• Nie Znaleziono Wyników

Higher degree forms and m-applications

N/A
N/A
Protected

Academic year: 2021

Share "Higher degree forms and m-applications"

Copied!
6
0
0

Pełen tekst

(1)

ANDRZEJ PRÓSZYŃSKI WSP w Bydgoszczy

HIGHER-DEGREE FORMS AND m-APPLICATIONSX)

1

. G e n e r a l i t i e s . We r e c a l l some d e f i n i t i o n s o o n ta in e d i n [ 7] , [ l ] , and C

2

] . A l l r i n g s and a lg e b r a s w i l l be com m u tative w it h

1

.

A p o ly n o m ia l la w on th e p a i r ( X , Y ) o f R-m odules i s a n a t u r a l t r a n s fo r m a t io n F = (F a ) : X ® * Y ® - , w here X ® - , Y ® : R - A lg — » S e t . I t i s o a l l e d a fo rm o f d e g r e e m i f f FA( x a ) = F A( x ) a m f o r any A, a e A and x € X ® A. Then we d e n o te FeJ^ ( X , y ) . I t i s p r o v e d i n £7] th a t

/

S’ o' H

8^ » R ) — R Гт ч i • • • t T ] • I n th e n a t u r a l way we o b t a in th e

i n Ш f u n c t o r 9 R-Mod° x R-Mod — R-Mod.

Any fo rm F € SP r ( X , y ) has th e f o l l o w i n g sh ap e: F ( x ® a ♦ . . . ♦ xn ® an )= S I F и ( x , . . . , x ) в m + . . . +m_=m I ' n À П л

1

n QD a

1

• • • an » w h ere F : Xй — * Y sure u n iq u e ly d e te r m in e d b y F . I n

Ш1

* • • •

p a r t i c u l a r F s F B and F =PF i s m - li n e a r and s y m m e tric .

Ю К l l l t t f I /

(We w i l l assume t h a t m > o ) . PF can be o b t a in e d fro m F_ i n th e f o l l o w i n g w ay:

P F (x

1

, . . . , x n )= ( A mFR ) ( x

1

, . . . , x m) : = X ( - l f " k FR( x * - +xi j

1

k

Hence we h a ve th e n a t u r a l t r a n s fo r m a t io n : T“ : 9 r ( X , Y ) — + A p p lR( X, Y ) , T“ ( F ) = Fr ,

w h ere A p p lR( X , Y ) i s th e m odule o f a l l m - a p p lic a t io n s f : x — ^ Y, i . e . suoh m appings t h a t A mf i s m - lin e a r and f ( r x ) = r mf ( x ) f ° r any r € . R and X, I n th e f r e e c a s e T R g i v e s us th e f o l l o w i n g w e ll-k n o w n m apping:

(2)

36

T * l R [T l t . ; . , T n] B — » A p p l ^ R ^ R ) , ^ “ ( F ) ( X l , . . . , x n ) = F ( x 1, . . . , * n I t l e known t h a t l a ein Isom orp h ism i n th e f o l l o w i n g o a s e s s ( l ) i f m ^ 2 ( 2 ) i f ml € U (r) ( 3 ) i f X=R . I n th e g e n e r a l c a s e we w i l l i n v e s t i g a t e K e r (T ^ )= S P ^ f x , Y ) and I * ( l ^ ) = Hom“ ( X , Y ) « - : A p p l " ( X t Y ) . 2 . R e p r e a e n t a b l l i t y . O b s erve t h a t th e fu n o t o r * i n th e f o i l . n g e x a o t s e q u e n c e : , 0 > S>m( X f - ) С — > Jp M( X ) - ) — » A p p le ( X t - , a r e r e p r e s e n t a b le . ( a ) ( s e e Г

7

] ) P Ш( Х , - ) i s r e p r e s e n t e d b y th e m -th d i v i d e d p o v e r P m(x ) of X, and P ^ p n,(X ,Y ) corresponde to . fra ) Ÿé. HomfP m( x ) , Y ) Iff F lx , хп)»Ч’ ( х ^ и , х й Л ) . ( b ) ( s e e С1 Л )Арр1Ш( X , - ) I s r e p r e s e n t e d b y th e module Pe ( x ) d e f in e d b y th e g e n e r a t o r s ^"ш( х ) t o r x g. X and th e f o l ­ lo w in g r e l a t i o n s : 1° ^ r x i s r ^ f x ) f o r any r € R , x £ X 2 ° i e m - l in e a r . The c o rr e s p o n d e n c e i s g iv e n b y th e f o l l o w i n g d ia g ra m : Y ( c ) ( s e e f 2 } ) t ” in d u c e s th e n a t u r a l homomorphism: h :

Гш(х )

— » Г И( Х ) , h ( r<n( x ) ) = х ( ш ) . L e t

P Ш(х )=

Im (h )= r [ x ^ ;

x t x }

. S in o e Horn i s l e f t ^ x a c t i t f o l l o w s t h a t У ( X , - ) i s r e p r e s e n t e d b y P “ ( X ) = C o k e r (h )= Г В( Х ) / Г Ш( Х ) . ( d ) ( s e e Г2З )Th e f u n c t o r НотШ( Х , - ) i s r e p r e s e n t a b le e x a c t l y i n th e c a s e when th e e x a c t sequ en ce 0 — ^ Г И( х ) — ^ P Ш( x ) - —•) P Ш( X ) - - > 0 s p l i t s , and th en i t i s r e p r e s e n t e d b y P m( x ) . I n th e g e n e r a l c a s e we h a ve th e e x a c t s e q u e n c e : 0 * HomB( X , - ) -С----> Нот ( P “ ( X ) , - ) --- » E x t 1( r " ( x ) , - ) - - *

(3)

—* E x t1( p B( x ) , - ) ( s O i f X i * p r o j e c t i v e ) .

E xam ple. I t can b e p r o v e d t h a t P

22 )=Ж^ f ^ ( ł 2 )= » 2 } and h en ce

Hom^(2^ , —) i s n o t r e p r e s e n t a b l e t The e x a o t seq u en ce i s f o l l o w i n g :

о Hernia2 ,-)— » ноиа (Г^(а2 ),-) a2 ® ---->• о .

3. The f u n c t o r P M. The fu n d a m en ta l p r o p e r t i e s o f t h i s fu n c t o r , g iv e n i n С

2

З апй^СзЗ* a r e f o l l o w i n g :

( 1 ) P “ ( x ) ® A 2 P “ ( X ® A ) f o r A=US , A =R /l (b u t n o t i n th e g e n e r a l c a s e ! )

(

2

) Th eorem . L e t X b e a f i n i t e l y g e n e r a t e d R -m od u le. Then th e f o l l o w i n g c o n d it io n s a r e e q u i v a l e n t :

( i ) Г ^ ( х ) = о

( i i ) r “ /3;( x / i x ) = 0 f o r any I & M ax(R )

( i i i ) f o r any l£ M a x (R )e it h e r d im ^ y ^ X / I X )^ o r m ^ IR /II * ( ( i ) ^ = ^ ( i i ) is the NakayamA Lemma together with ( l ) ,

( t t } < r X i U ) i s the c a s e of a fie ld ).

C o ro lla ry . T h e follow ing properties o re equivalent :

U ) P " =

0

( i i ) p “ (r2 ) =o

( i l l ) * £ d ( R ) : = i n f [| R / I | ; I f c M a x ( R ) } .

( 3 ) Lemma . I f P Ê S p e c (R )- M a x (R )t h e n p “ ( x ) p=0 f o r any R-m odule X. (R / P i s i n f i n i t e and h en oe d (R p )= 00 . N e x t a p p ly ( l ) a n d (

2

) ) . C orolla ry. If dim ( R ) > 0 th en f*R ( x ) are torsion R-m odules.

(И n o n -z e ro , they a re not f r e e ).

. •—О

It i s proved, in [_5 J t h a t P R ( x ) i s finite provided that R i s noetherian a n d X is finitely gen erated .

( k ) S t r u c t u r a l th e o re m s . L e t R b e a n o e t h e r ia n r i n g . Th en :

(A) Г R( x ) -

Pei5|x (R )

p R p( Xp)

( B ) P “ ( X ) ^ Г | ( Х ® R ) i f R i s a l o c a l r i n g .

(c)

L e t

X b e a f i n i t e l y g e n e r a t e d R -m od u le. Then

p “ ( x ) c © p " V (x/f^ (pK ) ‘ R P t Max( R ) R/Pk ( P ) U / F ^ X) f o r a l l s u f f i c i e n t l y l a r g e k ( P ) . I f * 6 5 ( o r « é 7 and

2 6 u (R ) ) th en we can c h o o s e

k ( p

)=1

and h e n c e : n e ( x ) а Ф V я , (X / P X ) ' R Y e M a x(R ) ’ R/P

(4)

38

f o r any R-m odule X. (Com pare a ls o [ 5 ] » C o r o l l a r y 5 . Ю ) . The a b ove p r o p e r t i e s p e r m it us t o compute K e r fT ” ) in some o a s e s . The q u e s t io n o f C oker ( Т Ш) I s much more c o m p lic a ­ t e d .

k . C oker (T * ° ). O b serve t h a t Hom“ ( X , - ) Ç Н о т (Г Ш( х \ - ) с А р р 1

11

^ Х , - ). I f Нот ( X , - ) I s n o t r e p r e s e n t a b le ( i t i s so v e r y o f t e n ) , th en th e f i r s t two f u n c t o r s a r e d i f f e r e n t and h en ce C o k e r (T m) i s n o n - z e r o . I t was c o n je c t u r e d b y M. F e r r e r o t h a t th e l a s t two fu n c t o r s a r e e q u a l, o r , more p r e c i s e l y , t h a t Г ш( х ) and

p m (x)

a r e is o m o r p h ic b y h . T h is means t h a t HomB( x f Y )= = A p p lm( X , Y ) f o r any i n j e c t i v e Y ; i n p a r t i c u l a r , o v e r a f i e l d K, t h a t C o k e r(T ® ) i s z e r o f o r any К-m o d u le s . U n fo r t u n a t e ly , i t ' i s n o t t r u e i n g e n e r a l ,

E xam ple. L e t K=F^, Х=К* , Y=K and f ( x

1

, х

2

, х

3

,х ^ )= х ^ х | х ^ х ^ . O b s erve t h a t f £ A p p lj^ (x , Y ) b e c a u s e :

f ( r x ) = r ® f ( x ) = r " * f ( x ) s in c e г**=г i n F^ ,

f = e

2

w here and h en ce û

5

f - ( û

5

g ) 2-0

s in c e ( ) ^ is additive in К and

g

is o f d e g re e 4.

On th e o t h e r hand, f i s , , r e d u c e d ’ * ( a l l p ow ers i n f are l e s s than I К 1 ) and h en ce f ^ Hom^7(x, Y ) f o r m <

8

. ( s e e HtJ } .

C oker(T*B) i s c o m p le t e ly d e s c r ib e d i n i n th e c a s e o f f i n i t e f i e l d s : any m - a p p lic a t io n i s a p o ly n o m ia l m apping (b u t n o t n e o e s s a r i l y o f d e g r e e m - as i n th e e x a m p le ), and we can f i n d th e s ta n d a r d b a s e s o f Homm, Appl™ and C o k e r (T m) f o r any К-m o d u le s . I n p a r t i c u l a r , we h a ve th e f o l l o w i n g

Th eorem . L e t К be an a l g e b r a i c e x t e n s io n o f 2^ ( f o r exam ple a f i n i t e f i e l d o f c h a r a c t e r i s t i c p ) . Then th e f o l l o w i n g c o n d i­ t i o n s a r e e q u iv a l e n t :

( 1 ) C o k e r (T ^ )= О ( f o r any K—m o d u le s ) (

2

) K=*p о г ш ~

2

p.

I n p a r t i c u l a r , C o k e r (T ^ )= 0 f o r m ^ k.

Remark 1. I f K^2 and C oker(TÎÜ )= 0 th en m ^ 2p < lК I and

' _ p л "

h en ce K e r (T ^ )= 0 .

Remark 2 . U s in g a n o t h e r m ethods we can p r o v e t h a t С о к е г (т ” )= 0 o v e r any f i e l d К f o r m=3» bu t th e c a s e o f m=i£ i s unknown.

(5)

Exam ple. L e t К be an I n f i n i t e a l g e b r a i c e x t e n s io n o f

Then К i s a sum o f f i n i t e f i e l d s and we d e f i n e f : K~’ —* К i n th e f o l l o w i n g w ay: i f x ^ x ^ x ^ x ^ € К and |к'| =2*:*. *ł

2

2

2

^

2

^ then f ( x ^ i X ^ t Z ^ f Z ^ ) ^ XjXgX^ ^ • As i n th e p r e c e d in g e x a m p le , i t can be p r o v e d t h a t f i s a p r o p e r ly d e f in e d 5 - a p p l i c a t i o n - b u t f i s n o t a p o ly n o m ia l m apping. L e t us c o n s id e r th e homomorphism h : Р и - - •*>f m o v e r r i n g s . The p rob lem o f i n j e c t i v i t y o f h can b e re d u c e d t o th e l o c a l c a s e , b eca u se Г and P™ commute w it h l o c a l i z a t i o n s . L e t

Ш

(r,M ) be a l o c a l r i n g . Then we h ave th e f o l l o w i n g com m u tative d ia g ra m :

Рш(х )/м Ги(х ) --- ^

г

“ ( x ) / M f “ ( x )

- ‘

I

Рю (х/м х)

»

Г “ (х/м х )

w here th e homomorphisme a r e d e f in e d i n th e n a t u r a l w ay. Th ey a r e a l l e p i , b u t n o t i s o i n g e n e r a l ( s e e [ 5 ] ) . Suppose t h a t R/M i s a p r o p e r a l g e b r a i o e x t e n s io n o f and 2 p < m ^ | R / M | . Then g i s i s o ( s i n c e Р ш = р Ш) , h* i s n o t i s o f o r some f r e e R-m odule X, and henoe h i s n o t i s o . U n fo r t u n a t e ly , th e d ia g ra m d o e s n 't g i v e p o s i t i v e ex am p les f o r o u r p ro b lem . I t i s known fro m f ć ] t h a t h i s i n j e c t i v e f o r m=3 ( o v e r R) i n th e f o l l o w i n g o a s e s : ( 1 ) f o r c y c l i c m odules ( 2 ) i f R i s von Neumanr r e g u l a r (

3

) i f no r e s id u e f i e l d o f R i s ( I ł ) i f R i s a DVR w it h th e p rim e e le m e n t 2 (

5

) i f R i s a D ed ek in d domain o r R = Z fw j ( f o r f l a t R -m o d u le s ). Exam ple. L e t m=3. I t f o l l o w s fro m (

3

) and (U ) t h a t h i s i n j e c t i v e f o r R e » . The , , g e n e r i c * * 3 - a p p l i c a t l o n s o v e r » a r e x^ , x y (x ± y )/ 2 and x y z . I f R = » C t 3 th en h i s i n j e o

(6)

-ko

t l v e f o r f l a t , b u t n o t f o r a l l m od u les. I f R = s [x ,y 3 and (

3

) 1s n o t s a t i s f i e d th en h i s n o t i n j e c t i v e - e v e n f o r th e k e y c a s e o f R2 .

REFERENCES

[ 1 ] FERRERO M ., MICALI A . , Sur l e s n - a p p l i c a t i o n s , B u l l . S o c . Math. F r a n c e , Memoire

5 9

, 1979, P . 33-53

[ 2 ] PRÓSZYŃSKI A . , Some fu n c t o r s r e l a t e d t o p o ly n o m ia l t h e o r y , Fund.M ath. X C V I I I , 1978, p . 219-229

[

3

]

PRÓSZYŃSKI A . , Some f u n c t o r s r e l a t e d t o p o ly n o m ia l t h e o r y I I , B u ll.S o c ,M a t h .F r a n c e , Mém oire 59, 1979 , p . 125-129 [ 4 ] PRÓSZYŃSKI A . , m - a p p lic a t io n s o v e r f i n i t e f i e l d s , Fund.

Math. C X II,

1 9 8 1

, p.205-21*t

[

5

] PRÓSZYŃSKI A . , Forms and m ap pin gs. I : G e n e r a l i t i e s , Fund. Math. CXXII, 1984 p.2l9-235

[6] PRÓSZYŃSKI A . , Forms and m ap p in gs. II : D eg ree 3 , to a p p e a r in Commentationes Mathematicae

[

7 ]

ROBY N . , L o is polynôm es e t l o i s f o r m e l l e s en t h é o r i e des m od u les, A n n .E c .Norm .Sup. 80,

1 9 6 3, p . 2 1 3 -3 48

FORMY WYŻSZYCH STOPNI I m-ODWZOROWANIA

S t r e s z c z e n i e

P ra c a s ta n o w i t e k s t r e f e r a t u w y g ło s z o n e g o w M o n t p e l l i e r , p o ś w ię c o n a j e s t porów naniu dwóch d e f i n i c j i fo rm w y ż s z y c h s t o p n i . W s z c z e g ó l n o ś c i omówione z o s t a ł y fo rm y w y t w a r z a ją c e zero w e o d w zo ro w a n ia .

Cytaty

Powiązane dokumenty

„Od paru miesięcy obowiązuje nowa ustawa o adwokaturze, jesionią ma się ze­ brać najwyższe adwokackie gremium samorządowe — Zjazd, rady adwokackie sto­ ją

Aby rozwiać wszelkie w ąt­ pliwości, należy stwierdzić, że książka ta zasługuje na szczególną uwagę terapeutów zajm u­ jących się jąkaniem , nie tylko z

Geiselmann natom iast zajął się przede wszyst­ kim opracowywaniem teologii Möhlera, podkreślając różne jej asp ek ty .3 Wydał także fragm enty niepublikowanych

Zawartość Pb, Ni, Cu, Zn i Cd w badanych trawach pastewnych nie przekraczała krytycz- nych zawartości metali w odniesieniu do ro- ślin paszowych, z wyjątkiem siedmiu próbek

All linear forms attached to the point ξ i form a vector space (the adjoint vector space with respect to the vector space of vectors attached to this point) for which different

cookie.setMaxAge(Integer.MAX_VALUE); //negative value for session cookie response.addCookie(cookie);. //Remove cookie from

The first purpose of the present note is to show the existence of a corre- spondence Ψ N 0 between Hilbert modular forms f of half integral weight with respect to the

3.. This can be proved locally.. Then A' is biadditive, alternating and hence symmetric.. It remains to prove that the generators are linearly independent over