• Nie Znaleziono Wyników

Bogusław Kołodziej, Joachim Szulc, Elżbieta Machaniec, Mariusz Kędzierski & Maciej Duda

N/A
N/A
Protected

Academic year: 2021

Share "Bogusław Kołodziej, Joachim Szulc, Elżbieta Machaniec, Mariusz Kędzierski & Maciej Duda"

Copied!
17
0
0

Pełen tekst

(1)

INJECTION DYKES AS EVIDENCE OF CAMPANIAN

SYNSEDIMENTARY TECTONICS ON THE KRAKÓW SWELL,

SOUTHERN POLAND

Bo gus³aw KO£ODZIEJ, Joachim SZULC, El¿bi eta MACHA NIEC, Mari usz KÊDZIER SKI & Ma ciej DUDA

In sti tute of Geo logi cal Sci ences, Jagiel lo nian Uni ver sity, Ole an dry 2a Str., 30- 063 Kraków, Po land; e- mails: bo gus law.kolodziej@uj.edu.pl, joachim.szulc@uj.edu.pl, el zbi eta.macha niec@uj.edu.pl,

mari usz.kedzier ski@uj.edu.pl, hoploscaphit@gmail.com

Ko³odziej, B., Szulc, J., Macha niec, E., Kêdzier ski, M. & Duda, M., 2010. In jec tion dykes as evi dence of Cam panian synsedi men tary tec ton ics on the Kraków Swell, south ern Po land. An nales So cie ta tis Ge olo go rum Po lo niae, 80: 285–301.

Ab stract: The top most part of the Ox for dian lime stones, build ing the Zakrzówek Horst in Kraków, is fea tured by a net work of minute fis sures, filled with Up per Cre ta ceous lime stones. The fis sures are domi nantly sub ho ri zon tal, an as to mos ing and po lygo nal in plane. They are filled with white lime stones rep re sent ing mostly foraminiferal- calcisphere wacke stones, with sub or di nate amount of quartz peb bles and frag ments of stro mato lite com ing from the lat est Tu ro nian–?Early Co nia cian con glom er ate over ly ing Ox for dian base ment. The fis sures are seismically- induced in jec tion dykes. In con trast to gravitationally- filled nep tu nian dykes, the rec og nised in jec tion dykes were filled by over pres sured soft sedi ments. Fo ra mini fera within some dykes are abun dant, and domi nated by plank to-nic forms, which in di cate the Early/Late Cam panian age (Glo botrun cana ven tri cosa and Glo botrun canita cal carata zones) of the fill ing, and hence date also the synsedi men tary tec ton ics. Abun dant and di ver si fied keeled glo bo-trun canids in the Cam panian of the Kraków re gion are rec og nised for the first time. Other im por tant find ings at the stud ied sec tion in clude kar stic cavi ties fea tur ing the sur face of the Ox for dian bed rock filled with con glom er ates of the lat est Tu ro nian–?Early Co nia cian age based on fora mini fera and nan no plank ton, and lack of San to nian de pos its, which else where are com mon in the Up per Cre ta ceous se quences in the Kraków re gion. The dis cov ered Cam panian dykes pro vide new evi dence for the Late Cre ta ceous tec tonic ac tiv ity on the Kraków Swell re lated to the Sub her cyn ian tec ton ism, which re sulted among oth ers in stra tigraphic hia tuses and un con for mi ties char ac te-r is tic of the Tu te-ro nian–San to nian in tete-r val of this ate-rea.

Key words: in jec tion dykes, synsedi men tary tec ton ics, bi os tra tigra phy, Late Cre ta ceous, Cam panian, Kraków Swell, Po land.

Manu script re ceived 6 June 2010, accepted 18 November 2010

IN TRO DUC TION

Late Cre ta ceous tec ton ics is com monly ac cepted as an im por tant fac tor con trol ling sedi men ta tion dur ing the Tu ro -nian–San to nian on the Kraków Swell. The Sub her cyn ian move ments are well marked there by mul ti ple stra tigraphic hia tuses and un con for mi ties (Mar ci nowski, 1974; Walasz-czyk, 1992; Olszewska- Nejbert, 2004; Olszewska- Nejbert & ŒwierczewskaG³adysz, 2009). Di rect ef fects of synsedi men tary tec ton ics like seismically induced fab rics are, how -ever, poorly known. The ver ti cal fis sures filled with green marls at the Bon arka Horst in Kraków, in ter preted as San to -nian nep tu -nian dykes (Wiec zorek et al., 1994, 1995a, b; Wiec zorek & Olszewska, 2001), were not com monly ac -cepted (D¿u³yñski, 1995; Felisiak, 1995).

New ev i dence of Cre ta ceous tec tonic mo bil ity in the Kraków re gion, dis cussed herein, come from tem po rary out crops which ap peared dur ing con struc tion works car ried

out in 2008 at the Zakrzówek Horst in Kraków (Py chowicka Street).

GEO LOG I CAL SET TING

The south ern part of the Kraków Up land is char ac ter -ised by horst and gra ben struc tures, which origi nated in the Mio cene as the Outer Car pa thian nap pes were thrust to the north. The horsts are com posed mainly of the Up per Jura-ssic lime stones and Up per Cre ta ceous lime stones and marls. The gra bens are filled with Mio cene mo lasse de pos its with domi nant fine grained sili ci clas tics. The stud ied area be -longs to the Zakrzówek Horst (Fig. 1A, B; Gradzi ñski, 1993).

Up per Cre ta ceous rocks are pre served lo cally as a dis con tin u ous cover (up to 25 me tres thick) over ly ing the Ox -for dian lime stones (Al ex androwicz, 1954; Gradziñski,

(2)

Fig. 1. A, B – Lo ca tion of the study area on the gen eral geo log i cal map of Po land (A; based on Soko³owski et al., 1976, fig. 128) and Kraków re gion (B; based on Gradziñski, 1993), C – Lo ca tion of the stud ied pits 1 and 2 (based on Google Earth), D – Gen er al ized sec tion of the Up per Ju ras sic and Upper Cre ta ceous se quence at the Pychowicka street in Kraków, E – Sche matic di a gram show ing spa tial re la tion of in jec tion dykes, karstic cav i ties filled with con glom er ates, over ly ing marls and Oxfordian base ment trun cated by the Late Cre ta -ceous abra sion plat form; for sym bol ex pla na tion see Fig. 1D

(3)

1961; see also over view by Brom ley et al., 2009). To the northeast of Kraków, in the Miechów Trough, the thick ness of the Up per Cre ta ceous suc ces sion in creases and at -tains about 600 m.

The old est Up per Cre ta ceous rocks in the Kraków re -gion are Ce no ma nian sands and quartzose con glom er ates, which over lie lo cally an abra sion sur face trun cat ing the Ox for dian lime stones. The over ly ing Tu ro nian car bon ate de -pos its do not ex ceed 10 m in thick ness (Wa laszc zyk, 1992). The Co nia cian, well rec og nised north wards from Kraków (Wa laszc zyk, 1992; Olszewska- Nejbert & ŒwierczewskaG³adysz, 2009), used to be con sid ered ab sent or not docu -mented pa lae on to logi cally at Kraków, the view that should be re vised (see dis cus sion in the sec tion ‘B io str atigraphic data’). The San to nian is usu ally pres ent in the Kraków re gion, al though stra tigraphic gaps still ex ist. The Up per Cre ta ceous rocks in this re gion are com posed mostly of Cam -panian marls, marly lime stones and si li ceous chalky fa cies.

SEC TION DE SCRIP TION AND METH ODS

The stud ied sec tions rep re sented by two pits, each ca. 50 × 30 m in size, were ex posed in the Pychowicka Street, dur ing con struc tion works, and were ac ces si ble from Jan u -ary to April 2008 (Figs 1C, D, 2).

In pit 1 (Figs 1E, 2A, B), the in clined, karstified and abraded Oxfordian lime stones are cov ered lo cally by con -glom er ates (up per most Turonian–?Lower Coniacian) and/ or by weath ered ferruginous stromatolites. Con glom er ates usu ally fill the karstic cav i ties de vel oped in the Oxfordian bed rock (see Fig. 5). The palaeokarst sur face was partly trun cated dur ing the Late Cre ta ceous trans gres sion and is

pierced by Entobia cracoviensis Bromley et Uchman, sponge bor ings which are abun dant on the abra sion plat form at the Bonarka Horst (Bromley et al., 2009). Mostly, however, the Ju ras sic bed rock, par tic u larly in pit 2, is cov ered di rectly by the Lower/Up per Campanian grey marls fol lowed by the ?Up per Campanian white marls and marls with chert nodu-les (Figs 1D, 2). The Santonian marls, oc cur ring com monly in most sec tions in the Kraków re gion, were not found in the stud ied out crops.

45 rock sam ples and 21 thin sec tions of Ox for dian lime stones with dykes or dyke fill ing lime stones, and 10 sam -ples from con glom er ates (8 thin sec tions) were stud ied. Most of the sam ples were col lected as loose blocks from the bot tom of pit 1. The stra tigra phy is based on fo ra mini fers and nan no plank ton.

Fo ra mini fers from the dyke fill ings were ana lysed in thin sec tions by means of op ti cal mi cros copy. From the over ly ing marls, the sam ples were dried and dis in te grated by re peated heat ing up and dry ing in a so lu tion of so dium car bon ate. Resi dues were dried and washed through sieves with 63 µm mesh di ame ter.

The slides for cal care ous nan no plank ton were pre pared us ing the stan dard smear slide tech nique and then in ves ti -gated at ×1000 mag ni fi ca tion un der the light mi cro scope with bright and cross polarised light. The av er age abun -dance of as sem blages is es ti mated as less than 1 speci men per 10 fields of views. The stud ied sam ples are rich in car -bon ates, thus the main rea son of poor pres er va tion seems to be the sec on dary cal cite over growth, then the state of pres -er va tion w-ere es tab lished as O-2 or O-3 us ing Roth’s (1983) scale of coc co lith pres er va tion.

Rock sam ples, thin sec tions and other mi cro pa lae on to -logi cal sam ples are de pos ited at the In sti tute of Geo -logi cal Sci ences, Jagiel lo nian Uni ver sity.

Fig. 2. A – Gen eral view of pit 1. On the left (east ern) side of the pit (white ar row) in jec tion dykes oc cur within out cropped Oxfordian lime stones (see Fig. 5A). At the pit base ment, apart from loose blocks of Oxfordian lime stones cut by dykes, up ward end ings of dykes were ob served (black ar rows), B – Oxfordian lime stones (a) at pit 1 cut by abra sion plat form and cov ered by weath ered uppermost Turonian–?Lower Coniacian con glom er ates and ferruginous stromatolites (b), and Campanian marls (c); note oval karstic cav ity filled with con glom er ates (ar row; see also Fig. 5D), C – Gen eral view of pit 2. Late Cre ta ceous abra sion plat form trun cat ing Oxfordian lime -stones is marked by dot ted line. The pit 1 is partly vis i ble in the left, up per part of the pic ture

(4)

DE SCRIP TION OF DYKES

The char ac ter is tic fea ture of the stud ied rocks, in par ticu lar in pit 1, is a fis sure net work which pierces the top -most, sev eral cen ti me tres thick Ju ras sic bed rock (Fig. 5A, and sche matic dia gram in Fig. 1E). The cracks are po lygo -nal in plane, com monly an as to mos ing, with widths rang ing be tween 1 mm and sev eral cen ti me tres (Figs 3, 4). Some of the fis sures dis play up ward end ings. It is in trigu ing that

most of the cracks are (sub)hori zon tal, while the ver ti cal or oblique ones (those not re lated with kar sti fi ca tion) are short, thin and quite rare (Fig. 4B). The op po site walls of the cracks dis play good fit ting (Fig. 3A). Slightly dis placed clasts of Ox for dian lime stone from dyke wall were also ob -served (Fig. 3F).

The fis sures are filled with hard, pe li tic lime stones rep -re sent ing mostly foraminiferal- calcisphe-re wacke stones (Figs 4C–F, 9, 10), with rare small gas tro pods (Fig. 3A),

Fig. 3. Sam ples of Oxfordian lime stones cut by in jec tion dykes. All sec tions are ap prox i mately per pen dic u lar to the top most part of Oxfordian lime stones. A – Oxfordian lime stones trun cated by abra sion sur face (ar row) and cut by hor i zon tal in jec tion dykes filled with foraminiferal-calcisphere lime stones with quartz peb bles and gas tro pod shells. Coin for scale is 2 cm in di am e ter, A1 – Close-up of the dyke from the fig ure A show ing gas tro pod shells and quartz peb bles, B – Pol ished slab show ing frag ment of larger dyke and thin out -growth dykes, C – Dyke (lower part) filled with lime stones con tain ing frag ment of stromatolite and quartz peb bles, D – Dyke (lower part) within Oxfordian lime stones, dark col our due to sul phide min er al iza tion, E – Thin dyke (ar row) cut ting Oxfordian lime stones (pit 2), F – Clasts of Oxfordian (Ox) lime stone slightly dis placed from the wall of dyke filled with white-red dish lime stone, G – Oxfordian lime stones cut by in jec tion dyke filled by Campanian si lici fied lime stones

(5)

rare quartz peb bles (Fig. 3A, C) and de bris of phos phatic and fer rugi nous stro mato lites (Fig. 3C). The lime stones are white, lo cally with red dish, green and black spots. Sev eral gen era tions of dykes and fis sure fill ings (mi crostrati fi ca -tion) were rec og nised (Fig. 4). They dif fer in abun dance of fora mini fera and cal cispheres and sub tly in sedi ment col our. The dyke fill ings usu ally show lin ing par al lel to the fis -sure walls.

The frac tured Ox for dian lime stones from pit 1 are ir -regu larly stained with sul phide min er als (e.g., Fig. 3A, D), while the non- fractured lime stones are sparsely min er al ized. Moreo ver, mi cro scopic ob ser va tions re vealed that Ox for dian lime stones are partly dol omi tized, but spa tial dis tri bu tion of dolo miti za tion was not stud ied. The sul phide min -er ali za tion and si lici fi ca tion w-ere also ob s-erved within the dyke fill ings, how ever less in ten sively than in the host Ox

-for dian lime stones. It is also note wor thy that while in pit 1 the fis sures are com mon (mostly in the east ern part), in pit 2, lo cated some 100 m apart, the Ju ras sic bed rock was frac -tured very sparsely (Fig. 3E).

Ad di tion ally, rare ver ti cal kar stic cavi ties filled with con glom er ates were iden ti fied (Fig. 5C). They are rounded in cross sec tions (Figs 2B, 5D) what in di cates that they rep -re sent ver ti cal dips of kar stic cavi ties. They a-re, how ever, de vel oped mostly as su per fi cial de pres sions ex posed on the abraded Ox for dian lime stones (Fig. 5A, B). Ver ti cal cavi -ties are maxi mum ca. 50 cm deep, how ever, their defi nite ver ti cal ex ten sion is not rec og nised be cause of poor ex po sure of the Ox for dian bed rock. Fig ure 1E shows spa tial re -la tion of in jec tion dykes, kar stic cavi ties, over ly ing marls and Ox for dian base ment trun cated by the Late Cre ta ceous abra sion plat form.

Fig. 4. A–F – Mi cro pho to graphs of Campanian in jec tion dykes and Oxfordian base ment (Ox). Dif fer ent gen er a tions of dykes are re flected in dif fer ences of fill ing sed i ments as re sult of var i ous con tent of foraminifera, calcispheres (cal car e ous dinocysts) and micritic ma -trix. Note fis sure net work (B), dyke con tain ing in jected frag ments of con sol i dated micritic lime stone (C) and sub tle lam i na tion (F)

(6)

Fig. 5. A – Un even abra sion plat form trun cat ing Oxfordian lime stones (Ox); up per most Turonian–?Lower Coniacian con glom er ate fills cav ity of karstic or i gin (black ar row) and is cov ered by Campanian marls (Cam); note subhorizontal in jec tion dykes (white ar rows; see also Fig. 2A), B – Late Cre ta ceous con glom er ate fill ing karstic cav i ties (“cast”), C – Ver ti cal karstic cav ity filled by con glom er ate, D – Trans verse sec tion through chan nel-like karstic cav ity within Oxfordian lime stones (com pare Fig. 2B), E, F – Mi cro pho to graphs of the up per most Turonian–?Lower Coniacian con glom er ate fill ing karstic cav i ties; note dif fer ences in microfacies of car bon ate clasts and encrustation of ferruginous stromatolite

(7)

BIOSTRATIGRAPHICAL DATA

The age of con glom er ates

Mi cro pa lae on to logi cal ex ami na tion was done both for the lime stone clasts and car bon ate ma trix of the con glom er -ates.

Foraminifera dis tin guished in thin sec tions in clude plan-ktonic in dex spe cies. The pres ence of Dicarinella primitiva

(Dalbiez) (Fig. 6E, F), which is the in dex spe cies of Margi-notruncana sigali–Dicarinella primitiva Zone (Premoli-Silva & Sliter, 1999), and the pres ence of Dicarinella concavata (Brotzen) (Fig. 6D), which is the in dex spe cies of Dicarinella concavata Zone (zonation ac cord ing to Roba-szynski et al., 1984; Caron, 1985; RobaRoba-szynski & Caron, 1995; Premoli-Silva & Rettori, 2002; Premoli-Silva & Verga, 2004) in di cate an age within the lat est Turonian– Coniacian in ter val (sam ple Pych 40; Fig. 7).

Fig. 6. A–K – The plank tonic foraminiferids from con glom er ate fill ing karstic cav i ties (Pych 40), ax ial sec tions. A –

Archaeo-globigerina bosquensis (Pessagno), B – ArchaeoArchaeo-globigerina cf. bosquensis (Pessagno), C – Dicarinella sp., D – Dicarinella concavata (Brotzen), E, F – Dicarinella primitiva (Dalbiez), G – Heterohelix moremani (Cushman), H, I – Heterohelix sp., J – Muricohedbergella planispira (Tappan), K – Whiteinella baltica Douglas et Rankin, L–N – Ben thic foraminiferids from Campanian in jec tion dykes, ax ial sec tion. L– Eouvigerina aculeata (Ehrenberg), M – Gaudryina sp., N – Globorotalites cf. michelinianus (d’Orbigny). Scale bar in di cates 100 µm

(8)

The in dex taxa are ac com pa nied by other plank tonic fo -rams in clud ing Archaeo glo bi gerina bosquen sis (Pes sa gno) (Fig. 6A, B), Di carinella sp. (Fig. 6C), Het ero he lix mo re -mani (Cush man) (Fig. 6G), Het ero he lix re ussi (Cush man), Margi no trun cana praelin ne iana Pes sa gno, Margi no trun -cana sp., Mu ri co hed ber gella plani spira (Tap pan) (Fig. 6J), and Whitei nella bal tica Doug las et Rankin (Fig. 6K). The Di carinella con ca vata Zone con tains A. bosquen sis, the last oc cur rence of which is known from the Mid dle Co nia cian and char ac ter izes the mid dle part of this zone (Fig. 7). How -ever, in the case of the stud ied con glom er ates, the pos si ble re de po si tion of the older fau nas does not al low us to de fine the pre cise age. Di carinella con ca vata Zone re mains in dica -tive, thus the age of the con glom er ate based on fora mini fera points to the lat est Tu ro nian–Co nia cian in ter val.

The nannofossil as sem blage, rep re sented by sam ple Pych 41, is mod er ately di ver si fied and abun dant. State of pres er va tion of the nannofossils is the best among the stud ied sam ples, though it is still es ti mated as O2. This as sem blage, dom i nated by W. barnesiae, con tains 24 taxa, in clud -ing among oth ers such taxa as Arkhangelskiella cymbifor-mis (Fig. 8H), Broinsonia parca expansa (Fig. 8F), Quadrum gartneri (Fig. 8Oa) or Micula spp. (Fig. 8M). More -over, it con tains also two in dex spe cies of Bur nett’s (1998) strati graphic nannoplankton zonation for the Up per Cre ta ceous (UC zones): Quadrum gartneri (Fig. 8Oa), which de -fines the base of the mid dle Turonian UC 7 Zone; and Broinsonia parca expansa (Fig. 8F), which de fines the base

of the UC9c Subzone, lately cor re lated with the Up per Turonian (Lees, 2008). Fur ther more, the as sem blage also in cludes Micula spp. (Fig. 8M). Tax on omy of the found spec i mens was de ter mined at the genus level due to poor pres er -va tion and scarce oc cur rence, but they may rep re sent ei ther M. adumbrata or M. staurophora. The first oc cur rence (FO) of M. adumbrata (prob a ble an ces tor of M. staurophora) is diachronous through the UC9a to UC9c zones, which em -braces the in ter val from the mid dle Mid dle Turonian to the lower Mid dle Coniacian (Lees, 2008). Lees (2008) noted the FO of M. adumbrata in S³upia Nadbrze¿na sec tion (Po -land) within the UC9c Zone (Lower Coniacian), but in the Czech Re pub lic (Bøezno sec tion) this spe cies was found within the UC9b Zone (Up per Turonian). On the other hand, Kêdzierski (2008) stud ied the Turonian/Coniacian bound ary in ter val in the Opole Trough (Po land) and did not find any Micula spe cies up to up per Lower Coniacian. In con trast, M. staurophora has the cer tain stratigraphic po si -tion of the FO, that is the in dex spe cies of the base of the UC10 Zone, cor re lated with the lower Mid dle Conia- cian. There fore, in the case of M. adumbrata oc cur rence, that is Micula ge nus in gen eral, the age of the stud ied as sem blage is not older than the Late Turonian (UC9c Zone), but its Late Turonian/Early Coniacian age seems probable.

To con clude: based on foraminifera and nannoplank-ton, the age of con glom er ates is es tab lished as the lat est Turonian–?Early Coniacian.

Fig. 7. Biostratigraphical ranges of the stud ied plank tonic in dex foraminiferids from con glom er ate. Ranges of spe cies and biozones com bined af ter Robaszynski et al. (1984), Caron (1985), Robaszynski and Caron (1995), Premoli-Silva and Rettori (2002), and Premoli-Silva and Verga (2004). The grey area in di cates biozones re cog nised in the stud ied ma te rial

(9)

Coniacian de pos its are well doc u mented by Walasz-czyk (1992) and Olszewska-Nejbert and ŒwierczewskaG³adysz (2009) ca. 30 km north wards of Kraków, and pos -si bly they may also be ex pected in the Kraków re gion. There are also some older re ports that may point to the pres -ence of the Coniacian in Kraków vi cin ity in the light of the mod ern strati graphic scheme. For in stance, Zarêczny (1878), Smoleñski (1906), Panow (1934) and Alexandro-wicz (1954) de scribed fos sils which first ap pear within the

tra di tional Inoceramus schloenbachi Zone. Lately, I. schlo-enbachi fell into syn on ymy with the Cremnoceramus cras-sus, the in dex spe cies for C. crassus Zone cor re lated with the Lower Coniacian (Walaszczyk, 1992; Kauffman et al., 1996; Walaszczyk & Wood, 1998). Hence, the men tioned find ings may be as cribed as the Lower Coniacian. Nev er -the less, -these older find ings need cur rent stud ies to indubi-tably confirm them.

Fig. 8. Cal car e ous nannoplankton un der the light mi cro scope in cross-polar ised light. A – Bisctum constans (Pych 41), B – Lu cia-norhabdus cayeuxii (Pych 50), C – Calculites ovalis (Pych 50), D – a. Watznaueria barnesiae, b. Luciacia-norhabdus cf. L. cayeuxii (Pych 50), E – Broinsonia signata (Pych 41), F – Broinsonia parca expansa (Pych 41), G – Broinsonia matalosa (Pych 41), H – Arkhan-gelskiella cymbiformis (Pych 41), I – Prediscosphaera cretacea (Pych 41), J – Cribrosphaerella ehrenbergii (Pych 41), K – a. Eiffellithus eximius, b. Watznaueria barnesiae (Pych 41), L – Kamptnerius magnificus (Pych 41), M – Micula sp. (Pych 41), N – ?Quadrum sp. (Pych 41), O – a. Quadrum gartneri, b. Watznaueria barnesiae (Pych 41), P – Braarudosphaera bigelowii (Pych 41). Scale bar in di cates 5 µm

(10)

The age of the dyke fill ing lime stones

In the foraminiferal as sem blages (ana lysed in the thin sec tions) from dyke fill ing lime stones, abun dant plank tonic non-keeled and keeled taxa oc cur, such as: Archaeoglobige- rina cretacea (d’Orbigny) (Fig. 9A, 10K), Archaeoglobi-gerina blowi (Bolli), Contusotruncana cf. plummerae (Gan-

dolfi) (Fig. 9B), Globotruncana arca (Cushman) (Fig. 9C), Globotruncana bulloides Vogler (Fig. 9D, E), Globotrun-cana hilli Pessagno (Fig. 9F, G), GlobotrunGlobotrun-cana ex gr. lapparenti Brotzen (Fig. 9H), Globotruncana linneiana (d’Orbigny) (Fig. 9I), Globotruncana cf. rosetta (Carsey) (Fig. 9J), Heterohelix globulosa (Ehrenberg) (Fig. 9K), Heterohelix cf. reussi (Cushman) (Fig. 9M), Muricohedber-

Fig. 9. Campanian plank tonic foraminiferids from in jec tion dykes. A – Archaeoglobigerina cretacea (d’Orbigny), ax ial sec tion (Pych 5), B – Contusotruncana cf. plummerae (Gandolfi), ax ial sec tion (Pych 4), C – Globotruncana arca (Cushman) (Pych 5), D – Globotruncana bulloides Vogler, ax ial sec tion (Pych 5), E – Globotruncana bulloides Vogler, ax ial sec tion (Pych 27), F – Globotruncana hilli Pessagno, ax ial sec tion (Pych 5), G – Globotruncana cf. hilli Pessagno, ax ial sec tion (Pych 4), H – Globotruncana ex. gr. lapparenti Brotzen, ax ial sec tion (Pych 5), I – Globotruncana linneiana Brotzen, ax ial sec tion (Pych 5), J – Globotruncana cf. rosetta (Carsey), ax ial sec tion (Pych 5), K – Heterohelix globulosa (Ehrenberg), ax ial sec tion (Pych 27), L – Heterohelix sp., per pen dic u lar to ax ial sec tion (Pych 4), M – Heterohelix cf. reussi (Cushman), per pen dic u lar to ax ial sec tion (Pych 27), N – Heterohelix sp., ax ial sec tion (Pych 27). Scale bar in di cates 100 µm

(11)

gella holmdelensis (Olsson) (Fig. 10D), Muricohedbergella monmouthensis (Olsson) (Fig. 10E–G), and Rugoglobige-rina rugosa (Plummer) (Fig. 10H–J).

Ben thic foraminiferids are rel a tively rare and dom i nated by cal car e ous spec i mens: Eouvigerina aculeata (Ehrenberg) (Fig. 6L), Globorotalites cf. michelianus (d’Orbigny) (Fig. 6N), Reussella sp., and Stensioeina sp. Ag glu ti nated ben -thic forms are rep re sented by Arenobulimina sp. and Gau-dryina sp. (Fig. 6M).

The plank tonic foraminiferal as sem blages rep re sent Glo- botruncana ventricosa and Globotruncanita calcarata zones sensu Robaszynski et al. (1984), Caron (1985), Robaszynski and Caron (1995), Premoli-Silva and Rettori (2002), and Premoli-Silva and Verga (2004) and in di cate the Early/Late Campanian age (Fig. 11), not older than the lat est Early Campanian. All the di ag nos tic spe cies as well as some taxa which are typ i cal of the stud ied foraminiferal as sem blages are il lus trated in Figs 9 and 10. Among foraminiferal as sem

-Fig. 10. Campanian plank tonic foraminiferids from in jec tion dykes; ax ial sec tions. A – Macroglobigerinelloides bollii (Pessagno) (Pych 5), B – Macroglobigerinelloides bollii (Pessagno) (Pych 27), C – Macroglobigerinelloides cf. prairiehillensis Possagno (Pych 5), D – Muricohedbergella holmdelensis (Olsson) (Pych 5), E, F – Muricohedbergella monmouthensis (Olsson) (Pych 5), G – Muricohedbergella monmouthensis (Olsson) (Pych 5), H–J – Rugoglobigerina rugosa (Plummer) (Pych 5), K – Foraminiferal as sem blages dom i nated by Archaeoglobigerina cretacea (d’Orbigny) (Pych 4). Scale bar in di cates 100 µm

(12)

blages only the range of Heterohelix reussi is an ex cep tion; its last oc cur rence (LO) is char ac ter is tic for the mid dle part of Globotruncanita elevata Zone (Fig. 11), which rep re sents the Early Campanian. How ever, ac cord ing to Peryt (1980), the LO of this spe cies in Cen tral Po land is noted from the Up per Campanian (Globotruncanita calcarata Zone). In the cur rent Cre ta ceous Time Scale (Ogg et al., 2008) Globo-truncanita calcarata Zone is sit u ated in the lower part of the Up per Campanian (Fig. 11).

The nannofossil as sem blage from dykes (sam ples Pych 5, 20, 24, 31, 50) con tains poorly pre served and scarce cal car e ous nannofossils (Fig. 8B–D). Only five taxa were re -cog nised within this as sem blage dom i nated by Watznaueria barnesiae (Fig. 8Da), which con sti tutes about 90% of to tal

abun dance. Fur ther more, Calculites ovalis (Fig. 8C), Lu cia- norhabdus cayeuxii (Fig. 8B, Db), Eiffellithus sp., and Bra-arudosphaera sp. were as cer tained as well. Com plete list of the cal car e ous nannoplankton is given in Table 1.

Al though only few in dex spe cies oc cur within the dyke fill ings, the pres ence of L. cayeuxii, whose FO de fines the base of UC11c subzone em brac ing the up per most Conia-cian and the Lower Santonian, al lows one to de fine the age of the fill ings as not older than the lat est Coniacian.

Con clud ing, the age of lime stone fill ing in jec tion dykes is Early/Late Campanian (Globotruncana ventricosa and Globotruncanita calcarata zones), and not older than the lat -est Early Campanian.

The age of the over ly ing marls

The grey marls over ly ing Oxfordian lime stones are litholog i cally very sim i lar to the Santonian–Lower Campa-nian marls de scribed from other sites in the Kraków re gion; there fore, they were pre vi ously be lieved to rep re sent the Santonian (Ko³odziej et al., 2008), an as sump tion which is here re vised. The marls con tain abun dant nonkeeled plank -tonic foraminifera with dom i nat ing Archeoglobigerina cre-tacea (d’Orbigny), Heterohelix navarroensis Loeblich, Heterohelix striata Ehrenberg, Muricohedbergella mon-mouthensis (Olsson), and rare Rugoglobigerina rugosa (Plummer). Plank tonic keeled forams are rare and rep re -sented by Globotruncana arca (Cushman) and Globotrun-cana bulloides Vogler. The first oc cur rence of M. mon-mouthensis (zonation ac cord ing to Robaszynski et al., 1984; Caron, 1985; Robaszynski & Caron, 1995; PremoliSilva & Rettori, 2002; PremoliPremoliSilva & Verga, 2004) in di -cates the Early/Late Campanian age, not older than the lat est Early Campanian. Nu mer ous ben thic spe cies from the marls, in clud ing Cibicides beaumontianus (d’Orbigny), Gavelinella costulata (Ma rie), Globorotalites michelinia-nus (d’Orbigny), Praebulimina div. sp., Stensioeina div. sp. (Stensioeina exsculpta (Reuss), and Stensioeina gracilis Brotzen) are char ac ter is tic for the Campanian (Zapa³owicz-Bilan, 1982, cf. Gawor-Biedowa, 1992).

DIS CUS SION

Re cently, Montenat et al. (2007) re viewed the main types of seismites and pro posed their mod i fied clas si fi ca -tion. Among prin ci pally brit tle de for ma tions, nep tu nian dykes and in jec tion dykes are the best known seismites. Nep tu nian dykes are formed by in fill ing preex ist ing fis -sures ex posed on the sea bot tom, and which may be open for a long time. In jec tion dykes are filled by ma te rial through hy dro stati cally con trolled pres sure, and are com bi -na tion of hydrofracturing of hard sub strate and fill ing by overpressured (fluidized) soft sed i ments (Flügel, 2004; Montenat et al., 2007). Fis sure net works de vel oped nearby the fault zone com monly pro duce a jig saw-puz zle pat tern (autoclastic brec cias; Montenat et al., 2007). Well de vel -oped jig saw-puz zle pat tern of cracks does not oc cur in the stud ied case, what can sug gests that the region was not situated close to an ac tive fault.

Ta ble 1

Dis tri bu tion of cal car e ous nannofossils and state of pres er -va tion of the stud ied as sem blages

Pych 5 Pych 20 Pych 24 Pych 31 Pych 41 Pych 50 State of preservation O-3 O-3 O-2 O-3 O-2 O-2

Arkhangelskiella sp. x A. cymbiformis x Biscutum constans x B. melaniae x Braarudosphaera sp. x B. bigelowii x Broinsonia matalosa x B. signata x B. parca expansa x Calculites sp. x C. cf. ovalis x Chiastozygus litterarius x Cribrosphaerella ehrenbergii x Eiffellithus sp. x x E. eximius x Gartnerago obliquum x Kamptnerius magnificus x Lucianorhabdus sp. x x Lucianorhabdus cayeuxii x Micula sp. x Prediscosphaera sp. x P. cretacea x ?Quadrum sp. x Quadrum gartneri x Reinhardtites sp. x Retecapsa crenulata x Watznaueria barnesiae x x x x x x Zeugrhabdotus bicrescenticus x Z. diplogrammus x Z. embergeri x Z. gabalus x

(13)

Sed i ment fill ings of the stud ied dykes dis play sev eral char ac ter is tics, such as microstratification, in stant lithifica-tion and mul ti ple cross-cut ting, which doc u ment com plex gen er a tion of the cracks. Be cause the dyke fill shows mostly lin ing par al lel to the fis sure walls, it ev i dences an ac tive in -fill ing typ i cal of in jec tion mech a nism, that is force ful mode of em place ment ini ti ated as a re sult of high fluid pres sures (Röshoff & Cosgrove, 2002; Montenat et al., 2007). Thus, as pre vi ously sug gested by Ko³odziej et al. (2008), the fis

-sures are in jec tion dykes. Seis mic shocks in duced fluid overpressure, hy drau lic frac tur ing of the Ju ras sic sub strate, and liq ue fac tion of the over ly ing Lower/Up per Campa-nian un con sol i dated sed i ments (now re cog nised only within dykes). The lat ter, as well as small quartz peb bles and frag -ments of stromatolite (from the up per most Turonian– ?Lower Coniacian con glom er ates) are sub or di nate com po -nents of some in jec tion dykes. They were sucked into the opened fractures, producing the injection dykes.

Fig. 11. Biostratigraphical ranges of the plank tonic foraminiferids from in jec tion dykes. Ranges of spe cies and biozones com bined af ter Robaszynski et al. (1984), Caron (1985), Robaszynski and Caron (1995), Premoli-Silva and Rettori (2002), Premoli-Silva and Verga (2004), and Peryt (1980). The grey area in di cates biozones re cog nised in the stud ied ma te rial

(14)

As men tioned above, the cracks are mostly sub(hor i -zon tal) and af fected only the top most sev eral centi metre thick layer of the Ju ras sic bed rock. This in di cates that this sys tem of cracks orig i nated by Love or Ray leigh waves trav el ling near the ground sur face. These sur face waves are most ef fec tive in ground dis place ment and dis tur bance (Bolt, 2004).

The mor pho log i cal fea tures of the dis cussed in jec tion dykes dif fer from the typ i cal, grav i ta tion allyfilled nep tu -nian dykes by the dom i nant role of hy drau lic forces. Sim i lar in jec tion dykes are known from other tec toni cally ac tive set tings, both re cent (Montenat et al., 1991, 2007) and an -cient ones (Füchtbauer & Rich ter, 1983; Cosgrove, 2001; Aubrecht & Szulc, 2006), where their or i gin have been also as cribed to the quake tremor. Fi nally, the seis mic or i gin of such veinlets has been con firmed by quakesim u la tion ex -per i ments (Broth ers et al., 1996).

The dis cussed area was tec toni cally ac tive in the Late Cre ta ceous. Dur ing that time the Kraków Swell was lo cated on the west ern mar gin of the Mid-Pol ish Trough. Ac cord ing to Krzywiec et al. (2009), in ver sion move ments commen-ced dur ing the Late Turonian?–Coniacian, and lasted un til Maastrichtian–post-Maastrichtian times. In the opin ion of other au thors (Kutek & G³azek, 1972; Œwidrowska et al., 2008 and ref er ences therein), in ver sion of the SE part of the Mid-Pol ish Through could be ob served not ear lier than in the Maastrichtian. It is note wor thy that the Cre ta ceous tec -tonic frame work of the stud ied area was founded as early as in Late Ju ras sic times, when a com plex sys tem of horsts and grabens de vel oped un der transcurrent mo tion of the re ac ti -vated Variscan, Kraków–Lubliniec mas ter fault (Z³onkie-wicz, 2006). Block move ments af fect ing the en tire Kraków re gion dur ing the Turonian–Santonian in flu enced sed i men -tary evo lu tion and re sulted in un con formi ties and stratigra-phic gaps (Marcinowski, 1974; Walaszczyk, 1992; Olszew- ska-Nejbert, 2004; Olszewska-Nejbert & Œwierczewska-G³adysz, 2009). The lack of Santonian in the stud ied area and in some other parts of the Kraków re gion (Zapa³owicz-Bilan et al., 2009) might sug gest a non-de po si tion interval.

The Late Cre ta ceous tectonism in the Kraków re gion was pos si bly linked, sim i larly as in north ern Ger many and the An gloParis Ba sin, with compressional stress due to col li sion of Af ri can and Eu ro pean plates (Ziegler, 1990). Tec -tonic pulses of the Subhercynian tectonism dis tin guished in both men tioned ar eas show only some slight age dif fer ences, and in opin ion of Mortimore et al. (1998) can be ex -tended more widely into the north western Eu ro pean bas ins. Fol low ing this opin ion, the de scribed in jec tion dykes (Early/Late Campanian) could be cor re lated with the Peine Phase rep re sent ing the ter mi nal Early Campanian. Campa-nian tec ton ics could be re lated to strike-slip move ment of small faults along the NE–SW ori ented Kurdwanów– Zawi- chost Fault Line (Œwidrowska et al., 2008).

The in jec tion dykes en com pass a foraminiferal as sem blage which is un known from the Kraków re gion. This in di cates that the dykes are host ing sed i ments eroded be fore de po si tion of the over ly ing grey marls. The foraminiferal as -sem blage from dykes is char ac ter ised by highly di ver si fied plank tonic forms with dou ble-keeled spe cies, par tic u larly rep re sented by Globotruncana (Fig. 9). Bathypelagic

glo-botruncanids are char ac ter is tic of the Tethyan do main. The pres ence of Tethyan forms in Bo real ar eas may in di cate better com mu ni ca tion with the Tethys and/or warm ing of Bo real wa ters. The free con nec tion be tween the Tethyan and Bo real prov inces dur ing the Late Cre ta ceous was al -ready pos tu lated by Hanzlíková (1972), Po¿aryska and Peryt (1979), Gasiñski (1997, 1998), and Marcinowski and Gasiñski (2002). The over ly ing Lower/Up per Campanian grey marls also dif fer in their foraminiferal com po si tion from the Santonian–Campanian marls from other places of the Kraków re gion by dom i nance of plank tonic foramini-fera, and not by ben thic cal car e ous forms (Machaniec et al., 2004; Machaniec & Zapa³owicz-Bilan, 2005, 2008; Zapa-³owicz-Bilan et al., 2009).

The re cog nised karstic cav i ties filled with conglomerates were in ter preted by Krobicki et al. (2008a, b) as nep tu -nian dykes, how ever, their mor pho log i cal char ac ter is tics deny such an in ter pre ta tion. The lat est Turonian–?Early Co- niacian age of con glom er ates post dates karstification, how -ever, dat ing of karstification is am big u ous. Un equiv o cal pre-Cenomanian karst forms are not com mon in epicratonic Po land (G³azek, 1989). Bukowy (1956) re cog nised north of Kraków (Korzkiew) palaeokarst structures dated as pre-Turonian.

It is very likely that due to so called seis mic pump ing, ac com pa ny ing the quake trem ors (Sibson et al., 1975), some as cended hy dro ther mal flu ids re sulted in sul phide min er ali sa tion and sili ci fi ca tion of the af fected rocks. Gawe³ (1949) and D¿u³yñski and ¯abiñski (1954) re cog -nised that grey Oxfordian lime stones, lo cally oc cur ring in the Kraków re gion, are caused by finely dis persed py rite and are as so ci ated with Neo gene faults. The re cent ob ser va -tions sug gest that at least part of the sul phide min er al iza tion might be re lated with the Late Cre ta ceous tec tonic ac tiv ity. How ever, its Neo gene age due to re ju ve na tion of Late Cre -ta ceous tec tonic struc tures is an al ter na tive ex pla na tion, par tic u larly that this process affected mostly Oxfordian limestones, and not dyke fillings.

CON CLU SIONS

1. The fis sures net work re cog nised within the top most part of Oxfordian bed ded lime stones of the Zakrzówek Horst rep re sents Early/Late Campanian synsedimentary in -jec tion dykes.

2. Abun dant plank tonic foraminifera in the dyke fill -ings in di cate the Early/Late Campanian Globotruncana ven- tricosa and Globotruncanita calcarata zones. The pres ence of nu mer ous and di ver si fied keeled globotruncanids in the Campanian of the Kraków re gion is re cog nised for the first time.

3. In jec tion dykes re sulted from seis mi cally in duced hy drau lic frac tur ing of the Ju ras sic sub strate, fol lowed by fill ing of overpressured, fluidised car bon ate sed i ments. Lime stones sim i lar to those fill ing dykes are un known so far from the Kraków re gion, and dif fer in re spect to li thol ogy and foraminiferal com po si tion from the over ly ing grey marls, al though they rep re sent the same foraminiferal bio-zone.

(15)

4. The Ju ras sic bed rock was karstified, and the up per -most Turonian–?Lower Coniacian con glom er ates fill ing of karst cav i ties post dates the karstification stage.

5. The grey marls over ly ing the up per most Turonian– ?Lower Coniacian con glom er ates or di rectly Oxfordian lime stones rep re sent the Early/Late Campanian Globotrun-cana ventricosa and Globotruncanita calcarata zones, thus the same as lime stones fill ing in jec tion dykes. These marls con tain abun dant non-keeled plank tonic foraminifera, while keeled forms are rare.

6. The Santonian de pos its, which com monly oc cur in the Late Cre ta ceous sec tions in the Kraków re gion, are ab sent in the stud ied sec tion. This in di cates dif fer en ti ated sed i men tary or tec tonic his tory of par tic u lar tec tonic blocks be -long ing to the Kraków Swell.

Ac knowl edge ments

Dr. E. Malata and Prof. M. A. Gasiñski (Jagiellonian Uni ver -sity, Kraków) are thanked for dis cus sion on Late Cre ta ceous foraminiferal biostratigraphy. The re view ers, Prof. R. Gradziñski (Pol ish Acad emy of Sci ences, Kraków) and Prof. I. Walaszczyk (War saw Uni ver sity), as well as the ed i tor Dr. M. Gradziñski (Jagiellonian Uni ver sity) are thanked for help ful crit i cal com -ments and sug ges tions which im proved the pa per. Mr. J. Kucharski (AGH Uni ver sity of Sci ence and Tech nol ogy, Kraków) is ac -knowl edged for pro vid ing in for ma tion about build ing pits in the Pychowicka Street.

REF ER ENCES

Alexandrowicz, S., 1954. Turon po³udniowej czêœci Wy¿yny Kra- kowskiej. (In Pol ish). Acta Geologica Polonica, 4: 361–390. Aubrecht, R. & Szulc, J., 2006. De ci pher ing of the com plex

depositional and diagenetic his tory of a scarp lime stone brec -cia (Mid dle Ju ras sic Krasin Brec -cia, Pieniny Klippen Belt, West ern Carpathians). Sed i men tary Ge ol ogy, 186: 265–281. Bolt, B. A., 2004. Earth quakes. W. H. Free man and Com pany,

New York, 378 pp.

Bromley, R. G., Kêdzierski, M., Ko³odziej, B. & Uchman, A., 2009. Large cham bered sponge bor ings on a Late Cre ta ceous abra sion plat form at Cra cow, Po land. Cre ta ceous Re search, 30: 149–160.

Broth ers, R. J., Kemp, A. E. S. & Maltman, A. J., 1996. Me chan i cal de vel op ment of vein struc tures due to the pas sage of earth -quake waves through poorly-con sol i dated sed i ments. Tecto-nophysics, 260: 227–244.

Bukowy, S., 1956. Ge ol ogy of the area be tween Cra cow and Korzkwia. (In Pol ish, Eng lish sum mary). Biuletyn Instytutu Geologicznego, 108: 17–82.

Bur nett, J. A., 1998. Up per Cre ta ceous. In: Bown, P. R. (ed.), Cal car e ous Nannofossil Biostratigraphy. Kluwer Ac a demic Pub -lish ers, Dordrecht: 132–199.

Caron, M., 1985. Cre ta ceous plank tonic foraminifera. In: Bolli, H. M., Saunders, J. & PerchNiel sen, K. (eds), Plank ton Stra tig -ra phy. Cam bridge Uni ver sity Press, Cam bridge: 17–86. Cosgrove, J. W., 2001. Hy drau lic frac tur ing dur ing the for ma tion

and de for ma tion of a ba sin: A fac tor on the dewatering of lowper me abil ity sed i ments. Amer i can As so ci a tion of Pe tro -leum Ge ol o gists Bul le tin, 85: 737–748.

D¿u³yñski, S., 1995. Nep tu nian dykes of Bonarka – a tes ti mony of the Late Cre ta ceous tec tonic move ments in the Cra cow Up

-land – dis cus sion. (In Pol ish, Eng lish sum mary). Przegl¹d Geologiczny, 43: 689–690.

D¿u³yñski, S. & ¯abiñski, W., 1954. Ciemne wapienie w jurze krakowskiej. (In Pol ish). Acta Geologica Polonica, 4: 181– 190.

Felisiak, I., 1995. Nep tu nian dykes of Bonarka a tes ti mony of the Late Cre ta ceous tec tonic move ments in the Cra cow Up land – dis cus sion. (In Pol ish, Eng lish sum mary). Przegl¹d Geolo-giczny, 43: 869–872.

Flügel, E., 2004. Microfacies of Car bon ate Rocks: Anal y sis, In ter -pre ta tion and Ap pli ca tion. Springer Verlag, Berlin, 976 pp. Füchtbauer, H. & Rich ter, D., 1983. Re la tions be tween sub ma rine

fis sures, in ter nal brec cias and mass flows dur ing Tri as sic and ear lier rift ing pe ri ods. Geologische Rundschau, 72: 53–66. Gasiñski M. A., 1997. Tethyan–Bo real con nec tion: in flu ence on

the evo lu tion of mid-Cre ta ceous plank tonic foraminiferids. Cre ta ceous Re search, 18: 505–514.

Gasiñski, M. A., 1998. Campanian–Maastrichtian palaeo ec ol ogy and palaeobiogeography of the Andrychów Klippes, Outer Carpathians, Po land. Uniwersytet Jagielloñski, Rozprawy Habilitacyjne, 333: 1–90.

Gawe³, A., 1949. Dolomitisation des calcaires jurassiques des en -vi rons de Craco-vie. (In Pol ish, French sum mary). Rocznik Polskiego Towarzystwa Geologicznego, 18 [for 1948]: 292– 317.

Gawor-Biedowa, E., 1992. Campanian and Maastrichtian Forami-nifera from the Lublin Up land, East ern Po land. Palaeontolo-gia Polonica, 52: 1–187.

G³azek, J., 1989. Paleokarst of Po land. In: Bosák, P., Ford, D. C., G³azek, J. & Horáèek, I. (eds), Paleokarst; a sys tem atic and re gional re view. Elsevier, Am ster dam & Ac a de mia, Prague: 77–105.

Gradziñski, R., 1961. The pro ject of the re serve at Bonarka. (In Pol ish, Eng lish sum mary). Ochrona Przyrody, 27: 239–251. Gradziñski, R., 1993. Geo log i cal map of Cra cow re gion with out

Qua ter nary and ter res trial Ter tiary de pos its. Muzeum Geo-logiczne, Instytut Nauk Geologicznych PAN, Kraków. Hanzlíková, E., 1972. Carpathian Up per Cre ta ceous

Foraminife-rida of Moravia (Turonian–Maastrichtian). Rozpravy Ústøe-dniho Ústavu Geologickeho, 39: 1–160.

Kauffman, E. G., Ken nedy, W. J. & Wood, C. J., 1996. The Coniacian stage and substage bound aries. Bul le tin de l’Insti-tut Royal des Sci ences Naturelles de Belgique, Sci ences de la Terre, 66-sup ple ment: 81–94.

Kêdzierski, M., 2008. Cal car e ous nannofossil and inoceramid biostratigraphies of a Mid dle Turonian to Mid dle Coniacian sec tion from the Opole Trough of SW Po land. Cre ta ceous Re -search, 29: 451–467.

Ko³odziej, B., Szulc, J. & Duda, M., 2008. Przejawy póŸnokredowej tektoniki w zrêbie Zakrzówka w Krakowie. (In Pol -ish). In: Haczewski, G. (ed.), 1st Pol ish Geo log i cal Con gress, 26–28.06.2008 Kraków, Ab stracts. Polskie Towarzystwo Geologiczne, Kraków: 54–55.

Krobicki, M., Kucharski, J. & Golonka, J., 2008a. Late Ju ras sic and Late Cre ta ceous synsedimentary extensional tec tonic ac -tiv i ties in the peri-Tethyan plat form of Po land marked by nep tu nian dykes. In: 26th IAS Re gional Meet ing/SEPM-CES SED I MENT 2008, Bochum, Ab stract Vol ume, SDGG, 58: 160.

Krobicki, M., Golonka, J. & Kucharski, J. 2008b. Jurajskie i kredowe dajki neptuniczne w pó³nocnej Tetydzie i na obsza-rze pery-Tetydy – reperkusje geotektoniczne. Geologia (Kwartalnik AGH), 34: 185–188.

Krzywiec, P., Gutowski, J., Walaszczyk, I., Wróbel, G. & Wybraniec, S., 2009. Tectonostratigraphic model of the Late

(16)

Cre ta ceous in ver sion along the Nowe Miasto–Zawichost Fault Zone, SE Mid-Pol ish Trough. Geo log i cal Quar terly, 53: 27–48.

Kutek, J. & G³azek, J., 1972. The Holy Cross Area, Cen tral Po -land, in the Al pine Cy cle. Acta Geologica Polonica, 22: 603– 653.

Lees, J. A., 2008. The cal car e ous nannofossil re cord across the Late Cre ta ceous Turonian/Coniacian bound ary, in clud ing new data from Ger many, Po land, the Czech Re pub lic and Eng land. Cre ta ceous Re search, 29: 40–64.

Machaniec, E., Kêdzior A. & Zapa³owicz-Bilan, B., 2004. Bio-stratygrafia i paleoekologia górnokredowych osadów mar-glistych okolic Krakowa (Polska) na podstawie otwornic. (In Pol ish). In: Zlinská, A. (ed.), 5. Paleontologická konferencia, Bratislava, jún 2004, Zborník Abstraktov. Štátny geologický ústav Dionýza Štúra, Bratislava: 69–71.

Machaniec, E. & Zapa³owicz-Bilan, B., 2005. Foraminiferal bio-stra tig ra phy and palaeobathymetry of Senonian marls (Up per Cre ta ceous) in the vi cin ity of Kraków (Januszowice–Korz-kiew area, Bonarka quarry) – pre lim i nary study. Studia Geologica Polonica, 124: 285–295.

Machaniec, E. & Zapa³owicz-Bilan, B., 2008. Biostratygrafia górnokredowych osadów marglistych rejonu Krakowa na podstawie otwornic. (In Pol ish). In: Haczewski, G. (ed.), 1st Pol ish Geo log i cal Con gress, 26–28.06.2008 Kraków, Ab -stracts. Polskie Towarzystwo Geologiczne, Kraków: 68. Marcinowski, R., 1974. The transgressive Cre ta ceous (Up per

Albian through Turonian) de pos its of the Pol ish Jura Chain. Acta Geologica Polonica, 24: 117–217.

Marcinowski, R. & Gasiñski, M. A., 2002. Cre ta ceous biogeo-graphy of epicratonic Po land and Carpathians. In: Michalik, J. (ed.), Tethyan/Bo real Cre ta ceous Cor re la tion. Med i ter ra -nean and Bo real Cre ta ceous paleobiogeographic ar eas in Cen tral and East ern Eu rope, VEDA, Bratislava: 95–114. Montenat, C., Bar rier, P. & Ott d’Estevou, P., 1991. Some as pects

of the re cent tec ton ics in the Strait of Messina, It aly. Tecto-nophysics, 194: 227–244.

Montenat, C., Bar rier, P., Ott d’Estevou, P. & Hibsch, C., 2007. Seismites: An at tempt at crit i cal anal y sis and clas si fi ca tion. Sed i men tary Ge ol ogy, 196: 5–30.

Mortimore, R., Wood, C., Pomerol, B. & Ernst, G., 1998. Dat ing the phases of the Subhercynian tec tonic ep och: Late Cre ta -ceous tec ton ics and eustatics in the Cre ta ceous bas ins of north ern Ger many com pared with the An glo-Paris Ba sin. Zentralblatt für Geologie und Paläontologie, Teil I: 11/12: 1349–1401.

Ogg, J. G., Ogg, G. & Gradstein, F. M., 2008. The Con cise Geo -logic Time Scale. Cam bridge Uni ver sity Press, Cam bridge, 177 pp.

Olszewska-Nejbert, D., 2004. De vel op ment of the Turonian/ Coniacian hardground bound ary in the Cra cow Swell area (Wielkanoc quarry, South ern Po land). Geo log i cal Quar terly, 48: 159–170.

Olszewska-Nejbert, D. & Œwierczewska-G³adysz, E., 2009. The phosphatized sponges from the Santonian (Up per Cre ta ceous) of the Wielkanoc Quarry (south ern Po land) as a tool in strati -graphi cal and en vi ron men tal stud ies. Acta Geologica Polo-nica, 59: 483–504.

Panow, E., 1934. Stratygrafja kredy krakowskiej. (In Pol ish). Rocznik Polskiego Towarzystwa Geologicznego. 10: 577– 585.

Peryt, D., 1980. Plank tonic foraminifera zonation of the Up per Cre ta ceous in the Mid dle Vistula river val ley, Po land. Pala-eontologia Polonica, 41: 3–101.

Po¿aryska, K. & Peryt, D., 1979. The Late Cre ta ceous and Early

Paleocene Foraminiferal Tran si tional Prov ince in Po land. In: Wiedmann, J. (ed.), Aspekte der Kreide Europas. Stuttgart, In ter na tional Un ion of Geo log i cal Sci ences A, 6: 293–303. Premoli-Silva, I. & Rettori, R. (eds), 2002. Prac ti cal man ual of

Cre ta ceous plank tonic Foraminifera. In ter na tional School on Plank tonic Foraminifera, Perugia 18–22 Feb ru ary, 2002. Dipartimento di Scienza della Terra, Universita di Perugia, Perugia, 462 pp.

Premoli-Silva, I. & Sliter, W. V., 1999. Cre ta ceous paleoceano-graphy: ev i dence from plank tonic foraminiferal evo lu tion. In: Barrera, E. & John son. C. C., (eds), Evo lu tion of the Cre ta -ceous Ocean-Cli mate Sys tem. Geo log i cal So ci ety of Amer ica Spe cial Pa per, 332: 301–328.

PremoliSilva, I. & Verga, D., 2004. Prac ti cal Man ual of Cre ta -ceous Plank tonic Foraminifera. In ter na tional School on Planktonic Foraminifera. 3th Course: Cre ta ceous. In: Verga, D. & Rettori, R. (eds), Uni ver si ties of Perugia and Milano, Tipografia Pontefelicino, Perugia, 283 pp.

Robaszynski, F. & Caron, M., 1995. Foraminiféres planctoniques du Crétacé: commentaire de la zonation Eu rope-Médite-rranée. Bul le tin de la Société Géologique de France, 6: 681– 692.

Robaszynski, F., Caron, M., Gon za les, J. M. & Won ders, A. H., (eds), 1984. At las of Late Cre ta ceous globotruncanids. Re vue de Micropaléontologie, 26: 145–305.

Roth, P. H., 1983. Ju ras sic and Lower Cre ta ceous cal car e ous nannofossils in the west ern North At lan tic (Site 534): bio-stra tig ra phy, pres er va tion, and some ob ser va tions on biogeo-graphy and palaeoceanobiogeo-graphy. Ini tial Re ports of the DSDP, 76: 587–621.

Röshoff, K. & Cosgrove, J., 2002. Sed i men tary dykes in the OskarshamnVästervik area. A study of the mech a nism of for -ma tion. SKB Rap port R-02-37. Swed ish Nu clear Fuel and Waste Man age ment Com pany, Stock holm, 98 pp.

Sibson, R. H., Moore, J. Mc. M. & Rankin, A. H., 1975. Seis mic pump ing – a hy dro ther mal fluid trans port mech a nism. Jour -nal of the Geo log i cal So ci ety, 31: 653–659.

Smoleñski, J., 1906. Dolny senon w Bonarce. I. G³owonogi i Inoceramy. (In Pol ish). Rozprawy Wydzia³u Matematyczno-Przyrodniczego Akademii Umiejêtnoœci, ser. III, 6 (B): 607– 638.

Soko³owski, S., Cieœliñski, S. & Czermiñski, J., (eds), 1976. Ge ol -ogy of Po land, Vol ume 1. Stra tig ra phy, Part 2. Me so zoic, Wydawnictwa Geologiczne, Warszawa, 859 pp.

Œwidrowska, J., Hakenberg, M., Poluhtoviè, B., Seghedi, A. & Višnâkov, I., 2008. Evo lu tion of the Me so zoic bas ins on the south west ern edge of the East Eu ro pean Craton (Po land, Ukraine, Moldova, Ro ma nia). Studia Geologica Polonica, 130: 3–130.

Walaszczyk, I., 1992. Turonian through Santonian de pos its of the Cen tral Pol ish Up lands; their fa cies de vel op ment, inoceramid pa le on tol ogy and stra tig ra phy. Acta Geologica Polonica, 42: 1–122.

Walaszczyk, I. & Wood, C. J., 1998. Inoceramids and biostrati-graphy at the Turonian/Coniacian bound ary; based on the Salzgitter-Salder Quarry, Lower Sax ony, Ger many, and the S³upia Nadbrze¿na sec tion, Cen tral Po land. Acta Geologica Polonica, 48: 395–434.

Wieczorek, J., Dumont, T., Bouillin, J.-P. & Olszewska, B., 1994. Nep tu nian dykes of Bonarka – a tes ti mony of the Late Cre ta -ceous tec tonic move ments in the Cra cow Up land. (In Pol ish, Eng lish sum mary). Przegl¹d Geologiczny, 42: 988–995. Wieczorek, J., Dumont, T., Bouillin, J.-P. & Olszewska, B.,

1995a. Nep tu nian dykes of Bonarka – a tes ti mony of the Late Cre ta ceous tec tonic move ments in the Cra cow Up land – re

(17)

-ply. (In Pol ish, Eng lish sum mary). Przegl¹d Geologiczny, 43: 690–692.

Wieczorek, J., Dumont, T., Bouillin, J.-P. & Olszewska, B., 1995b. Nep tu nian dykes of Bonarka – a tes ti mony of the Late Cre ta ceous tec tonic move ments in the Cra cow Up land – re -ply. (In Pol ish, Eng lish sum mary). Przegl¹d Geologiczny, 43: 872–875.

Wieczorek, J. & Olszewska, B., 2001. Cre ta ceous nep tu nian dykes of the Cra cow Up land. Geologica Saxonica, 46/47: 139–147. Zapa³owicz-Bilan, B., 1982. Foraminiferal zones from the Up per Cre ta ceous in the Lublin Coal Ba sin. Bul le tin de l’Academie Po lo naise des Sci ences, Série de les Sci ences de la Terre, 29: 261–269.

Zapa³owicz-Bilan B., Pilarz, M. & Machaniec, E., 2009.

Bio-stratygrafia mikropaleontologiczna utworów kredy górnej i miocenu w wierceniu “Bibice” (okolice Krakowa). Geologia (Kwartalnik AGH), 35: 95–103.

Zarêczny, S., 1878. O œrednich warstwach kredowych w krakow-skim okrêgu. Sprawozdania Komisji Fizjograficznej Aka-demii Umiejêtnoœci, 12 [for 1877]: 176–246.

Ziegler, P. A., 1990. Geo log i cal At las of West ern and Cen tral Eu rope. Shell In ter na tional Petro, Maatschappij B.V., Geo log i -cal So ci ety Pub lish ing House, Bath, 239 pp.

Z³onkiewicz, Z., 2006. Evo lu tion of the Miechów De pres sion ba -sin in the Ju ras sic as a re sult of re gional tectonical changes. (In Pol ish, Eng lish sum mary). Przegl¹d Geologiczny, 54: 534–540.

Cytaty

Powiązane dokumenty

Moreover, the equality holds if and only if the subgraph induced by the vertices adjacent to v is connected and it contains the cycle of F.. Moreover, the equality holds if and only

Both groups obtained the highest correctness scores for the TL verbs con- jugated according to the regular inflectional pattern of type 1, but the overall FB learners’ performance

• Type T2 seems to be effective for F9 (distortion), F10 (models requirements), F11 (raw point-sampled data requirements), F17 (pre-process) and F18 (post-process) but not for

For the triangle in Problem 4 compute the length of the altitude through the vertex A.. For the tetrahedron in Problem 7 compute the lenght of the altitude through the

In this table, the mean and 5-percentile values for the cohesion (c ′ ) and tangent of the friction angle (tan f ′ ), for each material zone indi- cated in Figure 2 , are reported,

Dur ing re search dis cussed in the pres ent pa per, three sed i - ment cores of ice-mar ginal lake de pos its were ac quired and an - a lysed (Fig. Dis tri bu tion of OSL ages

The Farsian sec tion in the Ghoznavi–Farsian area, which is lo cated along the Shahrood–Azadshahr road, has been mea sured in this study (Fig. 3) and the base of the sec tion stud

lndien het echter nodig is constructieve maatregelen te treffen om de waterkerende functie van een kering met deze objecten te verzekeren dienen deze constructies