• Nie Znaleziono Wyników

A static and free vibration analysis method for non-prismatic composite beams with a non-uniform flexible shear connection

N/A
N/A
Protected

Academic year: 2021

Share "A static and free vibration analysis method for non-prismatic composite beams with a non-uniform flexible shear connection"

Copied!
10
0
0

Pełen tekst

(1)

Delft University of Technology

A static and free vibration analysis method for prismatic composite beams with a

non-uniform flexible shear connection

Nijgh, Martin; Veljkovic, Milan

DOI

10.1016/j.ijmecsci.2019.06.018

Publication date

2019

Document Version

Final published version

Published in

International Journal of Mechanical Sciences

Citation (APA)

Nijgh, M., & Veljkovic, M. (2019). A static and free vibration analysis method for non-prismatic composite

beams with a non-uniform flexible shear connection. International Journal of Mechanical Sciences, 159,

398-405. https://doi.org/10.1016/j.ijmecsci.2019.06.018

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

International Journal of Mechanical Sciences 159 (2019) 398–405

ContentslistsavailableatScienceDirect

International

Journal

of

Mechanical

Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

A

static

and

free

vibration

analysis

method

for

non-prismatic

composite

beams

with

a

non-uniform

flexible

shear

connection

Martin

Paul

Nijgh

,

Milan

Veljkovic

Faculty of Civil Engineering and Geosciences , Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Composite beam Analytical modelling Eigenfrequency Tapered beam Sustainability

a

b

s

t

r

a

c

t

Steel-concretecompositebeamsarewidelyusedinpracticebecauseoftheireconomiccross-sectiondesign.As sustainabilitybecomesmoreandmoreimportantintheconstructionindustry,thedesignofcompositebeamsmust beadaptedtomeettherequirementsofthecirculareconomy.Thiscallsfordemountabilityandreusabilityofthe structuralcomponents,aswellasoptimizeduseofmaterials,forexamplebyusingnon-prismaticbeams. Linear-elasticdesignandthe(optimized)useofdemountableshearconnectorsarekeyinthedesignofreusablecomposite structures.Inthispaper,analyticalpredictionmodelsfortheelasticbehaviourandthefirsteigenfrequencyof non-prismaticcompositebeamswithnon-uniformshearconnectorarrangementsarederived.Theapproachis basedon6thand2ndorderdifferentialequationsusedtodefinematrixequationsforafinitenumberoflinearized

compositebeamsegments.Theanalyticalmodelsarevalidatedusingexperimentalandnumericalresultsobtained withasimplysupportedtaperedcompositebeam.Theanalyticalmodelsaresuitableforcomprehensivestructural analysisofnon-prismaticcompositebeamswithnon-uniformshearconnection.

1. Introduction

Compositeactionbetweenasteelbeamandaconcretedeckis tradi-tionallyachievedusingweldedheadedstuds.Themechanicalbehaviour of welded headed studsis well established in literature (e.g. [1–4]) andthereforeincludedindesigncodes.Althoughtheuseofthewelded headedstudiswidespread,themaindrawbackofthistypeofshear con-nectoristhatitdoesnotallowfornon-destructiveseparationofthesteel beamandconcretedeck[5,6].Oncethebuildinghasbecomeobsolete, demolitionistheonlyoptiontotakethebuildingapart.

Demountableshearconnectorsareincreasinglygaininginterestin theresearch fieldof compositestructures, astheydoallow for non-destructiveseparationofthesteelbeamandconcretedeckandthereby scorecomparativelybetterinsustainabilityassessment. Demountabil-ityoftheshearconnectionoffersthepossibilitytoreusethestructure, eitherbychangingthefloorplantoallowfordifferentfunctionaluse and/orbyre-erectingtheentirestructure atanotherlocation.By de-signingastructuretobesuitablefordemountabilityorreusability,its servicelifetimeisnolongercontrolledbyitsfunctionallifetimeona specificconstructionsitebutbyitstechnicallifetime[7].

Themainbarrierstodesigningdemountableandreusablecomposite structureshavebeenidentifiedbyTingly&Davison[8]as:

Perceivedriskinspecifyingreusedmaterials,

Additionalcostsrelatedtothemeasuresrelatedtodemountability,

Correspondingauthor.

E-mailaddress:M.P.Nijgh@tudelft.nl (M.P.Nijgh).

Compositeconstruction,

Lackofareusedmaterialmarket,

Longerdeconstructiontime.

Thepotentialbarriersmustbemitigatedtoallowthe implementa-tionofdemountableandreusablestructuresin practice.The feasibil-ity ofconstructionandexecutionof demountableandreusable com-posite beamswasrecentlydemonstratedbyNijghetal.[9]byusing largeprefabricatedconcretedecks,ataperedsteelbeamand demount-ableshearconnectors,incombinationwithoversizedholesand resin-injectedbolts.Inaddition,investigationsareon-goingwhich address the(de)constructiontimeandadditionalcostsrelatedtodemountable andreusablecompositestructures.

Steel-concrete compositebeamsaregenerally prismatic,i.e.their cross-sectiondoesnotvaryalongthebeamlength.However,tapered compositebeamsofferbothstructuralandfunctionaladvantages com-paredwithprismaticcompositebeams.Recently,Nijghetal.[9] con-ductedexperimentstodeterminetheelasticmechanicalbehaviourof taperedcompositebeamswithvariousarrangementsofdemountable shearconnectors.Itwasfoundthattheelasticbehaviourofsimply sup-portedcompositebeamscouldbeoptimisedbyconcentratingtheshear connectorsnearthesupports.Thisfindingisinlinewiththetheoretical predictionsbyRoberts[10]andLinetal.[11].

Thedesignof compositebeamsis governedeitherby serviceabil-itycriteriaorbyitsresistanceintheultimatelimitstate.Inboth de-signcases,acompositebeamcanbedesignedtobedemountableand

https://doi.org/10.1016/j.ijmecsci.2019.06.018

Received31January2019;Receivedinrevisedform29May2019;Accepted8June2019 Availableonline9June2019

(4)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405

reusableaslongastheelasticlimitsarenotexceeded.Inaddition,the perceptionofhumancomfortmustbeconsideredbydesigningfora suf-ficientlyhighfirsteigenfrequency.

InthecomparativestudyofRanzietal.[12],fourdifferentmodelling methodsforcompositebeamsareoutlined:

1 Exactanalyticalmethods 2 Finitedifferencemethod 3 Finiteelementmethod 4 Directstiffnessmethod

Exactanalyticalmethodsarebasedonsolvingdifferentialequations obtained byconsideringthe straindiagramandinternal equilibrium of compositebeams. Theelasticmechanical behaviour of composite beamswith flexible(non-rigid) shear connectors was firstdescribed analyticallybyNewmarketal.[13].TheNewmarkmodelconsistsof twoEuler-Bernoullibeams(onerepresentingthesteelbeam,andthe otherrepresentingtheconcretedeck)whicharecoupledatthe inter-faceusingauniformlydistributedshearconnection.Girhammar&Pan

[14]andGirhammar[15]studiedtheelasticbehaviourofcomposite beamsusingtheNewmarkapproach,whereasXu&Wu[16]andSchabl etal.[17]alsoimplementedsheardeformationintheirmodelsbyusing Timoshenkobeamtheory.Yam&Chapman[18]extendedtheoriginal Newmarkmodeltoaccountfornonlinearmaterialandshear connec-torbehaviour.Theexactanalyticalmethodsarenotdirectlysuitable foraccountingfornon-uniformshearconnectorarrangements.An at-tempttomodelnon-uniformshearconnectorarrangementsusing ana-lyticalmethodswasmadebyLawsonetal.[19]byassumingtheslip distributiontobecosinusoidal.However,theshapefunctionoftheslip distributionalongthebeamlengthmightnotbereadilypredefinedfor non-prismaticcompositebeamswith(highly)non-uniformshear con-nectorarrangements.

Finitedifferencemethodsapproximatethebehaviourofcomposite beamsnumericallybyassumingderivativesintheformofalgebraic ex-pressions.Thismodellingmethodhasbeendeveloped extensivelyby Adekola[20],Roberts[10],andRoberts&Al-Amery[21].

Finiteelementmethodsprovidenumericalsolutionsandarerobust andreliableincasesuitableshapefunctionsarechosen[12]to approx-imatethedisplacements.Thefiniteelementformulationsarebasedon Euler–Bernoullibeamtheory(e.g.[22,23]),Timoshenkobeamtheory (e.g.[24,25])orhigherorderbeamtheories(e.g.[26,27]).

Thedirectstiffnessmethodisbasedonaninitiallyundeformed el-ementthatissubjectedtoaunitrotationortranslationinoneofthe degreesoffreedom(DOF),whilstrestrainingallotherDOFs.Thedirect stiffnessmethodispresentedintheworkofRanzietal.[28],andlater extendedbyRanzi&Bradford[29]toaccountfortime-dependent ef-fects.

Inthiswork,analyticalpredictionmodelsfortheelasticbehaviour andthefirst eigenfrequencyof non-prismatic compositebeamswith non-uniform shear connector arrangement are derived. The starting pointforthepredictionmodelsistodiscretisethecompositebeaminto segments,whichindividuallyfulfilthebasicassumptionsofthe analyt-icalNewmarkmodel.Theresultsoftheproposedanalyticalmodelsfor non-prismaticcompositebeamswithnon-uniformshearconnector

ar-rangementsarecomparedwiththeresultsofactualexperimentsand/or theresultsoffiniteelementanalysis.

2. Theoreticalbackground

Thestartingpointfortheanalyticalmodelsfortheelasticmechanical behaviourandeigenfrequencyofnon-prismaticcompositebeamsisthe partialdifferentialequation,Eq.(1)[16],validforprismaticcomposite beamswithuniformlydistributedflexibleshearconnectorssubjectto bendingdeformation.ForthederivationofEq.(1),thereaderisreferred totheworkofXu&Wu[16].Otherresearchers(e.g.Girhammeretal.

[30])havealsoderivedEq.(1),althoughwithdifferentnotations.

𝜕6𝑤 𝜕𝑥6 −𝛼 2𝜕4𝑤 𝜕𝑥4 +𝛽 2𝛾 1 𝜕 4𝑤 𝜕𝑥2𝜕𝑡2−𝛼 2𝛾 1𝜕 2𝑤 𝜕t2 =− 𝛼2 𝐸𝐼𝑞+ 1 𝐸𝐼0 𝜕2𝑞 𝜕𝑥2. (1) 𝛼2= 𝐾⋅ 𝑟 𝐸𝐼0 ( 1− 𝐸𝐼0 𝐸𝐼∞ ) ; 𝛽2= 𝐸𝐼𝐸𝐼0 ;𝛾1= 𝑚 𝐸𝐼. (2) 𝐾=𝑘sc 𝑠 ; 𝑚=𝜌s𝐴s+𝜌deck𝐴deck (3)

InEq.(1),wisthedeflectionfunctionand𝛼2,𝛽2and𝛾

1are

geometri-calandshearconnectionparametersdefinedinEq.(2).Thedistributed load(forceperunitlength)actingonthebeamisdenotedbyq.EI

and𝐸𝐼0denotethebendingstiffnessincaseofrigidandnoshear

con-nection,respectively.Thedistancebetweentheelasticneutralaxesof theconnectedmembersundertheassumptionofnoshearinteraction isrepresentedbyr.Thesmearedshearconnectionstiffnessisdenoted byK,andisdefinedastheshearconnectorstiffnesskscdividedbythe

(uniform)connectorspacings.Themassperunitlengthisdenotedby

m.TheconventionofinternalandexternalactionsisdefinedinFig.1. Thesheardeformationoriginatingfromthetransversalloadisnot includedintheanalysis,becausedeflectionduetobendingisdominant forcompositebeamswithtypicalspanoverdepthratios.Therotational inertiaisalsodisregardedbecauseitsinfluenceonthelower eigenfre-quenciesisnegligible[16].

Eq.(1)isonlyvalidforprismaticbeamswithuniformlydistributed shearconnectors.AdiscretisationofthebeamintoJsegmentsis per-formedalongthelengthofthecompositebeamtoaccountonthe non-uniform shear connector arrangements andvarying geometryof the compositebeam.SuchadiscretisationprocesswasfirstadoptedbyTaleb &Suppiger[31]tomodelthefreevibrationsofnon-compositebeams, butsuchanapproachhasnotyetbeenappliedtocompositebeamswith aflexibleshearconnection.Thediscretisationprocesscreatesastepped beamwithdifferentgeometricalandmechanicalpropertiesineach seg-ment,asillustratedinFig.2.Thegeometricalandmechanicalproperties ofasegmentaredeterminedbasedonthemagnitudesoftheinfluencing variablesinthesegment’scentre.Ineachsegment,theshearconnection isassumedcontinuous(smeared)overthesegmentlength.Itisassumed thatallmaterialsbehaveelasticallyandthatthecurvatureofthe con-stituentmembersisequalineachcross-section.Therefore,eachbeam segmentfulfilsthebasicassumptionsoftheNewmarkmodel.

Fig.1.Conventionofinternalactionsinthedifferentialelementofacompositebeamwithaflexibleshearconnection.Theresultantofthenormalforceiszero undertheassumptionthatnoexternalaxialloadisapplied.

(5)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405

Fig.2. Discretizationofataperedcompositebeam(dashedline)intoJprismatic compositebeamsegmentsofequallength,subjecttoauniformlydistributed load.

2.1. Staticanalysis

Forcompositebeamssubjecttostaticuniformlydistributedloads,

Eq.(1)reducesto 𝑑6𝑤 𝑑𝑥6 −𝛼 2𝑑4𝑤 𝑑𝑥4 =− 𝛼2 𝐸𝐼𝑞 + 1 𝐸𝐼0 𝑑2𝑞 𝑑𝑥2. (4)

DiscretisingthebeamintoJsegmentsofequallength(seeFig.2), andassumingthattheappliedloadperunitlengthqisconstantineach beamsegment,Eq.(4)furtherreducesto

𝑑6𝑤 𝑗 𝑑𝑥6 −𝛼 2 𝑗 𝑑4𝑤 𝑗 𝑑𝑥4 =− 𝛼2 𝑗 𝐸𝐼,𝑗 𝑞𝑗, (5)

with1≤jJ.Thesolutiontothissixthorderlineardifferentialequation isgivenby 𝑤𝑗(𝑥)=𝐶1,𝑗 e𝛼𝑗𝑥 𝛼4 𝑗 +𝐶2,𝑖 e−𝛼𝑗𝑥 𝛼4 𝑗 +𝐶3,𝑗𝑥3+𝐶4,𝑗𝑥2+𝐶5,𝑗𝑥+𝐶6,𝑗+ 1 24 𝑞𝑗𝑥4 𝐸𝐼,𝑗. (6) ExpressionsforthebendingmomentM,shearforceV,shearflowVs,

normalforceN1andinterlayerslipΔuaregivenbyEqs.(7)–(11), re-spectively[14,16,30]. 𝑀𝑗=𝐸𝐼,𝑗 𝛼2 𝑗 [ −𝑑 4𝑤 𝑗 𝑑𝑥4 +𝛼 2 𝑗 𝑑2𝑤 𝑗 𝑑𝑥2 + 𝑞𝑗 𝐸𝐼0,𝑗 ] (7) 𝑉𝑗=−𝑑𝑑𝑥𝑀𝑗 = 𝐸𝐼𝛼∞2,𝑗 𝑗 [ 𝑑5𝑤 𝑗 𝑑𝑥5 −𝛼 2 𝑗 𝑑3𝑤 𝑗 𝑑𝑥3 − 1 𝐸𝐼0,𝑗 𝑑𝑞𝑗 𝑑𝑥 ] (8) 𝑉s,𝑗=𝑟1 𝑗 [ 𝑉𝑗+𝐸𝐼0,𝑗 𝑑3𝑤 𝑗 𝑑𝑥3 ] (9) 𝑁1,𝑗= 𝐸𝐼,𝑗 𝛼2 𝑗𝑟𝑗 [ −𝑑 4𝑤 𝑗 𝑑𝑥4 +𝛼 2 𝑗 ( 1− 𝐸𝐼0,𝑗 𝐸𝐼,𝑗 )𝑑2𝑤 𝑗 𝑑𝑥2 + 𝑞𝑗 𝐸𝐼0,𝑗 ] (10) Δ𝑢𝑗= 𝑑𝑁1,𝑗 𝑑𝑥 1 𝐾𝑗 (11)

The6Jintegrationconstants(C1,1,C2,1...C5,J,C6,J),resultingfrom

the J segments in which Eq. (6) is defined, can be solved by im-posing boundary conditions at x0 and xJ, and interface conditions at x1...xJ−1. For a beamsimply supported at x0=0 andxJ=L, the

sixboundaryconditionsarew1(0)=0,wJ(L)=0,M1(0)=0,MJ(L)=0,

w′′′′1 (0)=q1/EI0,1andw′′′′J (L)=qJ/EI0,J.Forasymmetricalsimply

supportedcompositebeam, theboundaryconditionscan alsobe ex-pressedatxJ=L/2as𝑤𝐽(𝐿∕2)=0,VJ(L/2)=0,andΔuJ(L/2)=0.Other

typesofsupportingconditionscanbeincludedbymodifyingthe bound-ary conditions appropriately. The equilibrium of shear force, bend-ingmomentandnormalforce,aswellasthecontinuityofdeflection, slopeandslipisenforcedattheinterface ofneighbouringsegments. Theseinterfaceconditionsareexpressedaswj(xj)=wj+1(xj),𝑤𝑗(𝑥𝑗)=

𝑤

𝑗+1(𝑥𝑗), Mj(xj)=Mj+1(xj), Δuj(xj)=Δuj+1(xj), Vj(xj)=Vj+1(xj), and

N1,j(xj)=N1,j+1(xj).Anyconcentratedforcescanbeappliedbyimposing

theseintheinterfaceconditionsrelatedtotheverticalforceequilibrium.

2.2. Freevibrationanalysis

Then-theigenfrequencyofaprismaticbeamwithaspanL,a uni-formlydistributedmassmandconstantbendingstiffnessEIisgivenby

𝑓𝑛=𝐾2𝜋𝑛

𝐸𝐼

𝑚𝐿4, (12)

inwhichKnisaconstantdependingontheboundaryconditions.The

mostimportantobservationfromEq.(12)isthat𝑓𝑛

𝐸𝐼.Assuming thatthebendingstiffnessofthebeamAwiththen-theigenfrequency

fn,AisEIA,andthatthemassperunitlengthandthespanofthebeam

AandBareequal,then-theigenfrequencyofthebeamBequals

𝑓𝑛,B=𝑓𝑛,A

𝐸𝐼B

𝐸𝐼A.

(13)

Fortaperedcompositebeams,thebendingstiffnessisnotconstant along thebeamaxis,andtherefore thedeflectionat mid-spanunder theself-weightcanbeassumedtobeameasureforthebeamstiffness instead.Theprecedingleadstothehypothesisthatthenaturalfrequency ofataperedcompositebeamcanbedeterminedusingtheexpression

𝑓𝑛=𝑓𝑛,

𝑤m,

𝑤m

, (14)

inwhichfn,∞isthen-thnaturalfrequencyofthe(non-prismatic)

com-posite beamundertheassumptionofrigidshearconnection.wmand

wm,∞denotethedeflectionatmidspanbecauseoftheself-weight

im-postedalongthebeamaxisincaseofflexibleandrigidshearconnection, respectively.Themagnitudesofwmandwm,∞foragivenbeamdesign

canbecomputedusingtheanalyticalmethodpresentedinSection2.1. Thenaturalfrequencyfn,∞ofthecompositebeamwithrigidshear

connectioncanbedeterminedusingEq.(15)[31],whichisbasedon Euler-Bernoullibeamtheory.

𝐸𝐼𝜕 4𝑤(𝑥,𝑡)

𝜕𝑥4 =𝑚

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2 (15)

Eq.(15) canbe simplifiedbyusing theprincipleof separationof variablesintheform𝑤(𝑥,𝑡)=𝑤̃(𝑥)exp(𝑖𝜔𝑛𝑡).Insertingthisexpression intoEq.(15)gives

𝑑4𝑤̃ 𝑑𝑥4 −𝜁 4𝑤̃=0, (16) inwhich 𝜁4= 𝑚𝜔 2 𝑛,𝐸𝐼. (17) InEq.(17),𝜔𝑛,∞isatrialsolutionfortheangulareigenfrequencyof

thefull-interactioncompositebeam.Theangulareigenfrequency𝜔𝑛, andtheeigenfrequencyfn,∞arerelatedtoeachotherby

𝑓𝑛,∞=

𝜔𝑛,

2𝜋 . (18)

ThegeneralsolutionofEq.(16)canbeexpressedintheform

̃

𝑤(𝑥)=𝐶1sin(𝜁𝑥)+𝐶2cos(𝜁𝑥)+𝐶3sinh(𝜁𝑥)+𝐶4cosh(𝜁𝑥). (19)

Thegeneralsolutionineachofthebeamsegmentsiswrittenas

̃

𝑤𝑗(𝑥)=𝐶1,𝑗sin(𝜁𝑗𝑥)+𝐶2,𝑗cos(𝜁𝑗𝑥)+𝐶3,𝑗sinh(𝜁𝑗𝑥)+𝐶4,𝑗cosh(𝜁𝑗𝑥), (20)

with 𝜁𝑗4= 𝑚𝑗𝜔2𝑛,𝐸𝐼,𝑗 . (21) 400

(6)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405

Fig.3. (a)OverviewofthecompositebeampresentedintheworkofNijghetal.

[9] .(b)Cross-sectionaldimensionsofthetaperedsteelbeam.

Thecorrespondinginternalactionsaregivenby

𝑀𝑗=𝐸𝐼,𝑗

𝑑2𝑤̃ 𝑗

𝑑𝑥2 , (22)

𝑉𝑗=𝑑𝑑𝑥𝑀𝑗. (23)

The4•Jintegrationconstants,resulting fromtheJsegmentsin whichEq.(20)isdefined,canbesolvedbyimposingboundary condi-tionsatx0andxJ,andinterfaceconditionsatx1...xJ−1.Forasimply

supportedbeamsupportedatx0=0andxJ=L,theboundaryconditions

atthesupportsarew1(0)=0,wJ(L)=0,M1(0)=0andMJ(L)=0.The in-terfaceconditionsareexpressedas𝑤̃𝑗(𝑥𝑗)=𝑤̃𝑗+1(𝑥𝑗),𝑤̃𝑗(𝑥𝑗)=𝑤̃𝑗+1(𝑥𝑗),

Mj(xj)=Mj+1(xj),andVj(xj)=Vj+1(xj).Itshouldbenotedthatthefull

beammustbemodelledtofindalleigenfrequenciesand–modes:if

sym-metryconditionsareused,onlytheodd-numberedeigenfrequenciesand -modes(n=1,3,5,…)canbefound.

Byinsertingtheboundaryconditionsintothegeneralsolutions,a systemofJhomogeneousequationsisobtained.Thesystemof homoge-nousequationscanbewrittenas

[A]{c}={0}, (24)

in which {c}=[C1,1C2,1...C5,JC6,J] and [A] is thecoefficient matrix.

Non-trivialsolutionsofEq.(24)canonlybefoundifthedeterminantof thecoefficientmatrixiszero,henceif

det[A]=0. (25)

Incasedet[A]=0,theangulareigenfrequency𝜔𝑛wasassumed cor-rectly in Eq.(21). Incase det[A]≠ 0, anothertrialsolution mustbe adoptedtofindtheangulareigenfrequency.Wuetal.[32]proposed tofindtheangulareigenfrequencybysteppingthroughasequenceof smallincrementsof𝜔𝑛andcomputingthesignforthedeterminantof [A].Ifthesignofthedeterminantof[A]changes,anapproximationfor theangulareigenfrequencyisobtained,which canbefurtherrefined usingthebisectionmethod.

Afterdetermining𝜔𝑛suchthatdet[A]=0,theeigenfrequencyofthe compositebeamwithrigidshearconnectioncanbedeterminedbased onEq.(18).Theeigenfrequencyforacompositebeamwithaflexible shearconnectioncanthenbedeterminedusingtheproposedexpression inEq.(14).Theparameterswmandwm,∞inEq.(14)canbedetermined

usingtheanalyticalmethodpresentedinSection2.1.

Fig.4. Cross-section(side-view)ofcompositebeamstudiedbyNijghetal.[9] .Twoprefabricatedsolidconcretedecksaresupportedbytwotaperedsteelbeams withaspanof14.4m.Loadsareappliedat4.05mfromthesupports.Thec.t.c.distancebetweenthesteelbeamsis2.6m.

(7)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405 Fig.5.Shearconnectorarrangements consid-ered in the work of Nijgh et al. [9] . Each colouredboxindicatesapairoffasteners(one persteelbeam).Resin-injectedboltsprovide shearconnection;normalboltsareplacedonly topreventverticalseparationofthedeckand beam. “U” denotesuniform connector spac-ing,“C” denotesconcentratedconnector spac-ingnearthesupports.Thebeamissymmetric intheplaneatx=L/2.(Forinterpretationof thereferencestocolourinthisfigurelegend, thereaderisreferredtothewebversionofthis article.)

3. Comparisonwithexperimental/numericalresultsand discussion

3.1. Staticanalysis

TheanalyticalmethodpresentedinSection2.1isvalidatedagainst actualbeamtests performedbyNijghetal.[9]on tapered prefabri-catedcompositebeamswithvariousshearconnectorarrangements.The simply-supportedcompositebeam(seeFig.3a)consistsoftwo prefabri-catedsolidconcretedecksof7.2mby2.6m,connectedtotwo symmetri-callytaperedsteelbeamsusingdemountableshearconnectors.The com-positebeamspans14.4mandissubjectedtobendingbyapplyingpoint loadsat4.05mfromthesupports.Aschematicdrawingofthe speci-menisshowninFig.4.Theheightofthesymmetricallytaperedsteel beamsvarieslinearly betweenthesupports,hs(x=0;x=L)=590mm,

andmidspan,hs(x=L/2)=725mm.Thecross-sectionaldimensionsof thetaperedsteelbeamarepresentedinFig.3b.Theconcretedeckhasa constantthicknessof120mmalongitslengthanditisassumedthat

Edeck=33GPa[33]. Theshear connector stiffness ksc was previously determinedas55kN/mm[9].Theshearconnectorarrangements pre-sentedinFig.5wereconsideredintheexperimentalprogramme.

Asensitivitystudyiscarriedouttodeterminetheminimumnumber ofbeamsegmentsperhalf-span(J)thatarenecessarytobemodelled, suchthatthedeflectionatmidspanbasedonJsegmentsconvergesto thevalueobtainedforJ→ ∞.Thisanalysisisperformedunderthe as-sumptionofauniformlydistributedloadandauniformlydistributed shearconnectionwithK=367kN/mm2(equivalenttoshearconnector

arrangementU-24)forthecompositebeampreviouslyintroduced.The resultsofthissensitivitystudyarepresentedinFig.6,indicatingthata smallnumberofsegmentsissufficientforconvergenceofthedeflection atmidspan.ForJ≥3theerrorregardingmidspandeflectioncompared withJ→ ∞ issmallerthan1%.Astheexperimentalbeam[9]offersthe possibilitytoinstall24pairsofshearconnectorsineachhalf-span,the theoreticalbeamisconvenientlysubdividedintoJ=24segmentsper half-span.

Theresultsobtainedusingtheproposedanalyticalmethodarelisted inTable 1, togetherwiththeexperimentalandfinite-elementresults obtainedbyNijghetal.[9].Theresultsareexpressedintermsofthe effectivebendingstiffnessandtheeffectiveshearstiffnessofthe

com-positebeam,respectivelydefinedas

𝑘b,ef f=

Δ𝐹

Δ𝑤(𝑥=𝐿∕2);𝑘s,ef f= Δ𝐹

Δ𝑢(𝑥=0). (26) InEq.(26),ΔFistheforceincrement,ΔW(x=L/2)isthedeflection incrementatmidspanandΔu(x=0)istheslipincrementatthesupports. Theseparameterswereevaluatedatlinear-elasticloadlevels.

Fig.7,Fig.8andTable1clearlyshowthattheproposedanalytical modelandthefiniteelementresults[9]areingoodagreement regard-ingtheeffectivebendingstiffnessandtheeffectiveshearstiffnessforall theconsideredshearconnectorarrangements.Thenumericaland ana-lyticalpredictionscloselymatchtheexperimentalresultsregardingthe effectivebendingstiffness,withaveragedeviationsof only0.4%and 2.4%,respectively.Largedeviationexistsregardingtheeffectiveshear stiffness,aswasalreadyobservedin[9].Onaverage,theactualend-slip is47%smallerthanpredictedusingtheproposedanalyticalmodel.The sourceofthisdeviationisnotconsideredinthispaper.Theproposed analyticalmodel,however,showsgoodagreementwiththefinite ele-mentmodel[9]withanaveragedeviationofonly6%.Thisindicates thatthelargedeviationbetweenanalyticalmodelandexperimental re-sultsislikelyrelatedtotheexperimentsandnottothepresentanalytical modelnortothefiniteelementanalysis[9].

Fig.6. Relativedeflectionofthetaperedcompositebeamsubjecttoauniformly distributedload,asafunctionofthenumberofsegmentsJperhalf-span. 402

(8)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405 Table1

Resultsobtainedusingproposedanalyticalmodel(presentstudy)andtheexperimentallyandnumerically obtainedresultsbyNijghetal.[9] regardingeffectivebendingstiffnessandeffectiveshearstiffnessfor theconsideredshearconnectorarrangements.

kb,eff(kN/mm) ks,eff(kN/mm)

Arrangement Analytical model Experiment FE model Analytical model Experiment FE model

U-24 7.25 6.89 7.13 285 514 301 C-12 7.04 6.69 6.96 269 487 294 C-6 6.31 6.18 6.28 190 389 188 U-12 6.60 6.35 6.53 177 330 190 U-6 5.90 5.82 5.87 120 199 128 U-0 3.96 4.10 4.07 46 98 51

Fig.7. Theeffectivebendingstiffnessparameterobtainedusingtheproposed analyticalmethod,comparedwiththeexperimentallyandnumericallyobtained results[9] ,forthedifferentshearconnectorarrangements.

Fig.8. Theeffectiveshearstiffnessparameterobtainedusingtheproposed an-alyticalmethod,comparedwiththeexperimentallyandnumericallyobtained results[9] ,forthedifferentshearconnectorarrangements.

Presentstudyconfirmsthatthedeflectionandshearconnectorslip canbeminimizedbyconcentratingtheshearconnectorsnearthe sup-portsofasimplysupportedbeam.Byoptimizingtheshearconnector ar-rangementthetotalnumberofshearconnectorscanbereduced,which hasapositiveimpactonthespeedof(de)constructionandthematerial andlabourcosts.Bothparametersarekeytothesuccessful implemen-tationofdemountableandreusablestructureswithintheconstruction industry[8].

Theslipdistributionalongthetaperedcompositebeamsubjectedto auniformlydistributedloadq(F=0)isshowninFig.9forthedifferent shearconnectorarrangements.Thisloadcasecorrespondstoapractical beamapplication.Fig.9indicatesthattheassumptionofLawsonetal.

[19]ofacosinusoidalshapefunctionfortheinterlayerslipisnot gener-icallyvalid:particularlyin thecaseofshearconnectorsconcentrated nearthesupports(arrangementsC6andC12)amorerefinedanalysis usingthepresentmethodmustbecarriedouttodeterminetheactual slipdistributionandthecorrespondinginternalactions.

Fig.9. Shapeofslipdistributionalongthelengthofthetaperedcompositebeam subjectedtoauniformlydistributedloadq(F=0),comparedtothecosinusoidal distributionassumedbyLawsonetal.[19] .

3.2. Freevibrationanalysis

Thefirsteigenfrequencyofthetaperedcompositebeampresentedin

Section3.1isdeterminedfortheshearconnectorarrangementslisted in Fig.5andforvariousmagnitudesof theshear connectorstiffness

ksc (25,55and100kN/mm).Inthisanalysis,thecompositebeamis regardedaspartofalargerstructureandthatthereforeonetapered compositebeameffectivelyconsistsofonetaperedsteelbeamandtwo prefabricatedconcretedecks.

Theresultsofasensitivitystudytodeterminetheminimumnumber ofbeamsegmentsperhalf-spanJtoensureanaccuratelypredictionof thefirsteigenfrequencyarepresentedinFig.6.Theanalysishasbeen conductedwiththesameassumptionsasfor thesensitivitystudy re-gardingthedeflection.AlsointhiscaseitisfoundthatforJ≥3the convergenceerrorintermsoffirsteigenfrequencyissmallerthan1%. AllcalculationsarecarriedoutbysubdividingthebeamintoJ=24 seg-mentsperhalf-spantomatchthesegmentationusedinSection3.1.

Theanalyticalmethodtodeterminetheeigenfrequenciesofa non-prismaticcompositebeamwithflexibleshearconnectorsisvalidatedby

(9)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405 Table2

FirsteigenfrequenciesofthetaperedcompositebeampresentedinSection 3.1 forvariousshear con-nectorarrangementsandshearconnectorstiffness,obtainedusingtheproposedanalyticalmodeland usingfiniteelementanalysis.

Arrangement

fn,∞,FEA fn,∞,analytical ksc 𝑤 m,∞∕ 𝑤 m fn,analytical fn,FEA fn,analytical / f n,FEA

(Hz) (Hz) (kN/mm) (-) (Hz) (Hz) (-) U-24 5.39 5.51 25 0.82 4.99 5.00 0.998 55 0.9 5.23 5.17 1.012 100 0.94 5.34 5.25 1.017 C-12 25 0.79 4.88 4.92 0.992 55 0.87 5.14 5.10 1.007 100 0.92 5.27 5.20 1.013 C-6 25 0.69 4.59 4.71 0.975 55 0.78 4.88 4.89 0.997 100 0.84 5.03 5.00 1.007 U-12 25 0.73 4.71 4.81 0.978 55 0.84 5.04 5.02 1.002 100 0.9 5.22 5.15 1.013 U-6 25 0.64 4.41 4.61 0.957 55 0.75 4.78 4.85 0.987 100 0.83 5.02 5.00 1.004 U-0 0 0.44 3.65 3.67 0.995 Average 0.997

Fig.10. Eigenmodesofthetaperedcompositebeam.

finiteelementanalysis.Thesimplysupportedcompositebeamis mod-elledinABAQUS/Standardusingfour-nodeshellelements(S4)forthe taperedsteelbeamandconcretedeck.Theshearconnectorsare mod-elledusingmesh-independent,point-basedfastenerswithaspring stiff-nessequaltoksc.

Theresultsobtainedusingtheanalyticalandnumericalmodelsare presentedinTable2.Onaverage,thefirsteigenfrequencyobtainedby theproposedanalyticalmodelis0.3%lowerthanpredictedbythe fi-niteelementmodel.Thefirsteigenfrequencyisunderestimatedincase ofaweakshearconnectionandoverestimatedincaseofastrongshear connection,withamaximumdeviationof4.3%fortheU-6casewith

ksc=25kN/mm.Theproposedanalyticalmodelisthereforeconsidered

suitablefordeterminationofthefirsteigenfrequencyofatapered com-positebeamwithnon-uniformshearconnectorarrangements.

Fig.10showsthefirstfivenaturalvibrationmodesofthetapered compositebeam.Good agreementbetween theanalyticalmodeland finiteelementmodelisobservedintermsofmodalshape.Thehigher

Table3

Natural frequencies for the ta-pered composite beam with a rigidshearconnection.

n fn,∞,analytical √ 𝑓1,,analytical 𝑓𝑛,,analytical (-) (Hz) (-) 1 5.51 1.00 2 21.2 1.96 3 47.9 2.94 4 84.7 3.92 5 132.5 4.90

ordernaturalfrequenciesofthetaperedcompositebeamarelistedin

Table3.Itisobservedthatthehigher-ordernaturalfrequenciesarenot equaltof1n2,asisthecaseforprismaticbeams,butareslightlysmaller

becauseofthenon-uniformmassandbendingstiffnessdistributions.

5. Conclusions

Themainoutcomesofthetheoreticalandnumericalassessmentof thedeflectionandfirsteigenfrequenciesof(reusable)taperedcomposite beamsareasfollows:

Theproposedanalyticalmethodsprovideaneasytouseformulation toassessthestructuralresponseofacompositebeamintheelastic stage.

Theproposedanalyticalmethodrequiresdiscretisationintoa lim-itednumberofsegmentsalongthebeamlengthtoobtainaccurate results.Discretisingthebeaminto3segmentsperhalf-spanleadsto convergenceofthedeflectionandthefirsteigenfrequencyforthe compositebeamstudiedinthiswork.

Theproposedanalyticalmethodaccuratelypredictsthedeflectionof taperedcompositebeams.Onaverage,thedeviationoftheproposed analyticalmethodregardingmidspandeflectionis2.4%compared withtheexperimental resultsand0.4%compared withthefinite elementresultsofNijghetal.[9].

Predictionsregardingendslipobtainedusingtheproposed analyti-calmethodareinlinewithfiniteelementanalysis,withanaverage deviationof6%.Theanalyticalandnumericalmodeldonot repro-ducetheendslipobtainedintheexperimentalworkofNijghetal.

[9].Discussionofreasonsforsuchscatteringisleftoutofthescope ofthiswork.

(10)

M.P. Nijgh and M. Veljkovic International Journal of Mechanical Sciences 159 (2019) 398–405

Theshapeoftheslipdistributionalongthelengthofanon-prismatic compositebeamisnotnecessarilycosinusoidal,particularlyfor non-uniformshearconnector arrangements.Thislimitsthevalidityof theLawsonmodel[19].Therefore,itisrecommendedtousepresent methodtodeterminetheactualslipdistributionandthe correspond-inginternalactions.

Verygood agreementis found between theeigenfrequencies ob-tained using finite element analysis and the proposed analytical model.Onaverage,theproposedanalyticalmodelunderestimates thefirsteigenfrequencyby0.3%.

Acknowledgment

ThisresearchwascarriedoutunderprojectnumberT16045inthe frameworkoftheResearchProgramoftheMaterialsinnovationinstitute M2i(www.m2i.nl)supportedbytheDutchgovernment.

References

[1] Shaikh AF , Yi W . In-place strength of welded headed studs. PCI J 1985;30(2):56–81 .

[2] Mirza O , Uy B . Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors. Eng Struct 2010;32(1):93–105 .

[3] Lam D , El-Lobody E . Behavior of headed stud shear connectors in composite beam. J Struct Eng 2005;131(1):96–107 .

[4] Hanswille G , Porsch M , Ustundag C . Resistance of headed studs subjected to fatigue loading: Part I: experimental study. J Construct Steel Res 2007;63(4):475–84 .

[5] Pavlovic M . Resistance of bolted shear connectors in prefabricated steel-concrete composite decks. Belgrade: University of Belgrade; 2013 .

[6] Moynihan MC , Allwood JM . Viability and performance of demountable composite connectors. J Construct Steel Res 2014;99:47–56 .

[7] van den Dobbelsteen A . The sustainable office - an exploration of the potential for factor 20 environmental improvement of office accommodation. Delft: Delft Univer- sity of Technology; 2004 .

[8] Tingly DD , Davinson B . Design for deconstruction and material reuse. In: Proceed- ings of the institution of civil engineers, 164; 2011. p. 195–204 .

[9] Nijgh MP , Girbacea IA , Veljkovic M . Elastic behaviour of a reusable tapered com- posite beam. Eng Struct 2019;183 .

[10] Roberts TM . Finite difference analysis of composite beams with partial interaction. Comput Struct 1985;21(3):469–73 .

[11] Lin JP , Wang G , Bao G , Xu R . Stiffness matrix for the analysis and design of par- tial-interaction composite beams. Construct Build Mater 2017;156:761–72 .

[12] Ranzi G , Gara F , Leoni G , Bradford MA . Analysis of composite beams with partial shear interaction using available modelling techniques: a comparative study. Com- put Struct 2006;84:930–41 .

[13] Newmark NM , Siest CP , Viest CP . Test and analysis of composite beams with incom- plete interaction. In: Proceedings of the Society for Experimental Stress Analysis; 1951. p. 75–92 .

[14] Girhammar UA , Pan DH . Exact static analysis of partially composite beams and beam-columns. Int J Mech Sci 2007;49:239–55 .

[15] Girhammar UA . A simplified analysis method for composite beams with interlayer slip. Int J Mech Sci 2009;51:515–30 .

[16] Xu R , Wu Y . Static, dynamic, and buckling analysis of partial interaction composite members using Timoshenko’s beam theory. Int J Mech Sci 2007;49:1139–55 .

[17] Schnabl S , Saje M , Turk G , Planinc I . Analytical solution of two-layer beam taking into account interlayer slip and shear deformation. J Struct Eng 2007;133(6):886–94 .

[18] Yam LCP , Chapman JC . The inelastic behaviour of simply supported composite beams of steel and concrete. In: Proceedings of the institution of civil engineers, 41; 1968. p. 651–83 .

[19] Lawson RM , Lam D , Aggelopoulos ES , Nellinger S . Serviceability performance of composite beams. In: Proceedings of the institution of civil engineers, 170; 2017. p. 98–114 .

[20] Adekola AO . Partial interaction between elastically connected elements of a com- posite beam. Int J Solids Struct 1968;4:1125–35 .

[21] Al-Amery RIM , Roberts TM . Non-linear finite difference analysis of composite beams with partial interaction. Comput Struct 1990;35(1):81–7 .

[22] Hirst MJS , Yeo MF . The analysis of composite beams using standard finite element programs. Comput Struct 1980;11:233–7 .

[23] Salari MR , Spacone E , Shing PB , Frangopol DM . Nonlinear analysis of composite beams with deformable shear connectors. J Struct Eng 1998;124(10):1148–58 .

[24] Zona A , Ranzi G . Finite element models for nonlinear analysis of steel-concrete com- posite beams with partial interaction in combined bending and shear. Finite Elem Anal Des 2011;47:98–118 .

[25] Schnabl S , Saje M , Turk G , Planinc I . Locking-free two-layer Timoshenko beam ele- ment with interlayer slip. Finite Elem Anal Des 2007;43:705–14 .

[26] Chakrabarti A , Sheikh AH , Griffith M , Oehlers DJ . Analysis of composite beams with partial shear interaction using a higher order beam theory. Eng Struct 2012;36:283–91 .

[27] Uddin MA , Sheikh AH , Brown D , Bennet T , Uy B . A higher order model for in- elastic response of composite beams with interfacial slip using a dissipation based arc-length method. Eng Struct 2017;139:120–34 .

[28] Ranzi G , Bradford MA , Uy B . A direct stiffness analysis of a composite beam with partial interaction. Int J Numerical Methods Eng 2004;61:657–72 .

[29] Ranzi G , Bradford MA . Analysis of composite beams with partial interaction using the direct stiffness approach accounting for time effects. Int J Numerical Methods Eng 2009;78:564–86 .

[30] Girhammar UA , Pan DH , Gustafsson A . Exact dynamic analysis of composit beams with partial interaction. Int J Mech Sci 2009;51:565–82 .

[31] Taleb NJ , Suppiger EW . Vibration of stepped beams. J Aerosp Eng 1961;28:295–8 .

[32] Wu YF , Xu R , Chen W . Free vibrations of the partial-interaction composite members with axial force. J Sounds Vibrations 2007;299:1074–93 .

[33] NEN. EN 1992-1-1: Eurocode 2: design of concrete structures - Part 1-1: general rules and rules for buildings. Delft: NEN; 2005 .

Cytaty

Powiązane dokumenty

• a rise in the value of parameter G causes that the type of friction between the seal rings changes from mixed into fluid; the developed model makes it possible to assess the

The obtained natural frequencies of the bell made of a bronze with different tin concentration in copper were compared with the acoustic properties of a real bell casted on the

Literature may create illusions of a bilingual or multilingual world within the limits of unilingual utterances, making use of tricks such as metalinguistic reflections

Stack-losses of

In MATLAB, was created programs for 4 points, multiple points and differential lock-in method, which were used to process data from the numerical simulation.. These

The aim of this paper is to verify the accuracy of compression volume modelling method on existing pneumatic flexible coupling, by comparison of static load characteristics obtained

THE COMPARISON OF COHESIVE SOIL DAMPING RATIOS OBTAINED FROM RESONANT COLUMN TESTS AND DESIGNATED BY THE FREE-VIBRATION DECAY AND HALF-POWER BANDWIDTH METHOD..

The unknown shear stresses can be found from the condi- tion that the cross section has to transmit only a shear force (acting in the shear centre) and a bending moment but no