• Nie Znaleziono Wyników

Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples

N/A
N/A
Protected

Academic year: 2021

Share "Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples"

Copied!
9
0
0

Pełen tekst

(1)

Delft University of Technology

Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples

Lageveen-Kammeijer, Guinevere S.M.; de Haan, Noortje; Mohaupt, Pablo; Wagt, Sander; Filius, Mike;

Nouta, Jan; Falck, David; Wuhrer, Manfred

DOI

10.1038/s41467-019-09910-7

Publication date

2019

Document Version

Final published version

Published in

Nature Communications

Citation (APA)

Lageveen-Kammeijer, G. S. M., de Haan, N., Mohaupt, P., Wagt, S., Filius, M., Nouta, J., Falck, D., &

Wuhrer, M. (2019). Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples.

Nature Communications, 10(1), [2137]. https://doi.org/10.1038/s41467-019-09910-7

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Highly sensitive CE-ESI-MS analysis of

N-glycans

from complex biological samples

Guinevere S.M. Lageveen-Kammeijer

1,3

, Noortje de Haan

1,3

, Pablo Mohaupt

1

, Sander Wagt

1

,

Mike Filius

1,2

, Jan Nouta

1

, David Falck

1

& Manfred Wuhrer

1

The in-depth, high-sensitivity characterization of the glycome from complex biological

samples, such as biofluids and tissues, is of utmost importance in basic biological research

and biomarker discovery. Major challenges often arise from the vast structural diversity of

glycans in combination with limited sample amounts. Here, we present a method for the

highly

sensitive

characterization

of

released

N-glycans by combining a capillary

electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) approach with

linkage-speci

fic derivatization of sialic acids and uniform cationic reducing end labelling of all

glycans. This method allows the analysis of glycans at the attomole level, provides

infor-mation on sialic acid isomers and enables the in-depth characterization of complex samples,

even when available in minute amounts.

https://doi.org/10.1038/s41467-019-09910-7

OPEN

1Leiden University Medical Center, Center for Proteomics and Metabolomics, Postbus 9600, 2300 RC Leiden, The Netherlands.2TU Delft, BioNanoScience

Department, van der Maasweg 9, 2629 HZ Delft, The Netherlands.3These authors contributed equally: Guinevere S.M. Lageveen-Kammeijer, Noortje de Haan. Correspondence and requests for materials should be addressed to G.S.M.L.-K. (email:g.s.m.kammeijer@lumc.nl)

123456789

(3)

G

lycosylation is known as one of the most complex

post-translational protein modifications and is involved in

many biological processes, including cellular

differentia-tion and antibody-receptor interacdifferentia-tions

1

. Characterizing the

glycome of a complex biological sample can provide essential

information on proteoform heterogeneity and changes in the

glycan biosynthesis pathway. A major challenge posed for the

glycomic analysis of biological samples is the immense

com-plexity of the glycome. This comcom-plexity is reflected in the vast

number of different structures present, including glycan isomers,

and in the broad dynamic range of glycan abundancies

2

.

Espe-cially in the case of precious clinical samples, methods for the

characterization of minor glycoforms and glycans originating

from low-concentration glycoproteins are scarce.

Techniques currently used for the sensitive and in-depth

char-acterization of released N-glycans involve, amongst others,

capil-lary

gel

electrophoresis

(CGE)

coupled

to

laser-induced

fluorescence (LIF) detection after aminopyrene trisulfonate (ATPS)

labelling of the reducing ends of the glycans

3

and nano liquid

chromatography (LC)-mass spectrometry (MS) using porous

gra-phitized carbon (PGC) as stationary phase

4,5

. While the former

approach shows the ability to perform a sensitive and in-depth

characterization of glycan isomers in a high-throughput manner,

latter approach proves particularly valuable in the case complex

samples with unknown glycans are analysed, allowing their

struc-tural elucidation using negative-mode tandem mass spectrometry.

Here, we achieve high-sensitivity profiling of N-glycans by

combining a capillary electrophoresis (CE) separation method with

positive ion mode electrospray ionization (ESI)-MS

6

. The

sheath-less interface between the CE and the ESI-MS provides low-flow

(<10 nL min

−1

) nano-ESI conditions, resulting in maximum

intensities due to efficient droplet desolvation and ionization of the

analytes

7,8

. To enable effective electrophoretic migration of all

N-glycans, sialylated species are neutralized and all species are

uni-formly charged by the reducing end label Girard’s reagent P (GirP).

Next to neutralization, the sialic acid derivatization strategy allows

to differentiate sialic acid isomers without the use of MS

frag-mentation, which can provide important information on biological

processes, such as cancer development

9

.

Results

Linkage-specific sialic acid neutralization. To neutralize all

glycans and enable the linkage-specific differentiation of sialic

acids, we developed a method which results in the ethyl

ester-ification of α2,6-linked sialic acids (derivatized sialic acid mass:

319.127 Da; Fig.

1

a) and amidation with ammonia of

α2,3-linked

sialic acids (derivatized sialic acid mass: 290.111 Da; Fig.

1

b) in a

facile two-step, one-pot reaction. While, various methods are

known for the sialic acid linkage-specific derivatization of

gly-cans

10–14

, the majority of these methods are based on the

lacto-nization of

α2,3-linked sialic acids

13

. Lactones are, however,

prone to hydrolysis during sample storage or further sample

processing

11,15,16

. These stability issues were recently overcome

for on-tissue derivatization, by a two-step approach in which,

during the second step, the lactones are hydrolysed and stably

amidated

11

. In the current method, a similar approach was

implemented for released glycans in solution, resulting in stable

derivatives. As compared with previous approaches

17,18

, this

method is simpler as it relies on a one-pot reaction and comes

with a single hydrophilic interaction liquid chromatography

(HILIC)-solid phase extraction (SPE) clean-up step to remove

excess reagents. The method shows excellent linkage specificity

and results in 100.0% ± 0.02% (±standard deviation) of amide

formation and 99.1% ± 0.3% of ethyl ester formation for

3′-sia-lyllactose (n

= 4) and 6′-sialyllactose (n = 4), respectively (m/z

775.286 and 804.301; detected as sodium adducts by matrix

assisted laser desorption/ionisation (MALDI)-time of

flight

(TOF)-MS; Supplementary Fig. 1). In addition, even when

per-formed on complex samples, such as N-glycans released from

total human plasma (TPNG), minimal by-products were

observed (Supplementary Fig. 2).

Permanent cationic labelling of the

N-glycan reducing ends. To

enable

electrophoretic

migration

of

the

neutralized

N-glycans

15,16

, we introduced the hydrazide GirP, carrying a

per-manent positive charge, to all species via reducing end labelling

(Fig.

1

c). The one-step, clean-up free protocol allowed the direct

injection of the labelled N-glycans into the CE-ESI-MS. The

applicability of hydrazide labels has been shown before in the

analysis of released N-glycans by LC-ESI-MS and

MALDI-TOF-MS methods, enhancing ionization and separation efficiency

19

.

As compared with previous reports

19,20

, we optimized the

effi-ciency and manageability of the hydrazide labelling by using

ethanol as solvent, limiting the amount of water in the reaction,

increasing the GirP concentration to 50 mM and reducing the

incubation time to 1 h. This resulted in a labelling efficiency of

87% ± 4% (as determined by MALDI-TOF-MS; n

= 3;

Supple-mentary Table 1, SuppleSupple-mentary Fig. 3). Notably, because the

sialic acid derivatization neutralized all N-glycans, the subsequent

GirP labelling resulted in a uniform charge on all species enabling

efficient ionization in positive-ionization mode.

Glycoform characterization, sensitivity and repeatability. To

further improve the sensitivity of the CE-ESI-MS platform, we

implemented a dopant enriched nitrogen (DEN)-gas at the

interface between the CE and the ESI-MS to boost ionization of

GirP-labelled glycans. Recently, we showed a substantial gain in

sensitivity for the analysis of glycopeptides using DEN-gas

8

. In

the current study, the detection of the twenty most abundant

GirP-labelled N-glycans in plasma with DEN-gas was compared

with their detection without DEN-gas. Overall, we observed less

background and an, on average, 3.3-fold enhancement of the

signal-to-noise ratios (S/N), while the relative profiles stayed the

same (Supplementary Figs. 4 and 5), which is in correspondence

with the previous study

8

.

The absolute sensitivity of the overall method was assessed by

analysing the glycan standards H3N4 and H5N4. A starting amount

of 5 fmol of both glycans, in a sample volume of 3 µL, was sufficient

for their detection and reliable relative quantification (H3N4: S/

N

= 49 ± 18; H5N4: S/N = 146 ± 52; Fig.

2

a–c, Supplementary

Table 2; n

= 3). The starting amount of 5 fmol corresponded to

an absolute amount of 20 amol (43 nL corresponding to 1/250 of

the sample) injected into the CE-ESI-MS system.

The performance of the fully optimized method for complex

biological samples was demonstrated on TPNG, which is a

sample with numerous glycoforms present in abundances that

range over several orders of magnitude (Fig.

2

d–f)

12,21

. In total,

167 N-glycan compositions were detected after the injection of

the equivalent of 0.1 nL PNGase F treated plasma—derived from

a starting amount of 0.2 µL PNGase F treated plasma—into the

CE-ESI-MS setup. N-glycans were detected, and compositions

were assigned, based on accurate mass and isotopic pattern. In

addition, 82 glycoforms were confirmed by tandem mass

spectrometry via collision-induced dissociation (CID; Fig.

3

;

Supplementary Fig. 6, Supplementary Data 1). Distinct diagnostic

ions were observed in the MS/MS data of the GirP-labelled

N-glycans (Supplementary Table 3), e.g. signals at m/z 656.251

1+

and m/z 685.260

1+

are B-ions indicating a full antenna loss with

an amidated (α2,3-linked) or an ethyl esterified (α2,6-linked)

sialic acid, respectively. In the case of a fucosylated,

α2,3-linked

(4)

sialylated antenna, a B-ion at m/z 802.309

1+

was observed,

indicating that fucosylation of sialylated antennae in TPNG

occurs in the context of sialyl Lewis-type structures such as sialyl

Lewis X

22,23

. Furthermore, the Y-ion detected at m/z 355.162

1+

corresponds to the GirP label with an N-acetylglucosamine, while

the ion at m/z 501.220

1+

indicates the presence of core

fucosylation [GirP

+ N-acetylglucosamine + fucose]

+

. Bisection

was identified by a Y-ion present at m/z 923.373

1+

, or in

combination with a core fucose at m/z 1069.431

1+

.

As compared with previous studies assessing the TPNG in a

sialic acid linkage-specific manner, we here report a higher

number of unique glycan compositions (Supplementary Data 1

and 2)

5,12,16,24–28

. The lowest abundant glycoform that could be

quantified (S/N > 9) had a relative abundance of 0.007% ± 0.003%

(H8N7F1S

2,3

4 at low attomole detection level; n

= 9;

Supplemen-tary Table 4 and SupplemenSupplemen-tary Fig. 7), highlighting the broad

dynamic range of the platform. Only minimal (<1%) cation

adduct formation was observed, resulting in simple spectra, with

high sensitivity in both MS and tandem MS (Supplementary

Fig. 8). While similar sensitivities and dynamic ranges were

reached before with a targeted method

5

, here we used an

untargeted method, better suitable for discovery research.

Furthermore, we found a very good overall method repeatability

and intermediate precision, based on the relative quantification of

the 118 glycoforms with a S/N > 9 (Fig.

4

and Supplementary

Data 1). The preparation, analysis and relative quantification of

three TPNG samples per day on three consecutive days resulted

in a median RSD of the 20 most abundant N-glycans (accounting

for about 80% of the N-glycans quantified) of 6.8% for the

repeatability (intraday variability day 1), while the interday

variability of day 1–3 showed a median RSD of 9.4%.

Conclusion. We present a highly sensitive CE-ESI-MS(/MS)

platform for the in-depth analysis of N-glycans at the attomole

level. Applying the method on a complex, biological sample, like

the N-glycans released from total human plasma, 167 N-glycan

compositions were identified, including different sialic acid linkage

variants. We believe that the developed platform is of interest for

the in-depth analysis of low abundant glycans in complex

biolo-gical matrices. Furthermore, the glycosylation of proteins too low

abundant, or samples too precious, to be measured with

con-ventional methods becomes accessible with this method.

Methods

Materials and reagents. Ethanol (EtOH; cat. nr. 1.00983.1000), trifluoroacetic acid (TFA; cat. nr. 1.08178.0050), disodium hydrogen phosphate dihydrate (Na2HPO4·2H2O; cat. nr. 1197530250), potassium dihydrogen phosphate (KH2PO4; cat. nr. 1048730250), sodium chloride (NaCl; cat. nr. 106404) and glacial acetic acid (HAc; cat. nr. 1000631000) were purchased from Merck (Darmstadt, Germany). Recombinant peptide-N-glycosidase F (PNGase F; cat. nr.

11365177001) was acquired from Roche Diagnostics (Mannheim, Germany). Ammonium acetate (AmAc; cat. nr. A2706), 2-aminobenzamide (2-AB; cat. nr. A89804), 2-picoline borane (2-PB; cat. nr. 654213), 1-hydroxybenzotriazole (HOBt; cat. nr. 54802) hydrate, dimethyl sulfoxide (DMSO; cat. nr. D8418), 40% dime-thylamine in water (cat. nr. 426458), super-DHB (cat. nr. 50862), Nonidet P-40 substitute (NP-40; cat. nr. M158), 50% sodium hydroxide (NaOH; cat. nr. 71686), sodium dodecyl sulfate (SDS; cat. nr. L3771), and 28% ammonium hydroxide (NH4OH; cat. nr. 221228) were purchased from Sigma Aldrich (Steinheim, Ger-many). 1-Ethyl-3-(3-(dimethylamino)propyl) carbodiimide (EDC; cat. nr. 24810) hydrochloride was obtained from Fluorochem (Hadfield, UK). The ultrapure deionized water (MQ) used in this study was generated from a Q-Gard 2 system (Millipore, Amsterdam, Netherlands), maintained at≥18 MΩ. LC-MS Ultra water (H2O; cat. nr. 00232141B1BS) was purchased from Honeywell (Morris Plains, NJ) and HPLC SupraGradient acetonitrile (MeCN; cat. nr. 1203502) was purchased from Biosolve (Valkenswaard, Netherlands). 1-(Hydrazinocarbonylmethyl)pyr-idinium chloride (Girard′s Reagent P; GirP; cat. nr. G0030) was purchased from TCI Development Co. Ltd. (Tokyo, Japan). A standard plasma pool from healthy donors was obtained from Affinity Biologicals (Visucon-F; Ancaster, ON, Canada; cat. nr. FRNCP0125; lot nr. 000752FCP). Two oligosaccharide standards, 3′-sia-lyllactose sodium salt and 6′-sia3′-sia-lyllactose sodium salt, were obtained from Car-bosynth (Compton, UK; cat. nr.; OS04397 and OS04398; lot nr. OS043971301 and OS043981301, respectively) and two glycan standards (H3N4 and H4N5; cat. nr. CN-NGA2-20u and CN-NA2-20u; lot nr. B75I04 and B65Q02, respectively) were kindly provided by Ludger Ltd. (Abingdon, UK). A 10× phosphate-buffered saline solution (10× PBS, pH 7.2) was prepared in-house, containing 57 g L−1Na2 H-PO4∙2H2O, 5 g L−1KH2PO4and 85 g L−1NaCl. O HO HO OH HN O O OH HO O OH HO OH O O OH O OH OH O HO HO OH HN O O OH HO O HO HO OH HN O O O HO O OH HO OH O O OH O OH OH O HO HO OH HN O O NH2 HO O HO HO OH HN O O O HO O OH HO OH O R R R R O HO OH O HO HO OH HN O HO R OO O EDC, HOBT, Ethanol 1 h, 37 °C NH4OH 2 h, 37 °C R NH4OH 2 h, 37 °C O OH HO NH O OH R OH OH HO NH O N R N H N O OH OH HO NH O O

R Girard's reagent P, ethanol, acetic acid

1 h, 60 °C

a

b

c

+ 28.031 Da – 0.984 Da α 2,6-linked sialic acid

α 2,3-linked sialic acid

Reducing end GlcNAc

EDC, HOBT, Ethanol

1 h, 37 °C

Fig. 1 Reaction scheme for the linkage-specific derivatization of sialic acids and subsequent GirP labelling. a The α2,6-linked sialic acid forms an ethyl ester during thefirst step of the reaction and remains stable throughout. b The α2,3-linked sialic acid initially loses water forming a lactone. After the addition of ammonia, the lactone ring is opened and a stable amide is formed.c The reducing ends of allN-glycans are labelled with Girard’s reagent P

(5)

N-Glycan release. N-glycans were released from all plasma proteins (TPNG) by mixing 100 µL of plasma with 200 µL of 2% SDS followed by a 10 min incubation at 60 °C. Subsequently, a 200 µL mixture of 2.5× PBS, 2% NP-40 and 10 U PNGase F was added and the sample was incubated at 37 °C for 17 h.

Sialic acid neutralization and purification of N-glycans. Sialic acid linkage-specific derivatization by ethyl esterification was performed as described pre-viously12. Briefly, 1 µL of released plasma N-glycans (containing the released gly-cans from 0.2 µL of plasma) was added to 20 µL ethyl esterification reagent (250 mM EDC and 250 mM HOBt in EtOH) and incubated for 1 h at 37 °C. Subsequently, 20 µL MeCN was added and N-glycans were purified by cotton HILIC SPE as described before12,29. Samples were eluted in 10 µL MQ. In addition, an amidation step was introduced in the protocol, for the robust stabi-lization of theα2,3-linked sialic acids, by adding 4, 6 or 8 µL of 28% NH4OH to the reaction mixture after 1 h incubation. The addition of the ammonia was followed by an incubation step of 2 h at 37 °C. After incubation, 24, 26 or 28 µL MeCN was added to the mixture and the N-glycans were purified by cotton HILIC SPE, with an elution in 10 µL MQ. The optimized ethyl esterification protocol with amidation step (EEA) used 4 µL of 28% NH4OH solution. Furthermore, another option for the linkage-specific derivatization of the sialic acids was investigated, in which the sialic acids were differentially modified by double amidation (DA), as described

previously11. Briefly, 1 µL of released plasma N-glycans was added to 20 µL dimethylamidation reagent (250 mM dimethylamine, 250 mM EDC and 500 mM HOBt and in DMSO) and incubated for 1 h at 60 °C. An additional incubation followed of 2 h at 60 °C after the addition of 8 µL 28% NH4OH. Eighty microlitres of MeCN was added to the samples and the derivatized N-glycans were purified by cotton HILIC SPE, with elution in 10 µL MQ.

Sialic acid neutralization and purification of sialyllactose. The linkage specifi-city of the amidation step following the ethyl esterification protocol was validated on 3′-sialyllactose and 6′-sialyllactose standards. Prior to sialic acid derivatization, the standards were labelled with 2-AB. In total, 30 µL 50 mg mL−1sialyllactose was incubated with 30 µL 24 mg mL−12-AB and 53.5 mg mL−12-PB in 7.5%/92.5% HAc/DMSO for 2 h at 60 °C. MeCN was added to the samples in afinal con-centration of 90% and the samples were purified by cotton HILIC SPE as described previously12,29, with the exception that 90% MeCN washing solutions were used instead of 85% MeCN washing solutions. Samples were eluted in 10 µL water, of which 1 µL was subjected to either ethyl esterification or EEA as described above. After incubation, 20, 24, 26 or 28 µL MeCN was added to the mixtures and the sialyllactoses were purified by cotton HILIC SPE, using 90% MeCN washing solutions and an elution in 10 µL MQ.

Intens. ×104 Intens. ×104 Intens. ×104 Intens. ×107 Intens. ×106 Intens. ×105 1.5 1.25 1.00 0.75 0.50 0.25 0.00 0.00 0.00 0.30 0.20 0.10 0.20 0.40 0.60 0.2 0.1 0.0 0.0 0.4 0.2 1.0 GirP GirP GirP GirP GirP GirP GirP

*

GirP GirP GirP GirP

GirP GirP GirP

GirP GirP 2× 2× 2× GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP

GirP GirP GirP GirP GirP

GirP GirP GirP

0.5

35 36

725 726

887 888 889

Mannose Galactose N -Acetylglucosamine Fucose 2,3 N -Acetylglucosamine 2,6 N -Acetylglucosamine acid

727 37 38 725.782 2+ 726.285 2+ 727.291 2+ 726.793 2+ 888.338 2+ 887.838 2+ 888.839 2+ 889.337 2+ 889.836 2+ 34 35 36 37 38 39 34 35 36 # 37 38 39 34 35 36 37 38 39 Time (min) m/z m/z Time (min) Time (min) Time (min)

a

b

c

d

e

f

Fig. 2 Extracted ion electropherograms of derivatized and labelledN-glycans. a Extracted ion electropherograms of two N-glycan standards (H3N4 and H5N4) after injection of afinal amount of 20 amol. b, c Illustration of the obtained isotopic pattern and mass accuracy (blue trace) for the doubly charged species H3N4 and H5N4 compared with the theoretical isotopic pattern (orange trace).d Extracted ion electropherograms of the 10 most abundant N-glycans (>2% relative abundance) present in TPNG, e 10 medium abundant N-glycans (between 0.5–1.0% relative abundance) and f 10 low abundant N-glycans (<0.25% relative abundance). Separation was achieved using a bare-fused silica capillary after a dynamic neutral coating. *Indicates in-source decay of the H6N2. # Shows the presence of doubly charged species of H5N5F1 of which them/z values overlap with the ones of the triply charged species of H6N5F1S2,32S2,61. Blue square:N-acetylglucosamine, green circle: mannose, yellow circle: galactose, red triangle: fucose, right pointing pink diamond: α2,6-linked N-acetylneuraminic acid, left pointing pink diamond: α2,3-linked N-acetylneuraminic acid, GirP: Girard’s reagent P label

(6)

Permanent cationic labelling of theN-glycan reducing end. After sialic acid derivatization, either by EEA or DA, released N-glycans from plasma were labelled at the reducing end by GirP. Initial reaction conditions were as follows, 5 µL of sialic acid-derivatized, HILIC-purified N-glycans were mixed with 95 µL GirP reagent (15 mM GirP in 85% EtOH, 10% HAc and 5% MQ) and incubated for 2 h at 60 °C. After incubation, 105 µL MeCN was added and cotton HILIC SPE was performed as described above, using 85% MeCN washing solutions and 10 µL elution volume. Optimization of the protocol (Supplementary Table 1) included decreasing the percentage of MQ in the reagent (0, 5, 15 or 25%), while keeping the other factors constant. Using 0% MQ in the reagent, the concentration of GirP was increased (15, 22, 33 or 50 mM). With 0% MQ and 50 mM GirP in the reagent, the sample volume was evaluated (5 µL or dried) and on the dried sample, the reagent volume was decreased (95, 50, 20, 10, 5 or 2 µL). Finally, the incubation time was evaluated (1 or 2 h). The optimized reaction conditions included a drying step of the N-glycan sample prior to adding 2 µL of GirP reagent (50 mM GirP in 90% EtOH and 10% HAc) and 1 h incubation at 60 °C. After incubation, the samples were dried by vacuum concentration at 60 °C and dissolved in 10 µL MQ for CE-ESI-MS analysis or 33.3 µL 85% MeCN for HILIC purification and MALDI-TOF-MS analysis.

CE-ESI-MS(/MS) Analysis. All experiments were performed on a 91 cm long bare-fused silica capillary (30μm internal diameter and 150 μm outer diameter) using a CESI 8000 system (Sciex, Framingham, MA). Prior to usage, the capillary was conditioned by immersing the spray tip in MeOH while the separation and conductive lines were rinsed with MeOH at 100 psi for 10 min and 3 min, respectively. Subsequently, the tip was immersed in H2O and the separation line was rinsed at 100 psi for 10 min consecutively with H2O, 0.1 M NaOH, 0.1 M HCl, H2O and the background electrolyte (BGE; 10% HAc), followed by afinal rinsing step of the conductive line for 3 min with the BGE at 100 psi. After the con-ditioning steps, the capillary was coated with Ultratrol dynamic pre-coat LN (UT; Target Discovery, Palo Alto, CA) as described by Kohler et al.30with some small adjustments. Briefly, using 29 psi throughout, the separation line was coated by rinsing consecutively for 10 min with MeOH, H2O, 0.1 M HCl and H2O, 15 min rinsing with 1 M NaOH followed by 15 min rinsing with H2O,finally a 30 min rinsing was performed with UT. After the coating procedure, the capillary was rinsed for 30 min with the BGE at 29 psi. Prior to each analysis the capillary was rinsed with 1 M NaOH (3 min), H2O (4 min), UT (4 min) and BGE (3 min) all at 29 psi. To ensure the removal of the UT from the outlet of the capillary, an

200 0 1 2 GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP

GirP GirP GirP 3 302.092 1+ 366.113 1+ 528.179 1+ 685.260 1+ 320.107 1+ 355.164 1+ 501.204 1+ 355.195 1+ 558.251 1+ 355.197 1+ 558.249 1+ 720.295 1+ 882.347 1+ 1085.425 1+ 1247.480 1+ 1409.535 1+ 1566.609 1+ 1728.662 1+ 1931.736 1+ 720.299 1+ 923.374 1+ 1085.423 1+ 1247.485 1+ 1450.563 1+ 1612.563 1+ 1815.693 1+ 1977.748 1+ 704.295 1+ 866.352 1+ 1069.432 1+ 1231.482 1+ 1393.534 1+ 1596.612 1+ 1758.668 1+ 4 -[H2O] 302.176 1+ 320.181 1+ 291.178 1+ 302.175 1+ 320.182 1+ 366.167 1+ 512.209 1+ 528.202 1+ 656.253 1+ 831.325 1+ 847.320 1+ 802.309 1+ 685.267 1+ 366.167 1+ 528.202 1+ 685.267 1+ Intens. ×10 4 0 2 4 6 Intens. ×10 4 0 2 4 Intens. ×10 5 400 600 800 1000 1200 1400 1600 1800 m/z 200 400 600 800 1000 1200 1400 1600 1800 m/z 200 400 600 800 1000 1200 1400 1600 1800 m/z -[H2O] -[H2O]

a

b

c

Fig. 3 CE-ESI-MS/MS fragmentation spectra of derivatized and labelledN-glycans from TPNG. The following precursor ions were fragmented: a 760.9603+(H4N5F1S2,61),b 1148.9392+(H5N5S2,61) andc 1072.0763+(H6N5F1S2,31S2,62). The Y-ion fragmentation pattern is annotated in blue and the B-ion fragmentation pattern is annotated in orange. Blue diamond: precursor ion, blue square:N-acetylglucosamine, green circle: mannose, yellow circle: galactose, red triangle: fucose, right pointing pink diamond:α2,6-linked acetylneuraminic acid, left pointing pink diamond: α2,3-linked N-acetylneuraminic acid, GirP: Girard’s reagent P label. *The presence of an antennary fucose in combination with an α2,6-linked sialic acid is likely, for a large part, due to fucose migration during MS analysis36

(7)

additional 6 min rinse with BGE was performed at 100 psi. The conductive line was rinsed with BGE for 3 min at 29 psi. Before analysis, all samples were diluted with leading electrolyte (AmAC at pH 4.0, in afinal concentration of 100 mM). Injec-tion of the samples was performed hydro-dynamically, by applying 5 psi for 60 s, corresponding to 6.8% of the total capillary volume (43 nL), unless stated other-wise. After each sample injection, a BGE post plug was injected by applying 0.5 psi for 25 s (0.3% of the capillary volume). For each analysis a constantflow was established, by applying 0.5 psi and 20 kV over the capillary with a constant temperature of 20 °C.

The CESI 8000 system was coupled to an Impact HD UHR-QqTOF-MS (Bruker Daltonics) via a sheathless CE-ESI-MS interface (Sciex) which allowed optimal alignment between the capillary spray tip and the front of the nanospray shield (Bruker Daltonics). All experiments were performed in positive-ionization mode and a stable electrospray was obtained by generating an electricalfield between the CE (ground potential) and a negatively charged spray shield (between −1100 and −1300 V; for a schematic overview see Supplementary Fig. 9). For all analysis, the temperature andflow rate of the drying gas was set at 100 °C and 1.2 L min−1, respectively. To minimize the in-source decay, the collision cell energy as well as the quadrupole ion energy were set at 3.0 eV and the pre-pulse storage was set at 15.0 µs. For the analysis with a dopant enriched nitrogen (DEN) gas, MeCN was used as dopant (ca. 4%, mole percent) at 0.2 bar. In addition, an in-house made polymer cone was attached onto the porous tip housing to enable the usage of the DEN-gas31. Fragmentation was performed at 1.00 Hz on the three most abundant precursor ions in a range of m/z 150–2000 with a minimum intensity of 4548. Depending on the m/z values, the precursor ions were isolated with a width of 8–10 Th. The collision energies were set as a linear curve in a m/z dependent manner, ranging from 55 eV at m/z 700 to 124 eV at m/z 1800 for all charge states (1–5), applying a basic stepping mode with collision energies of 100% (80% of the time) or 50% (20% of the time).

Sensitivity assessment for the CE-ESI-MS method. Two N-glycan standards (H3N4 and H5N4) were dissolved in water and mixed in afinal concentration of 3333 fmol µL−1for each glycoform. The mixture was diluted 10, 20, 100, 200, 1000, 2000 and 10,000 times and three replicates of 3 µL of each of the dilutions (10,000, 1000, 500, 100, 50, 10, 5 and 1 fmol of each glycan) were subjected to EEA and HILIC purification, and were eluted in 10 µL MQ. The replicates were dried and labelled with GirP following the optimized protocol as described above, and ana-lysed by CE-ESI-MS.

CE-ESI-MS(/MS) data processing. Raw CE-ESI-MS data were calibrated prior to data analysis using a minimum offive signals of the identified N-glycan composi-tions (Supplementary Data 1) with Data Analysis 4.2 (Build 395, Bruker Daltonics). The data were manually screened for N-glycan compositions based on their exact

mass, migration order and previous described structures in literature, which resulted in 167 N-glycan compositions, including differently linked sialic acids (Supple-mentary Data 1)5,12,16,24–28. Fragmentation spectra were acquired for 49% of the identified N-glycan variants of TPNG (Supplementary Fig. 6). After converting the rawfiles into .mzXml files, targeted data analysis was performed using an adapted version of LaCyTools v1.0.1 build 832. Prior to automated peak integration, all electropherograms were aligned based on 11 glycan peaks that were confirmed by tandem MS and that covered the complete migration range (34.5–39.1 min). An alignment time window of 50 s and an m/z window of 0.02 Th were used (Sup-plementary Figs. 10 and 11). Subsequently, for each glycan composition, the area was integrated of isotopic peaks covering at least 95% of the theoretical isotopic pattern and the background was subtracted based on the local background calcu-lations. N-glycan compositions were included for further data analysis, when, in at least two repeated experiments per condition, their mass accuracy was between ±10 ppm for the inter- and intraday experiments or ±20 ppm for all other analysis, their isotopic pattern did not deviate more than 20% from the theoretical isotopic pattern and their S/N was above 9. This resulted in 118 quantified N-glycan compositions in the TPNG analysis (Supplementary Data 1). The absolute abundance of the lowest abundant quantified glycoforms was estimated based on the 24 most abundant plasma glycoprotein concentrations and their glycosylation sites as reported by Clerc et al.33. We assumed a concentration of 0.64 mM released glycans in plasma, and a starting amount of 0.2 µL plasma. In addition, the sensitivity assessment based on the two N-glycan standards was evaluated in the condition where both H3N4 and H5N4 still passed the above stated quality criteria.

MALDI-TOF-MS analysis. After sialic acid stabilization and cotton HILIC SPE purification, the released N-glycans and the sialyllactose standards were prepared for MALDI-TOF-MS analysis by applying 1 µL of the HILIC eluate on an AnchorChip 800/384 TF MALDI target (Bruker Daltonics, Bremen, Germany), together with 1μL 5 mg mL−1super-DHB in 50% MeCN with 1 mM NaOH. The samples were left to dry by air. To assess GirP labelling efficiency, 4 µL of HILIC eluates of the GirP-labelled N-glycans, were applied on the MALDI target together with 1μL of the super-DHB matrix. The samples were left to dry by air and re-crystallized with 0.2 µL EtOH.

MALDI-TOF-MS analysis was performed on a Bruker Daltonics

UltraFlextreme, equipped with a Smartbeam-II laser and controlled by Flexcontrol 3.4 software. The instrument was calibrated with the peptide calibration standard (Bruker Daltonics) prior to analysis of the samples. MS measurements were performed in reflectron positive ion mode, using an acceleration voltage of 25 kV after 140 ns delayed extraction. Spectra were recorded between m/z 1000 and m/z 5000 (for the N-glycans) or m/z 100 and m/z 1500 (for the sialyllactose standards). One-hundred shots per raster spot were collected in a random walk, to a total of 10,000 laser shots at a laser frequency of 1000 Hz. The laser power was adjusted to

40% Intraday 1 (n = 3) Intraday 2 (n = 3) Intraday 3 (n = 3) Interday (n = 9) 30% 20% Relativ e area 10% 0%

Mannose Galactose N-Acetylglucosamine Fucose α2,3 N-Acetylneuraminic acid α2,6 N-Acetylneuraminic acid

GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP GirP

Fig. 4 Inter- and intraday repeatability of the TPNG analysis by CE-ESI-MS. The releasedN-glycans were analysed after sialic acid derivatization and reducing end labelling with GirP. The relative abundances of the 20 most abundant glycoforms are displayed (for a complete overview, see Supplementary Fig. 7), showing a median RSD of 6.8% within technical replicates form the same day and a median RSD of 9.4% over 3 days. To enable automated peak integration, the electropherograms were aligned prior to data extraction32. The relative glycan profiles and their variation were similar before and after

alignment (Supplementary Figs. 10 and 11). Blue square:N-acetylglucosamine, green circle: mannose, yellow circle: galactose, red triangle: fucose, right pointing pink diamond:α2,6-linked N-acetylneuraminic acid, left pointing pink diamond: α2,3-linked N-acetylneuraminic acid, GirP: Girard’s reagent P label. Error bars represent the standard deviation (intradayn = 3, interday n = 9, independent technical experiments). Source data are provided as a Source Datafile

(8)

the maximum at which isotopic resolution was maintained and the isotopic pattern of the highest signal was not disturbed.

MALDI-TOF-MS data processing. Raw MALDI-TOF-MS data were converted to . xyfiles by flexAnalysis Batch Process (Bruker Daltonics). Targeted data analysis was performed using MassyTools v0.1.8.134. Plasma N-glycan data were internally recalibrated based on a minimum of six high abundant signals and data integration was performed using a manually determined list of N-glycan compositions based on the CE-ESI-MS data as described above, Supporting Information and literature12. For the sialyllactose standards, the glycan composition H2S1 with a lactonized, amidated or ethyl-esterified sialic acid was integrated. For each composition, the area was integrated of isotopic peaks covering at least 95% of the theoretical isotopic pattern and the background was subtracted based on the local background calcu-lations. N-glycan compositions were included for further data analysis, when, in at least two repeated experiments per condition, their mass accuracy was between ± 20 ppm, their isotopic pattern did not deviate more than 20% from the theoretical isotopic pattern and their signal-to-noise ratio (S/N) was above 9. GirP labelling efficiency was determined based on the seven glycoforms that were reliable quan-tified (using the same quality criteria for analytes as stated above) in both their labelled (detected as [M]+) and their non-labelled form (detected as [M+ Na]+; Supplementary Fig. 3). Part of the GirP-labelled glycoforms lost the pyridinium group (the cationic moiety) of their label during MALDI and were detected as [M+ Na]+. However, as this was a MALDI-specific effect, not observed in the CE-MS experiments, the glycoforms with fragmented label were considered part of the labelled fraction. The labelling efficiency was calculated by dividing the labelled fraction (full label+ fragmented label) over the sum of the unlabelled and the labelled signals per analyte. Subsequently, per analyte, the average of the labelling efficiency was calculated over the replicates. Finally, average and standard deviation were calculated over the average labelling efficiencies of the seven selected analytes. Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The raw mass spectrometric datafiles that support the findings of this study are available

in MassIVE in .mzXML and .xy format, with the identifier MSV000083478 [https://doi.

org/10.25345/C5061Z]35. The source data underlying Fig. 4, Supplementary Figs. 1, 2, 5,

7 and 10, and Supplementary Tables 1 and 4 are provided as a Source Datafile. A

reporting summary for this Article is available as a Supplementary Informationfile. All

other data supporting thefindings of this study are available from the corresponding

author on reasonable request.

Received: 17 January 2019 Accepted: 5 April 2019

References

1. Ohtsubo, K. & Marth, J. D. Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006).

2. Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014).

3. Callewaert, N. et al. Ultrasensitive profiling and sequencing of N-linked oligosaccharides using standard DNA-sequencing equipment. Glycobiology 11, 275–281 (2001).

4. Hinneburg, H. et al. N- and O-glycomics from minor amounts of formalin-fixed, paraffin-embedded tissue samples. Methods Mol. Biol. 1503, 131–145 (2017). 5. Wang, J. R. et al. A method to identify trace sulfated IgG N-glycans as

biomarkers for rheumatoid arthritis. Nat. Commun. 8, 631 (2017). 6. Pabst, M. et al. Comparison offluorescent labels for oligosaccharides and

introduction of a new postlabeling purification method. Anal. Biochem. 384, 263–273 (2009).

7. Busnel, J. M. et al. High capacity capillary electrophoresis-electrospray ionization mass spectrometry: coupling a porous sheathless interface with transient-isotachophoresis. Anal. Chem. 82, 9476–9483 (2010).

8. Kammeijer, G. S. M. et al. Dopant enriched nitrogen gas combined with sheathless capillary electrophoresis-electrospray ionization-mass spectrometry for improved sensitivity and repeatability in glycopeptide analysis. Anal. Chem. 88, 5849–5856 (2016).

9. Schultz, M. J. et al. Regulation of the metastatic cell phenotype by sialylated glycans. Cancer Metastas-. Rev. 31, 501–518 (2012).

10. de Haan, N. et al. Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal. Chem. 87, 8284–8291 (2015). 11. Holst, S. et al. Linkage-specific in situ sialic acid derivatization for N-glycan

mass spectrometry imaging of formalin-fixed paraffin-embedded tissues. Anal. Chem. 88, 5904–5913 (2016).

12. Reiding, K. R. et al. High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal. Chem. 86, 5784–5793 (2014).

13. Wheeler, S. F. et al. Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation ofα(2 → 3)- and α(2 → 6)-isomers. Rapid Commun. Mass Spectrom. 23, 303–312 (2009).

14. Hanamatsu, H. et al. Sialic acid linkage specific derivatization of glycosphingolipid glycans by ring-opening aminolysis of lactones. Anal. Chem. 90, 13193–13199 (2018).

15. Khatri, K. et al. Microfluidic capillary electrophoresis-mass spectrometry for analysis of monosaccharides, oligosaccharides, and glycopeptides. Anal. Chem. 89, 6645–6655 (2017).

16. Snyder, C. M. et al. Capillary electrophoresis-mass spectrometry for direct structural identification of serum N-glycans. J. Chromatogr. A. 1523, 127–139 (2017).

17. Nishikaze, T. et al. Differentiation of sialyl linkage isomers by one-pot sialic acid derivatization for mass spectrometry-based glycan profiling. Anal. Chem. 89, 2353–2360 (2017).

18. Li, H. H. et al. MALDI-MS analysis of sialylated N-glycan linkage isomers using solid-phase two step derivatization method. Anal. Chim. Acta 924, 77–85 (2016).

19. Lattova, E. & Perreault, H. The usefulness of hydrazine derivatives for mass spectrometric analysis of carbohydrates. Mass. Spectrom. Rev. 32, 366–385 (2013). 20. Naven, T. J. P. & Harvey, D. J. Cationic derivatization of oligosaccharides with

Girard’s T reagent for improved performance in matrix‐assisted laser desorption/ionization and electrospray mass spectrometry. Rapid Commun. Mass Spectrom. 10, 829–834 (1996).

21. Royle, L. et al. HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal. Biochem. 376, 1–12 (2008). 22. Johnson, P. H. et al. Purification, properties and possible gene assignment of

an alpha 1,3-fucosyltransferase expressed in human liver. Glycoconj. J. 12, 879–893 (1995).

23. Johnson, P. H. et al. Reassessment of the acceptor specificity and general properties of the Lewis blood-group gene associated

alpha-3/4-fucosyltransferase purified from human milk. Glycoconj. J. 9, 251–264 (1992). 24. Bladergroen, M. R. et al. Automation of high-throughput mass spectrometry-based plasma N-glycome analysis with linkage-specific sialic acid esterification. J. Proteome Res. 14, 4080–4086 (2015).

25. Knezevic, A. et al. Variability, heritability and environmental determinants of human plasma N-glycome. J. Proteome Res. 8, 694–701 (2009).

26. Reiding, K. R. et al. Serum protein N-glycosylation changes with rheumatoid arthritis disease activity during and after pregnancy. Front. Med. 4, 241 (2017). 27. Saldova, R. et al. Association of N-glycosylation with breast carcinoma and

systemic features using high-resolution quantitative UPLC. J. Proteome Res. 13, 2314–2327 (2014).

28. Stumpo, K. A. & Reinhold, V. N. The N-glycome of human plasma. J. Proteome Res. 9, 4823–4830 (2010).

29. Selman, M. H. et al. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal. Chem. 83, 2492–2499 (2011).

30. Kohler, I. et al. New insights in carbohydrate-deficient transferrin analysis with capillary electrophoresis-mass spectrometry. Forensic Sci. Int. 243, 14–22 (2014).

31. Kammeijer, G. S. M. et al. Dopant enriched nitrogen gas combined with sheathless capillary electrophoresis–electrospray ionization-mass spectrometry for improved sensitivity and repeatability in glycopeptide analysis. Anal. Chem. 88, 5849–5856 (2016).

32. Jansen, B. C. et al. LaCyTools: a targeted liquid chromatography-mass spectrometry data processing package for relative quantitation of glycopeptides. J. Proteome Res. 15, 2198–2210 (2016).

33. Clerc, F. et al. Human plasma protein N-glycosylation. Glycoconj. J. 33, 309–343 (2016).

34. Jansen, B. C. et al. MassyTools: a high-throughput targeted data processing tool for relative quantitation and quality control developed for glycomic and glycoproteomic MALDI-MS. J. Proteome Res. 14, 5088–5098 (2015). 35. Lageveen-Kammeijer, G. S. M. et al. Highly sensitive CE-ESI-MS analysis of

N-glycans from complex biological samples—Data Sets. MassIVE.https://doi. org/10.25345/C5061Z(2019).

36. Wuhrer, M. et al. Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun. Mass Spectrom. 20, 1747–1754 (2006).

Acknowledgements

We thank Gerda C.M. Vreeker for her valuable input on the annotation of the N-glycan structures. We thank Ludger Ltd. for providing the glycan standards. This research was

supported by the European Union’s Seventh Framework Programme HighGlycan (grant

(9)

Author contributions

G.L., N.H., P.M., S.W., M.F. and J.N. performed the experiments. G.L., N.H. and M.W. conceptually designed the work and wrote the manuscript. D.F. assisted in the experi-mental design. All authors read and commented on the manuscript.

Additional information

Supplementary Informationaccompanies this paper at

https://doi.org/10.1038/s41467-019-09910-7.

Competing interests:The authors declare no competing interests.

Reprints and permissioninformation is available online athttp://npg.nature.com/

reprintsandpermissions/

Journal peer review information:Nature Communications thanks the anonymous

reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visithttp://creativecommons.org/

licenses/by/4.0/. © The Author(s) 2019

Cytaty

Powiązane dokumenty

Na marginesie warto do- dać, iż w latach 1919—1933 w Politech- nice Lwowskiej istniał również Wydział Ogólny dla kształcenia nauczycieli szkół średnich (głównie

В своем известном исследовании мастерство Гоголя (1934) Андрей Белый, пытаясь обосновать творчество своего великого

New challenges in toxicology of new psychoactive substances exemplified by fatal cases after UR-144 and UR-144 with pentedrone administration determined by LC-ESI-MS-MS in

The presence of cocaine and its metabolite in the cut nail fragments analyzed in the study shows that the man concerned could have used cocaine for at least 3–6 months prior to

Panel e represents the effect of α2-3-6 sialidase (ABS) treatment on isolated peaks 13 and 14.. The overexpression of GnT-III in these melanoma cells resulted in the appearance of

100anddialyzed3timesovernightagainstwater.Forproteinpre -cipitation,onepartofsecretedproteinssuspensionormem-

tial time o f sample inj ection (12 s) was sei ected as the time at which the sample volume was lower than 2% o f the capillary capacity (a sample whose volume

A method for screening seven phenothiazines was developed, and the separation conditions were studied by changing three factors: quantitative composition of background