• Nie Znaleziono Wyników

Badania symulacyjne hybrydowego układu napędowego pojazdu miejskiego Simulation studies of hybrid powertrain for urban vehicles

N/A
N/A
Protected

Academic year: 2021

Share "Badania symulacyjne hybrydowego układu napędowego pojazdu miejskiego Simulation studies of hybrid powertrain for urban vehicles"

Copied!
10
0
0

Pełen tekst

(1)PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 112. Transport. 2016. Andrzej Lechowicz, Andrzej Augustynowicz  

(2)  !ˆ -

(3) 

(4)  !/  Š 

(5)  G

(6) 

(7) . BADANIA SYMULACYJNE HYBRYDOWEGO _39ADU 4 ŠOWEGO POJAZDU MIEJSKIEGO G' 

(8)  : marzec 2016. Streszczenie: Badania przeprowadzone w   - ,     

(9)      najkorzystniejszej konfiguracji maszyny elektrycznej z silnikiem spalinowym w    "   '     !   

(10)    

(11)       ' F  $      

(12)    ! ?  

(13)  

(14)   sterowanej prze      ?   F ?   '   $ Natomiast zakres pola s  ' ? ?     oraz '

(15)       

(16)   $  # ‰ '  , 

(17)          , zintegrowane sterowanie. 1. WPROWADZENIE D??   F  

(18)   '   ?  ‰ dzenia literatury naukowej   ej     sposobem sterowaniem tego typu ‰ dów. S  F '  mocno ?konstrukcji i zastosowanego systemu sterowania. 0  

(19) 

(20)             . '  '    

(21)   ! ? 

(22) ‰    ?          

(23)             $ )        

(24)      ‰      ! ?   F   

(25)       ?   lnika   $Š? ' '

(26) ! 

(27)    ? 

(28) 

(29) ‰   

(30) '

(31)  $| zy 

(32)   F '    ‰   

(33)     

(34) '

(35) !

(36)  ?‰.   '       

(37)   '          $ Silnik spalinowy, gdy pracuje w ograniczonym obszarze o

(38) ? #   & i '

(39)   !   ?  F!    ?

(40)    ‰  !     

(41) 

(42)       ?  F‹”! 4, 10]. Najlepiej   

(43) !     '   ' ‰ rowaniu silnika spalinowego oraz maszyny elektrycznej w tzw. trybach pracy [1, 2, 8, 10,.

(44) 228. Andrzej Lechowicz, Andrzej Augustynowicz. ŒŒ’$

(45)     zachowuj '  ! podczas jednostajnej    $    ?      

(46)  

(47)     

(48) znej,   

(49)  substancji szkodliwych w spalinach. @ 

(50)         

(51)   ?   ' 

(52)   ‰  

(53)   $- 

(54)       ? 

(55) '‰

(56)  

(57) 

(58) 

(59)   

(60) ?    ' 

(61) 

(62)  ?          

(63)   

(64)  '‰

(65) 

(66)   $ Š      '     ?  i wymaga        celu uzyskania maksymalnego wykorzystania potencjalnych ? 

(67)   '$. 2. /&6]1$ 1*6) 4 _39 *$ 4 Š6)]$ | ?

(68)         F  '   

(69) ego dwie    '  ?  

(70) 

(71) 

(72)  

(73)      $ C        ?    

(74) znego, który korzysta zarówno z energii wytworzonej w wyniku spalania paliwa jak i pobranej z baterii akumulatorów. Zmiana mocy silnika spalinowego uzyskiwana jest         

(75)  ‰   ?  $ˆ '

(76)      '     '   '

(77)  

(78) $ˆ 

(79)   !?  ‰ bem   

(80)   '   

(81)  

(82) $)  nie ingeruje w             algorytmy sterowania. Silnik elektryczny w ?    

(83)   '

(84)   

(85) '‰ c

(86)  $H 

(87)       "  ? '  

(88)  $ - !? 

(89) 

(90)    

(91)  '     

(92) akumulatorów to wymagane odpowiednie ?       ich   F$ %   '

(93)  a 

(94)      ! '    

(95)  

(96)      ? 

(97)     

(98)       '  $ ˆ  celu zaprojektowano zintegrowany system sterowania ?

(99)      

(100)  '  '  

(101)  

(102)  '    ?‰ nych trybach pracy. ,  '            

(103) . '!  

(104)         

(105)  . Proponowany system      ?   $6

(106)     ‰   !  

(107) '

(108) 

(109)   

(110) $,   

(111)    '

(112)     '  '

(113)   C$ra

(114)             

(115)     ?  

(116) '        $/   '   

(117)  

(118)  

(119) ‰ ? $ˆ 

(120)  

(121)  

(122)  ! 

(123) 

(124) silnika. Do monitorowania parametrów akumulatora wykorzystano sterownik BMS (Battery Management System&!

(125)    '

(126)  temperat'?   

(127)        Fu      ? . 

(128) F  '   $Na rys. 1 przedstawiono za   oraz sposób sterowania zapewnia 

(129) y   ' 

(130) ‰.

(131) : 

(132)    '     . 229. temem     " $  

(133)   ! ?      

(134)   '     ?  

(135)  ?    ‰   '

(136)      !   cznie jednej jednostki. '          

(137)     

(138)   '     $ Na p   

(139)      czujników i przy wykorzystaniu specjalnie utwo 

(140)  !  '    iedzy silnikiem   !   

(141)   akumulatorami. Algorytm sterowania obejmuje dwie ?  

(142)    O            #

(143)   przepustnicy), '

(144)      

(145)   !     ?      '$ ˆ

(146) 

(147)     '  ? ‰. 

(148) #   ! 

(149) ?   &!  

(150)     F  

(151)    F   ‰

(152) 

(153)  '

(154)  warunków drogowych. Jednym z  

(155)       

(156)    

(157)  $- 

(158)   ?‰. 

(159)   '

(160)    

(161)   

(162) terze silnika lub generatora. W przypadku pracy silnikowej dostarcza   '  

(163)      

(164) $ |  

(165)       !?    ‰    F      

(166) F

(167)    przegrzania. D'   

(168)     F‰ ?   

(169)         

(170)     '‰ dowym.. Rys. 1$,

(171)       '   " .

(172) 230. Andrzej Lechowicz, Andrzej Augustynowicz. W przedmiotowym   '  ?    '        ?   '         

(173)  $       '

(174)   

(175)    ‰   ?    ?  ' !

(176)   '‰ 

(177)            $ *   F       punkt pracy silnika spalinowego wymag    liza charakterystyki jego pracy. C  

(178)         

(179)    

(180)      ‰  

(181) !     

(182)     $/‰       

(183) !          

(184)    6•  

(185)       

(186)       '   

(187)     ebowaniu mocy. Z prac autorów [3,5,9’  ! ?    '   

(188)        

(189)         ?       '

(190)        ‰.  #     

(191) &$H'   ‰ nia mocy krzyw6   '  

(192)       ‰

(193)   $- 

(194)    6    sieniu do osi od

(195) '

(196)  

(197) !?

(198)             '   '

(199)    !          ‰ mentu obrotowego.     

(200) 

(201) ?

(202)     F    uz       6   F   ?          Š (rys. 2&$ G?

(203)  

(204)   

(205)      

(206)   "     niewielkiej mocy silnika. *    ?

(207)  

(208)      

(209) 6 Š      

(210)  

(211)     

(212)    '‰ wym.. Rys.2. Porównanie uzyskiwanej  

(213) ?

(214)     na krzywych sterowania E i D. W pr

(215)    

(216)    '         6  ‰ danego silnika spalinowego. M   p' F  , która wystarcza do poruszania  '  ! 

(217)     ”œœ  $  

(218)     

(219)    6  '  ' i    

(220)  '

(221)  

(222)          $ /   O. ÑD. 4 ˜ Ð  300 ,. (1).

(223) : 

(224)    '     . 231. gdzie: ÑD – ' F     ! ! Ж uchylenie przepustnicy, %. Kryterium maksymalnej mocy ze w'  

(225) 

(226)  

(227)           

(228)      Š$ * F        

(229)    ' 

(230) ?

(231)       $

(232) ? F '   '     ? ' '‰

(233)   $|  ' 

(234)   ''

(235)                    

(236)  

(237) 

(238)   $ Š.    ' 

(239) ?

(240)        '‰ su momentu obrotowego silnika spalinowego. Zatem  ?  F   F       iu krzywej dynamicznej. K  Š zaproponowano   

(241)   ' 

(242) 

(243)   '   

(244)     spalinowego. Koniec     '

(245)     

(246)    

(247) $/  Š   O. ÑD. 2 ˜ Ð  500 .. (2). Wyznaczone w ten sposób krzywe sterowania (rys.3) wykorzystano   ‰   

(248)  ' 

(249)          

(250)       efektywny zakres pracy (krzywa E) oraz zakres pracy dla najkorzystniejszych  

(251)  ruchowych (krzywa D). 800. Krzyw a E Krzyw a D. {VX

(252)  silnika spalinowego, rad/s. 700 600 500 400 300 200 100 0 0. 20. 40. 60. 80. 100. Uchylenie przepustnicy, %. Rys.3. Charakterystyka zakresów pracy silnika spalinowego. H      '

(253)              ÑD #  

(254)    

(255)  

(256) Ð& '

(257)     '‰ wego ÑWN, ' 

(258)  ?   

(259) F  ?  . '  UN.   ??  FO. i UN. Ñ WN ÑD. .. (3).

(260) 232. Andrzej Lechowicz, Andrzej Augustynowicz. !  F ' F 

(261)   !  ‰ ?  '  ?  F ''

(262)    linowego   '  '   

(263) ? 

(264)  

(265)  

(266) ‰    '     

(267)  $ˆ tym celu wyznaczo  

(268) '!  

(269)  ' F 

(270)   $Š  'ko

(271)    

(272)    ÑME ?   

(273) y, który jest autorskim i jednym z 

(274)  

(275)       ' $,   

(276)    O   ' F          ÑD oraz aktualna ' F  '  ÑWN.       F'

(277)  

(278)     '     

(279)   !

(280)  regulacji PID steruje

(281)   '

(282)  chwilowym momentem maszyny elektrycznej. Š ' emu ?   F'

(283)               ' $ |       

(284)  ‰ rzystanie maszyny elektrycznej jedynie d

(285)     

(286)   silnika spali      $ H   ?  $

(287)      '   

(288)   

(289)          ?         

(290)     ! w   

(291)   ' '‰

(292) wej.. 3. MODEL SYMULACYJNY C '    miejskiego :    

(293)     

(294)  $ :     

(295)        !  

(296)   '‰ 

(297) ?     

(298)       ' ‰  $|        

(299)  '     !   

(300)         ? 

(301)  

(302)  

(303)   ' $ Badania symulacyjne przeprowadzono w   -/Simulink. Do budowy modelu wykorzystano pod modele    z biblioteki programu Matlab/Simulink.     '  ?   'netar    $ž. W trybie hybrydowym cykl UDC (Urban Driving Cycle&  

(304)  ? 

(305)  

(306) '

(307)  

(308)     (200, 300, 700 i 900 rad/s) oraz krzywych sterowania E i D. Na rys. 5 przedstawiono czasowe przebiegi '

(309)       ! 

(310)    ''

(311)  ‰  

(312)  

(313)  '

(314)       $ Warunkiem sterowania w symulacji      '

(315)   lnika spalinowego na ok. 300  

(316)   œ   $,  '

(317)     '‰ przez uchylanie przepustnicy silnika spalinowego. Natomiast silnik elektryczny odpowie     ?  ' $H '

(318) ‰    

(319)    F  

(320)    ' F ! 

(321) F

(322) '       '

(323)   $‰ wione tu w  

(324) 

(325) CŠ@ !??      ‰.    

(326) 

(327)  

(328)  '

(329)  $Maszyna elektryczna   

(330)  ?           ? 

(331)  .

(332) : 

(333)    '     . 233. '  !

(334)     ' F     ‰ ka spalinowego na zadanym poziomie (200, 300, 700 i 900 rad/s)$ *  '   pojazdu  

(335) 

(336)        !

(337)  

(338)    

(339)   ' '

(340)        onano dla cyklu UDC w oparciu o zdefiniowane

(341)      6 Š$™ 

(342)     6 Š  

(343) ‰   

(344)       ' F        . *   

(345)     '

(346)       !     rys. 6 ?    F! ? ‰     

(347)         

(348)  

(349) 

(350)   ? $ ˆ ? 

(351)   

(352)  ia przepustnicy      

(353)  ' F       !  

(354)  $. Rys. 4$-

(355)   ' 

(356)       . Rys. 5. @

(357)    '

(358)   silnika spalinowego i maszyny elektrycznej na tle '

(359)   

(360)  

(361) w cyklu UDC.

(362) 234. Andrzej Lechowicz, Andrzej Augustynowicz. Rys. 6. @

(363)    '

(364)    lnika spalinowego sterowanej za 

(365)   6 Š 

(366) CŠ@. ˆ         ?

(367)      '     '

(368)          šœœ $H        ?‰

(369)       '    

(370)  !   '    ‰ dynie   '

(371)  $H '?

(372)     '

(373)          “œœ $‡ ?

(374)     ‰     6  Š      '  ' ?

(375)       '

(376)     sp  ”œœ  œœ $| !? 

(377)      

(378)    '    $|      ‰. 

(379)    6      ?

(380)           

(381)    Š$   ?

(382)       

(383)   – hybrydowym TE/TH (krzywa E) w po

(384)        

(385)   ' 

(386)      '   ‰  ?

(387)    

(388)  $Š 

(389)        ?

(390)   

(391)     

(392)   ??

(393)   ‰ bie elektrycznym.. 4. 6_$6) 4* )]43x)   ^ H    

(394)  

(395)   '   

(396)      ‰         

(397)       

(398)   ?  

(399)  ‰    

(400) 

(401) 

(402)   ' $   ‰ 

(403)   !?

(404) 

(405)         ?   F?  '  $       ‰.          '    '   

(406)       

(407) 

(408) 

(409)    $    ! ‰ nika maszyny elektrycznej oraz baterii akumulatorów. Dlatego,  ‰ lacyjnych, przeprowadzono     ' ? 

(410)       na odpo     

(411) 

(412) 

(413)   

(414) $ H '   F      .

(415) : 

(416)    '     . 235.      ?

(417)    

(418)  CŠ@          '

(419)  silnika spalinowego równej 200 rad/s. P

(420)   on wtedy w zakresie ?

(421)  

(422) ? i niskich '

(423) owych  !

(424)   obszarze  '  

(425) $ N    ?

(426)             '

(427)            E, co    Fjej stosowania. G ?  ‰. ?      '    

(428) 

(429)   

(430)   

(431)  

(432)    !  

(433) ' F mocy silnika spalinowego lub moc odzyskan 

(434)       $ 6  '       ?  ?F  

(435)  $6     

(436)         ?

(437)   !            '       wym w   jego ?

(438) e. W proponowanym   '   

(439)   ' 

(440)       '

(441)           

(442)            ?  '

(443)     '

(444)    lnika spalinowego. Z tego powodu jedynym    

(445) 

(446)  

(447)   #      &    '

(448)     $ ,  F

(449)       ?  punkt

(450)     $*  F

(451)        '

(452)   ? F 

(453)     ! ‰  F      

(454) $ˆ       ‰ trywanym   '  ? F "         

(455) ‰ nym. Na podstawie przeprowadzonych bada 

(456) CŠ@?   F!?  ‰  

(457) 

(458) 

(459)  !    ?

(460)        '‰.  

(461)  

(462)  a trybu elektrycznego z trybem hybrydowym. W trybie elektryczno –   ?          ' ‰ 

(463)  $|  ' F 

(464)  ' F

(465)    ' 

(466)     $ˆ   ‰          

(467)   ‰   ! F  '

(468)     trybie elektrycznym. Niedostatek mocy spowodowany wykorzystaniem trybu elektrycznego zaplanowano roz F       !   '       ‰ mulatorów i   '   

(469)    .. Bibliografia 1.. 2. 3. 4.. 5.. Bashash S., Moura S. J., Forman J. C., Fathy H., K.: Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity, Journal of Power Sources 196 (2011), Elsevier 2011, s. 541–549. Chau K.T., Wong Y.S., Overview of power management in hybrid electric vehicles, Energy Conversion and Management 43 (2002), Elsevier 2001, s.1953-1968. Jantos J.:        

(470)  !     '   ?   .  

(471) !

(472)  ˆ

(473)  

(474)  !šœœ”. Kim J., Kang J., Kim Y., Kim T., Min B., Kim H.: Design of Power Split Transmission: Design of Dual Mode Power Split Transmission, International Journal of Automotive Technology, Vol. 11, No. 4, KSAE 2010, s.565-571. Korniak |$OG

(475)   

(476) 

(477)  

(478)  

(479)     ‰ ki rozmytej, Praca doktorska, Politechnika Opolska, Opole 2005..

(480) 236. Andrzej Lechowicz, Andrzej Augustynowicz. 6.. Lechowicz A., Augustynowicz A.: Modeling and Simulation of the Hybrid Powertrain for the Use in Urban Vehicle, Mechatronics - Ideas for Industrial Application, 2015, Volume 317, s. 473-482. 7. Lechowicz A., Augustynowicz A.: Modeling and Simulation of the Hybrid Powertrain for the Use in :Á

(481) !  

(482)  %    ,  6

(483) dynamic and Mechatronic Systems (SELM 2013), s. 43-44. 8. Merkisz J., Pielecha %$O*     '   !ˆ

(484)   

(485)    ! šœœž. 9. Mitschke M.: Dynamika samochodu c$ŒOH'   !ˆ Œ“— 10. Praca   O H'  !           ! %  

(486) 

(487)  ! ˆ/ £ˆ šœŒœ. 11. Szumanowski A.: Hybryd Electric, Vehicle Driver Design, Wydawnictwo ITEE, Warszawa – Radom 2006.. SIMULATION FOR THE ANALYSIS OF A HYBRID URBAN VEHICLE POWERTRAIN Summary: The simulations carried out in Matlab/Simulink environment were conducted to search for the most favourable configuration of electric machine with combustion engine in the studied vehicle in terms of range of control field, required power of electric machine and maximum vehicle speed. The conducted simulations proved that it is possible to control transmission ratio of vehicle powertrain using electrically controlled planetary gear. While the range of controls of power transmission system depends on the transmission ratio of planetary gear as well as on range of speeds of combustion engine and electric machine. Keywords: hybrid powertrain, electrically controlled planetary gear, energy management.

(488)

Cytaty

Powiązane dokumenty

names of aerodynamic control inputs in generic a/c model names of engine throttle control input in generic a/c model names of state variables in generic a/c model. names of groups

Tabela 1: Chronologiczny (według dat udostępniania) wykaz polskojęzycznych aplikacji prasowych dostępnych w App Store i przeznaczonych dla tabletów

Stability of functioning of a powerful share of the Russian fi- nancial market depends on quality of recognition, administration (management) and supervision of risks of

[r]

Jednak mimo jej wysiłków zdarzały się nieprzyjemne sytuacje, jak ta, kiedy w jednej z litewskich gazet, redagowanej przez księży17, pojawił się oszczerczy artykuł pod

chał Skwarzyński (Katolicki Uniwersytet Lubelski Jana Pawła II, Polska) scha- rakteryzował europejski model ochrony praw człowieka określony w Konwencji o ochronie praw człowieka

z Fiore, wydanej w tomie 40 serii Fonti per la storia dell’Italia medievale, Antiquitates, wchodzą traktaty: Genealogia sanctorum antiquorum patrum, De prophetia ignota,

The term “outcomes” of growth is associated with declining inequality in those non-income dimensions of well-being that are particularly important for promoting