• Nie Znaleziono Wyników

Quasi-elliptical symmetry and decomposability by the pair of probability measures

N/A
N/A
Protected

Academic year: 2021

Share "Quasi-elliptical symmetry and decomposability by the pair of probability measures"

Copied!
10
0
0

Pełen tekst

(1)

Л С Т A U N I V Е R S I Т А Т I S L О D Z I Е N S I S FOLIA MAT II ЕМ ЛТК-А 9, 1997 Witold Budzi sz Q U A S I - E L L I P T I C A L S Y M M E T R Y A N D D E C O M P O S A B I L I T Y B Y T H E P A I R O F P R O B A B I L I T Y M E A S U R E S1 T h e p r o b le m o f e ll ipt ic a l s y m m e t r y o f an o p e r a t o r s t a b l e m e as u r e on f in it e d im e n s io n a l v ec t o r s p a c e w a s s t u d ie d by J .P . H o lm e s , W . N . H u ds o n a n d .1.1). M aso n [1]. C h a r a c t e r iz a t io n o f an e llip t ic a lly s y m -m e t ric lull o p e r a t o r s e -m i - s t a b l e -m e a s u r e w as g iv e n by A. L u cz ak [5]. T h e pa per d e als w it h s o m e a n a lo g o n o f t he e llipt ic a l s y m m e t r y for full m e as u r e , w h ic h is d e c o m p o s a b l e by th e pair (/•. 7 ’„), w h er e r is real an d p o s it iv e an d I',, is t he m u lt ip lic a t io n o p er a to r .

1 . In t r o d u c t i o n

Let V denote a finite dimensional vector spare over reals with an inner product ( , ) and /t be a probability measure on V . For an arbi-trary linear operator A acting in V and Borel subset В of V a measure

A /< is defined by

Ац{ В ) = ц{ А - ' { В ) ) ,

where A ~ X( B ) is an inverse image o f B . From elem entary calculations we get. equalities for measures

A ( B / i ) = ( A B ) / i , А ( ц * //) = A/t * Au, 'S u p p o r t e d by K .B .N .C ira nt nr 2 1020 9101

(2)

where Л, В - linear operators, /«,/' - probability measures, asterisk de-notes œ n volution, and for characteristic function

M /!)(?/) =/*(/1*7/),

where /1* is adjoint of A . Symbol Sx will stand for the probability measure concentrated at point x . As an infinitely divisible measure // has the unique representation [.r, D, M ], where x G V , D is non-negative linear operator on V . M is the Levy spectral measure of /«, so, il is easy to verify that the representation o f Afi has the form

(1) [ x \ A D A \ A M ]

for som e x G V .

We recall now so me basic definitions. T he measure is f u l l on V , if it is not concentrated on any proper hyperplane of V . T h e probability measure /< on V is operator semi-stable if

/' = Jit” A n ,,k" * 4 . ,

where v stands for so m e probability measure on V , {/! „ } is a se-quence of linear operators on V , k n - po sitive integers full filing con-dition Arn+1 / k n —> r. I < r < oo, /.’„-th power - in sense of convolution. An infinitely divisible measure ц on V is decomposable by the pair (r, /1), r > 0, r• ф 1, A G End V - set, of all linear operators on V , if

(2) fir = A , t *6h,

for so m e h G V .

T h e useful tool in describing properties of measures is so-called the

s y m m e t r y yr ou p aj Пн пн (isun // - the set of linear authomorphism s

defined as follows

(3) S ( f i ) = {« G Au tV; 3 li G V . p — Afi * Sд}.

I he measure /' is said to be t lliplicall/j s y m m e t r i c if S'( // ) = w ~ l O w

(3)

for som r positive linear operator tr oil V , 0 stands for the group of orthogonal operators. A. Lurzak gave full characterization of operator sem i-stable measures in [1] and of full elliptically sym m etric operator sem i-stable measures in [5]. He proved that these last measures are sim ply sem i-stable in classical sense. Sem i-stable probability measures were fully characterized by J ajte [2]

T h e paper deals with a special case of vector space V , when di-mension of V is n. It can be then regarded as the space of all linear operators on n-dimensional vector space (or equivalently - with all i i x v real m atrices). W e denote it by L. In this cas«* some natural group of operators appears for m odvfying measures, namely, the group of m ul-tiplication opérai ors.

2 . P R O P E R T I E S O F M U L T I P L I C A T I O N O P E R A T O R S

For 4, .r G L. by T„ we mean left-side multiplication by a. T a( x ) = а о ;r and by „Т - the right-side mutiplication by a. We will o m itt the

sign ” o ’" in further text for simplicity. Algebraically operators

{T„;a E L}

form a subalgebra 7'l . It has som e specific properties : (i) T„ is nonsingular iff я is nonsingular and T~ 1 = T „ - \ , ( ii) T* = T,,., the asterisk means adjoint,

( iii) spT„ = sp(/, s|) denotes thé spectrmn ol an operator, ( i v ) the subagebra Vl is closed,

( v ) T„ is orthogonal if <i is orthogonal. Moreover if the matrix

(4)

corresponds t,o an operator a, then the m atrix (of dimension n2 x n 2) corresponding to the operator У), (by so me standard basis) is of the form

(4)

(l\ \ I . . . (11 n /

rtnl I . . . (Inn I

where I - unite n x v matrix , and the matrix of an operator nT has the form

(5)

A '

A*

It. can be shown, tha.1 operators T„ and ,,«7' are similar.

3 . Q u a s i - e l l i p t i c a l s y m m e t r y- o f t h e m e a s u r e

A N D D E C O M P O S A B I L I T Y B Y T H E PA I R (7, T a). For the probability measure //. we define the set S (/ t)

■s'(/0 = {"■ € A1.1t V ; З.Г € L // = T,t//. * £a.}. It is obvious that, a 6 -S'(/f) i(Г Ta 6 S( /i ).

D e f i n i t i o n . T he probability measure // is quasi elliptically s y m

-met r ic if

S{ /i ) = w - ' O w

lor so m e positive w £ L. where О is orthogonal group contained in L. Directly from definition we see that the sy mm etry group of such measure has the form 7’,,,-1 <•)«>• Moreover,

I l i t ‘ lr~^ ‘ t: Гш

and I is positiv«*, is orthogonal (*-> 6 ()) but it doesn't, mean that quasi ellipt ical sy mm el ry implies elliptical sy m m e try of the measure or vice versa.

(5)

L e m m a 1. Let ft be infi nit ely divisible me a s u re such t h a t S ( f t ) = 0 . Th e n t h e n-1 e xist h G L a n d a p r o ba b il i t y m ea su r e v on L for whi ch

t h e equali ti es

f i = v * S h , a nd

T uv = v, hold for s o m e u G О.

Proof. Since ( —с ) G О, (< - identity operator) so there exists som e x G L, siirh that // = T - f / t * Sr . In terms of characteristic, function we

have

t 4 v ) = Ж и У и ’у)

and also

1<Чи) = |/)(.v)|V<™>.

As |/i I is the Fourier transform of the syminet rizatiou ° / / ' / 2 of the m ea-sure 1.1k* last equality can he rewritten in form

T he infinite divisibility of ° / i implies // = ° / / 1/2 * S3./2. Putting

l> = ;/■ / 2 and r = ° / / 1 / “ we obtain

T„v = T u °Ii]/2( t h v ) 1/2 = V /2 = t», for each « G Ü, which ends the proof of the lemma.

L e m m a 2. Let // be quasi ellipt ical s y m m e t r i c p r o ba b il i t y m ea su re

on L d e co m p o s a b l e b v t h e pai r (7,T„). T h e n t wo following con dit ions are satisfied

(i) а — a b for s o m e a > 0 a n d h G .S'(//),

( ii) /he me a su re // jn d e c o m p o sa b l e b y t h e p ai r (7, Toe).

F}rooJ. We start with the case when .S'(/ / ) = 0 . For each (/ G О.

from the decomposabilit v of /1 we gel

(6)

so a u a ~ x G S'(//). Since the adjoint of an orthogonal operator is the converse we have

(r<-1 )*i Г а " = ш Г а ~ 1.

Put ting \a\* — (i*a, we obtain

= rt2u"\

for each « 6 0 . Thus \a\'2 = <y2e , because operator | « | 2 comm utes with the whole group 0 . We have then

|«| = o t , о > 0. From the polar decomposition

(I. = М о М , « о £ Ö

and so

(I - CYUo, > 0, «о G -ś'(//). Now, we assume that

,S'(/<) = ыГ' Оп).

It is easy to see t luil .**(7’,,.//) = О and 7’,,.// is decom posable by the pair ( T 1 ). From the consideration above we have

It'll ll>~' = CYUo

for som e u'0 Ç O.

Put ting I) = ш—1 UqW we see that h 6 S( , i ) and finally

и = n b ,

which ends the proof of (i).

Dec om posability of // by the pair condition (i) and the fact that I) e S ( / i ) imply

(7)

which ends the proof of the lemma.

T h e o r e m . Let // he t h e full, infi nit ely divisible p ro b a b i l i ty mea s ur e

on L, d e c o m p o sa b l e b y t h e pair (7, T (l), 0 < 7 < I, spa С { - : | - | 2 < 7}.

I f 11 is quasi ellipti ca llv s y m m e t r i c , t hen // is se mi - st ab le in classical sense. M or eo v e r , i f fi is pure (laussian t h en its covariance o p e rat o r is s o m e c o m p o si t io n o f mu lt ip l ic at io n operators.

Proof. From the assum ption we have S ( /i ) = w ~ ' O w for som e

positiv e linear operator ir. and // is decomposable by the pair (7. 7',t). Lemma 2 implies I he decom po sability of // by I he pair ("). Tol ) for so me « > 0. From equalit ies

/Г' = '/’„// * S u. = 7 ’,,,// *

it yields that o ~ l <1 G It can be shown, t hat if A is eigenvalue of an operator from S ( / i ) , then |A| = 1. Thus, if A is an eigenvalue of a, then IAI = n. From the assumption we h a v e n2 < 7 < 1.

Putting .s = 1/ 7 and iterating 11-times the equality // = T„efis * <v,

we get

// = т ;:У ‘ * 6,,,.

Let k n = [.s’1] - the entier of .s'* and />„ = T t" j i k" *6X„. As k n+ \ / k n —*■

•s and T ”t = 71,,//, —> 0 - zero operator, s o we have

=

-

1.

as ?/ —■» 0 0.

It m eans that n„ => // and // is sem i-stable measure. According to Kruglow [:{]. /i is either (laussian or purely Poissonian. As // is decom -posable by t he pair (7. T„), so / ’„,// is decom posable by (7, Tn,aw-i ) and also by the pair (7. 7',, ) - 011 account of Lemma 2. Since S ( T n,/t) = (), according to Lemma 1. there exists ;r' € L and a probability measure

such that

(8)

Consequently 7 = //, and //(;//) = />(;/), so the characteristic, func-tion of the measure y is real. If /г is purely Gaussian, so is the measure

и (on account, of first equality in ((i)), and its characteristic fnction has

the form

' Ли) = c x p { - l /2(D/y,?/)}

where covariance operator D o f v satisfies - according to second equality in (6) and equality (1) - condition D = T uDT * for each a 6 O. Thus we have

(7) П D = D T*.

As it was mentioned in introduction, by some standard basis in L, m atrix of an operator Tn is of the form (4). From similarity o f the operators and „7 ’, there exists another basis, by which, the matrix of t he operator / ’* ( = 7',,. ) has t he diagonal form (-r)). where U - the n x ) i matrix ol the operator n appears n-tim es on the diagonal. Dividing the matrix ol I) into n2 minors of dimension и x /л, multiplication of matrices corresponding to T* I) has the form

' V

r ' D u . • D bl ' ' U D n • • • U D X „■

I f _ . A n . Dun . V D n, . • • U D nn

As the mat rix ol DT ~ consists of minors D i j U , i-,j = I , . . . , n, so, from the equality

lJDi,j = D i j U i , j = 1... л,

for any 11 - m atrix ol an orthogonal operator from O, which is the

consequence of (7), we conclude that Ą j = o, , / , a itj - reals, and I - the i i x i t unit matrix. Thus,the matrix of D has the form (4), but

(9)

Q U A S I- EL LI PT IС A L SY M M ET К Y 11

where

А = {о,,.,; i , j = 1 , . . . , » } .

Thus, according to (5), it is the matrix corresponding to right hand side multiplication operator From the sym m etry of covariance operator, we conclude that = „ 7 . On account of ( I) and ((i). the covariance operat or of tin* measure // is 7’~ 1 „У’( 7 1 )’ . Rellecting the sym m etry of in. after sim ple calculations, it can he written in the form 7 ( ш- |)2„ 7 , which ends the proof.

R E F E R E N C E S

[1]. J .P . I li i| 11 ics, \ V . i \. H ud so n, .1.1). M a s o n, O p e r a t o r - s t a b l e l aws: m ul t i p le e x p

o-n e o-n t s uo-nit e l l i pt i c a l s y m m e t r y , A o-no-n . P ro ba h. 1 0 ( 1 982 ), 6 0 2 - 6 1 2 .

[2]. R. J a j t e , S e m i - s t a b l e p r ob a b i li t y m e a s u r e s d i i If, S t u d ia M a t h . 6 1 ( 1 9 7 7 ) , 2 9 - 3 9 .

[3]. VV.M. Krnglovv, O n a cl as s o f l i m i t d is tr i b u t io n h i a Hil ber t s pac e, L it o w sk. M a t . Sh. 1 2 ( 1 9 7 2 ) , 8 5 - 8 « (in R us s ia n ) .

[4]. A. Ł uc za k. O pt r u t o r s e m i - s t a b l e p r o b ab il i ty m e a s u r e s on R, Collo<|. Mat h. 4 5 ( 1 9 8 1 ) , 2 8 7 3 00.

[5]. A. L urza k. I ' tl ipt ie al s y m m e t r y anil c h a r a c h r i z a h o n o f o p e r a t o r - s ta b l e a nd o p e r a t o r st m i - s t a b h m t a s u n s, A n n .P r o lia b . 1 2 no. I ( 1 9 8 4 ) , 1 2 1 7 - 1 2 2 3 .

(10)

Wit old B ud zisz

Q U A S I - E L I P T Y C Z N A S Y M E T R I A I R O Z K L A D A L N O Ś Ć P R Z E Z P A R Ę

M I A R P R A W D O P O D O B I E Ń S T W A

Zagadnienie eliptycznej symetrii miary operatorowo-stabilnej w skończenie wymiarowych przestrzeniach wektorowych było badane przez .1.1*. Holmesa. YV.N. Iliidsona i .1.1). Masona. Charakteryzacje pełnej, eliptycznie symet ryczuej, operalorowo pólsl abilnej miary podał A. Łuczak. Niniejsza praca zajm uje sit,1 pewnym analogonem elipty-cznej symetrii dla pełnej miary, która jest jedno cześnie rozkladalna przez pare (r.T„) , gdzie r jest pewny liczbą rzeczywistą dodatnią, zaś

Ta jest operatorem mnożenia.

I n s t it u t e o f M a t h e m a t ic s Łód ź U n ive r s it y ul. B an a c h a 22 , 9 0 - 2ЛК Łó d ź , P o la n d

Cytaty

Powiązane dokumenty

By Sharpe decomposition theorem (***) it suffices to establish the representation of the characteristic function for operator- stable measures without a Gaussian

Schinzel for carefully reading my first proof of Theorem 1 and giving me some sugges-

zajęć nr grupy PROWADZĄCY Instytut

The analysis of the relation (2), which shows how the correlation coefficient be- tween variables is related to the Euclidean distance between these variables in the case of

Seed color polymorphism, varying from pale to dark seeds, occurs in Scots pine (Pinus sylvestris), a keystone species of coniferous forests in Eurasia.. This phenomenon can be

Furthermore, ATFT allows peers to reclaim the bandwidth contributed in the past at any given moment, whereas bandwidth exchange in BitTorrent is possible only between peers

metric infinitely divisible random variables into a product of independent symmetric infinitely divisible factors.. We denote by P the set of all probability measures defined on

Tamano by showing that the union of a Maˇr´ık space and a compact space is Maˇr´ık, that under “c is real-valued measurable”, a Baire subset of a Maˇr´ık space need not