmanufacturer.Forexample,theNRELbladeusedsafetyfactorsfor onshore deploymentbased onIEC standards[55]. Thesefactorswill havetobe adaptedforanalysisofbladesusingotherstandards,such asDNVGL-ST-0376[56].Also,asbladesgetlarger,useofcarbonfibre reinforcementsincreasesinsparcapsandshells[34].Thisimprovesthe mechanicalperformanceoftherecoveredsegments,andtherebytheir economicvalue.Also,thesize,configurationandnumberofshearwebs mayincreasewithbladelength[57].Thisaffectstheboundary condi-tionsofthecuttingpattern(i.e.cuttinglinesalongthesparcaps)aswell asthereuseopportunities.Bank(2018)exploreddirectreuseofthese asdoorsandwindowframes[58].

(11)

Asegmentedbladeconcept[59] mayfacilitatereprocessing,while atthesametimeintroducingbondingareaswhicharedifficulttoreuse. Anintegratedbladeconceptbycontrast,couldimprovethereuserateby eliminatingbondingareasattheleadingedgeandtrailingedge[60]. Al-thoughthepresentedsegmentationapproachcouldbeadoptedtomeet thesevariations,thisfurthersignifiestheneedforavailabledesign doc-umentationatthereusestage,inordertodefineoptimalsegmentation patterns.

Toimprovethereuserate,recoveryoftherootandtipsectionsneed tobefurtherinvestigated.Thiscouldbestructuralreuseasother con-structionelementtypesorapplications,whichareinlinewiththe ge-ometryandmaterialcharacteristics.Alternatively,otherrecoveryroutes mayneedtobefoundinthedomainofthermal,chemicalormechanical recycling.

Futureresearchcouldalsopursuemoreambitiousapplicationsfor structuralreuse.Thereusecaseinthisstudy,furniture,servedto evalu-atetheprocessandmanufacturinginpractice.Theexpectedloadswere wellwithinthematerialspecifications.Buildingontheinsightsofthe structuralpropertyevaluationandadditionalmaterialstestingor mod-ellingwillenablereuseatthematerialsfullpotential.

Structural reuse adds another use cycle, and thereby extends the material lifespan. This preserves energy and value embedded in the composite, and potentially substitutes use of virgin materi-als. To fully close the resource loop, recovery routes in terms of reuseorreprocessingoftheconstructionelementsneedtobefurther investigated.

4. Conclusion

Inthisstudy,weexploredasystematicapproachforstructuralreuse ofcomplexcompositematerials.Structuralreuseiscomplicatedbythe largesize,complexshapeandcomplexmaterialcompositionof compos-iteproducts.Toaddressthis,asystematicmethodwasneededtodefine segmentationpatternsandevaluatestructuralquality.

Weproposedanapproachforthestructuralreuseofcomplex com-positeproductsthroughsegmentation,structuralanalysisandreuse ap-plications.Weappliedthis approachtoatypicalwindturbine blade madeofglass andcarbon fibrecomposite.Thesegmentationpattern showedthat highaccuracyconstructionelementscan be cut from a double-curvedproduct,insuchawaythat95%oftheanalysedblade section,and55%ofthecompletebladeareeligibleforreuse.The struc-turalanalysisrevealedgoodperformanceintermsofflexuralstiffness andflexuralstrengthin relationtoweight, withtheretrievedpanels exceedingtheperformanceofconventionalconstructionmaterialsfor constructionsloadedinbending.Reuseofbladepanelsinanother prod-uctshowedtheneedforspecialisedcuttingequipment,anddelivered accuratelydimensionedparts.

A numberof designaspects limit retrievalof construction mate-rialsfrom endof use windturbine blades.Converting alarge struc-ture into smaller, reusable segments,relies on availability of model detailstogenerate cuttingpatterns. Thematerials’fatiguebehaviour and(variationsin)operatingconditionscomplicatedetermining resid-ualstructuralquality,signifyingtheneedforstructuralhealth monitor-ing.Thesedesignaspectsaremostlycontextualinnature,andcouldbe addressedwithoutinfringingtheperformanceofthebladeinitsinitial use.

Tofacilitaterecoveryofconstructionmaterials,designers can ad-dressstructuralreusebydocumentingproductspecificationsand facil-itatingtraceability.Duringproductlife,reuseissupportedby collabo-rationalongthevaluechainandreducinguncertaintyaboutthe prod-uct’sstatethroughe.g.monitoringorinspection.Testingthestructural reuseapproachinafurnitureapplicationshoweditsfeasibility.In addi-tiontoidentifyingrelevantdesignaspects,thepresentedsegmentation andstructuralanalysisapproachbringsanewperspectivetostructurally reusingcompositeproducts.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgments

ThisprojecthasreceivedfundingfromtheEuropeanUnion’sHorizon 2020researchandinnovationprogrammeundergrantagreementNo 730456.

References

[1] Y. Yang, R. Boom, B. Irion, D.J. van Heerden, P. Kuiper, H. de Wit, Recycling of composite materials, Chem. Eng. Process. Process Intensif. 51 (2012) 53–68, doi: 10.1016/j.cep.2011.09.007 .

[2] A. Beukers , E. van Hinte , Designing Lightness, NAI010 publishers, Rotterdam, 2020 . [3] N. Bocken, I. de Pauw, C.A. Bakker, B. van der Grinten, Product design and busi- ness model strategies for a circular economy, J. Ind. Prod. Eng. 33 (2016) 308–320, doi: 10.1080/21681015.2016.1172124 .

[4] Y.S. Song, J.R. Youn, TG. Gutowski, Life cycle energy analysis of fiber- reinforced composites, Compos. Part A Appl. Sci. Manuf. 40 (2009) 1257–1265, doi: 10.1016/j.compositesa.2009.05.020 .

[5] Ellen MacArthur Foundation. Towards the circular economy. vol. 1. Report, 2012. Retrieved from: https://www.ellenmacarthurfoundation.org/publications/ towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an- accelerated-transition .

[6] C.A. Bakker, A.R. Balkenende, F. Poppelaars. Design for Product Integrity in a Circu- lar Economy. In: Charter M., editor. Des. Circ. Econ. 1st ed., Routledge International Handbooks; 2018.

[7] A.R. Balkenende, N. Bocken, CA. Bakker Design for the Circular Economy. In: Egen- hoefer R.B., editor. Routledge Handb. Sustain. Des. 1st ed., Routledge International Handbooks; 2017, p. 498–513.

[8] RPL. Nijssen , Composite Materials, 3, 1st ed., VKCN, 2015 .

[9] E. Witten, V. Mathes. The market for glass fibre reinforced plastics (GRP) in 2019. Report, AVK (2019). Retrieved from: https://www.avk-tv.de/files/20190911_avk_ market_report_e_2019_final.pdf .

[10] EUCIA. Composites recycling made easy. EUCIA (2011). Retrieved from: https://eucia.eu/publications/ .

[11] SJ. Pickering, Recycling technologies for thermoset composite materials, Compos. Part A 37 (2006) 1206–1215, doi: 10.1016/B978-1-85573-736-5.50044-3 . [12] S. Halliwell, End of life options for composite waste - recycle, reuse or dispose?

National composites network best practice guide. Report, National composites net- work (2006). retrieved from: https://compositesuk.co.uk/system/files/documents/ endoflifeoptions.pdf .

[13] S. Job , G. Leeke , P.T. Mativenga , G. Oliveux , S.J. Pickering , NA. Shuaib , Composites recycling: where are we now?, Composites UK, 2016 .

[14] P.T. Mativenga, A.A.M. Sultan, J. Agwa-Ejon, C. Mbohwa, Composites in a circular economy: a study of United Kingdom and South Africa, Procedia CIRP 61 (2017) 691–696, doi: 10.1016/j.procir.2016.11.270 .

[15] G. Oliveux, L.O. Dandy, GA. Leeke, Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties, Prog. Mater. Sci. 72 (2015) 61–99, doi: 10.1016/j.pmatsci.2015.01.004 .

[16] EcoBulk. EcoBulk project website. www.ecobulk.eu (accessed December 1, 2017). [17] FibrEUse. FiberEUse project website. http://www.fibereuse.eu/ (accessed June 16,

2020).

[18] Re-Wind. Re-wind project website. https://www.re-wind.info/ (accessed June 16, 2020).

[19] ELG. ELG Carbon fibre company website. http://www.elgcf.com/ (accessed June 16, 2020).

[20] Neowa. Our contribution to a clean future, company website. https://www.neowa.de/en/references/neocomp-engl (accessed June 16, 2020). [21] Demacq. Demacq international website. https://www.demacq.nl/ (accessed June

16, 2020).

[22] Conenor. Conenor company website. http://www.conenor.com/ (accessed Septem- ber 3, 2020).

[23] R. Cherrington, V. Goodship, J. Meredith, B.M. Wood, S.R. Coles, A. Vuillaume, et al., Producer responsibility: defining the incentive for recycling composite wind turbine blades in Europe, Energy Policy 47 (2012) 13–21, doi: 10.1016/j.enpol.2012.03.076 . [24] K. Ortegon, L.F. Nies, JW. Sutherland, Preparing for end of service life of wind tur-

bines, J. Clean Prod. 39 (2013) 191–199, doi: 10.1016/j.jclepro.2012.08.022 . [25] R. Vanner, M. Bicket, et al., Scoping study to identify potential circular economy

actions, priority sectors, material flows and value chains, Publications office of the European Union, Luxembourg, 2014 https://op.europa.eu/en/publication-detail/-/ publication/0619e465-581c-41dc-9807-2bb394f6bd07 .

[26] UBAInsufficient recycling capacities for dismantling wind-powered installations, München, 2019 .

[27] P. Liu, CY. Barlow, Wind turbine blade waste in 2050, Waste Manag. 62 (2017) 229–240, doi: 10.1016/j.wasman.2017.02.007 .

[28] J. Beauson, P. Brøndsted, Wind turbine blades: an end of life perspective, in: W. Osta- chowicz, M. McGugan, J.U. Schröder-Hinrichs, M. Luczak (Eds.), MARE-WINT New

(12)

Materials and Reliability in Offshore Wind Turbine Technology, Springer, 2016, pp. 421–432, doi: 10.1007/978-3-319-39095-6 .

[29] J.P. Jensen, K. Skelton, Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy, Renew. Sustain. Energy Rev. 97 (2018) 165–176, doi: 10.1016/j.rser.2018.08.041 .

[30] L.C. Bank, F.R. Arias, T.R. Gentry, T. Al-Haddad, B. Tasistro-Hart, J.F. Chen Struc- tural analysis of FRP parts from waste wind turbine blades for building reuse applica- tions. In: Zingoni A., editor. Advances in Engineering Materials, Structures and Sys- tems: Innovations, Mechanics and Applications, London: Taylor and Francis group; 2019, p. 1520–4.

[31] E. Asmatulu, J. Twomey, M. Overcash, Recycling of fiber-reinforced composites and direct structural composite recycling concept, J. Compos. Mater. 48 (2014), doi: 10.1177/0021998313476325 .

[32] J.J. Joustra, S.F. Flipsen, AR. Balkenende, Circular Design of Composite Products : A Preliminary Framework Based on Insights from Literature and Industry, in: N.F. Nis- sen, M. Jaeger-Erben (Eds.), Proceedings of the Product Lifetimes and the Environ- ment, TU Berlin University Press, Berlin, 2019 in Press., doi: 10.14279/depositon- ce-9253 .

[33] C. Peeren , J. Jongert , J. de Krieger , F. Schiferli , J. Bergsma , Blade Made, Rotterdam, 2012 .

[34] L. Mishnaevsky, K. Branner, H.N. Petersen, J. Beauson, M. McGugan, BF. Sørensen, Materials for wind turbine blades: an overview, Materials 10 (2017) 1–24 (Basel), doi: 10.3390/ma10111285 .

[35] J. Joustra, B. Flipsen, R. Balkenende, Structural reuse of high end composite prod- ucts: a design case study on wind turbine blades, Resour. Conserv. Recycl. (2021), doi: 10.1016/j.resconrec.2020.105393 .

[36] J. Jonkman, S. Butterfield, W. Musial, G. Scott, Definition of a 5-MW reference wind turbine for offshore system development, NREL (2009), doi: 10.2172/947422 . [37] BR. Resor , in: Definition of a 5MW/61.5 m wind turbine blade reference

model, Sandia National Laboratories, Albuquerque, New Mex USA, 2013, p. 50. SAND2013-2569 2013 .

[38] N. Timmer DOWEC-NREL 5MW blade airfoil data-v2. Delft: 2011.

[39] B. Tasistro-Hart , T. Al-Haddad , L.C. Bank , T.R. Gentry , Reconstruction of wind tur- bine blade geometry and internal structure from point cloud data, in: Proccedings of the Computing in Civil Engineering, Georgia Institute of Technology, Atlanta, 2019, pp. 130–137 .

[40] A. Zanon, M. De Gennaro, H. Kühnelt, Wind energy harnessing of the NREL 5 MW reference wind turbine in icing conditions under different operational strategies, Renew. Energy 115 (2018) 760–772, doi: 10.1016/j.renene.2017.08.076 . [41] Granta Design Limited. CES EduPack 2019.

[42] Mitsubishi-Rayon, Newport. Newport 307 epoxy resin system. 2010.

[43] Mitsubishi. Mitsubishi pyrofil MR 60H carbon fiber 2020. https://www.900gpa. com/en/product/fiber/CF_00D7C7FE2A?u = metric (accessed December 11, 2020). [44] MF. Ashby, Materials Selection in Mechanical Design, 3rd ed., Elsevier Butterworth-

Heinemann, Oxford, 2005, doi: 10.1016/B978-1-85617-663-7.00001-1 . [45] Sandia. Numerical Manufacturing And Design Tool (NuMAD) 2013.

[46] M. Kesson Vectors: shortest distance from a point to a line 2012. http://www.fundza.com/vectors/point2line/index.html (accessed June 11, 2020). [47] NEN. NEN 5461 - requirements for timber (kvh2000) - sawn timber and roundwood

- general part 1999.

[48] P.J. Stappers , F.S. Visser , I. Keller , The role of prototypes and frameworks for struc- turing explorations by research through design, in: Routledge Companion to Design Research, Routledge, 2019, pp. 163–174 .

[49] Z. Sadokierski, Critical Journal / Contextual Portfolio: A framework for document- ing and disseminating RtD as scholarly research. In: Proceedings of the 4th Bien- nial Research Through Design Conference, 19-22 March 2019, Delft and Rotterdam, The Netherlands, 2019. Article 38, 1-16. doi https://doi.org/10.6084/m9.figshare. 7855829.v1 .

[50] FiberCore. FiberCore Europe 2020. https://www.fibercore-europe.com/ (accessed July 13, 2020).

[51] C.C. Ciang, J.R. Lee, H.J. Bang, Structural health monitoring for a wind turbine sys- tem: a review of damage detection methods, Meas. Sci. Technol. 19 (2008) 122001, doi: 10.1088/0957-0233/19/12/122001 .

[52] RPL. Nijssen , Fatigue life prediction and strength degradation of wind turbine ro- tor blade composites, Design and Production of Composite Structures Group, Delft, 2006 .

[53] J. Pascoe , Slow-growth damage tolerance for fatigue after impact in FRP compos- ites : why current research won’t get us there. Structural Integrity Procedia, Elsevier, 2020 .

[54] MF. Ashby, Material limits for shape efficiency, Prog. Mater. Sci. 41 (1997) 61–128, doi: 10.1016/S0079-6425(97)10034-2 .

[55] International Electrotechnical Commission. IEC International Standard 61400-1. Geneva: 2005.

[56] DNV-GL. Rotor blades for wind turbines. Standard DNVGL-ST-0376, 2015. [57] D.T. Griffith , TD. Ashwill , in: The sandia 100-meter all-glass baseline wind turbine

blade , Baseline, 2011, pp. 1–67 .

[58] L.C. Bank, F.R. Arias, A. Yazdanbakhsh, T.R. Gentry, T. Al-Haddad, J.F. Chen, et al., Concepts for reusing composite materials from decommissioned wind turbine blades in affordable housing, Recycling 3 (2018), doi: 10.3390/recycling3010003 . [59] M. Peeters, G. Santo, J. Degroote, W. Paepegem, The concept of segmented wind

turbine blades: a review, Energies 10 (2017) 1112, doi: 10.3390/en10081112 . [60] SiemensSiemens IntegralBlade, Siemens Windpower, Hamburg, 2012 .

Cytaty

Powiązane dokumenty

Źródła zw iązane prow eniencyjnie z instytucją domeny monarszej są w y k o ­ rzystyw ane na ogół szeroko przez historyków jako podstaw a dokum entacyjna, cenna

S tefan a, pozostaw ał raczej

Minister może także zawiesić w czynnościach adwokata, a zawieszenie to m o ż e być uchylone tylko przez sąd dyscyplinarny, i to nawet wówczas, gdy adwokat

działalność adwokatury polskiej w okresie okupacji hitlerowskiej :.. fragmenty Palestra 27/8(308),

albo Dziejopis żywiecki, w którym roczne dzieje spraw przeszłych staro- dawnych miasta Żywca i pobliskich jego miejsc znajdują się.. W będącym rodzajem

Z czysto ludzkiego punktu widzenia można jednak mieć wątpliwości, na ile taki wybór był właściwy, przede wszystkim zaś wtedy, gdy opat był już w „słusz- nym” wieku a

5 Program of the 23 rd International Congress of Byzantine Studies. Należy dodać, że pierwszych 14 stron programu nie posiada paginacji, stąd w przypisach niniejszego

Ukazały się one pod nazwą: Famiglia salesiana in preghiera (Rodzina salezjańska na modlitwie), pięć lat po wydaniu Mszału dla Rodziny salezjańskiej: Messale