• Nie Znaleziono Wyników

Fifth and first order wave-force coefficients for cylindrical piles

N/A
N/A
Protected

Academic year: 2021

Share "Fifth and first order wave-force coefficients for cylindrical piles"

Copied!
30
0
0

Pełen tekst

(1)

Frederic R. Harris, Inc., Ne1V York, N. Y.; no", \lith

Van Houten, SchHartz and Nurphy, Ne", York, N. Y. Jeppe J. Edens

Mueser, Rutledge, HentlIorth & Johnston, Nell York, N. Y. ABSTRACT

Drag and mass coefficients corresponding to

sto~

es

'b

fifth-order theory have been determined from previouslY pU

t .-ta ~s -lished wave and wave-force data. Comparisons between S t tical distributions for fifth-order and corresponding £i r s -es

pness . order coefficients have been made for varying wave stee co-For other existing wave data, from which the fifth orde r 'b efficients could not be determined, the statistical

di

st

r~o~

­

tions of first-order coefficients have been investigated varying wave steepnesses.

drag Statistically based fifth-order and first-order

coefficient design values for varying Reynolds numberS are presented. Statistically based fifth and first-order mass coefficient design values are suggested.

Comparisons between drag-coefficient distri but i ops .

~:d

corresponding mass-coefficient distributions seem to

P

:rO

;~i_

some insight into the reasons for the scatter on the c C)e

cients.

INTRODUCTION

Notation. - The letter symbols adopted for use paper are defined where they first appear.

:i-:P this

p and

The method presented by Morison, O'Brien, JohnS C7 . des

Schaaf (1950) for determining wave forces on piles, d:i--v:l- r o-the total force into a drag force, which is numerical L

~

~s

of portional to the second power of the horizontal compon. e ! P

the water particle velocities, and a mass or inertia f

c>

:r

~;ti_

proportional to the horizontal components of the water P cylin

-cle accelerations. The wave force per unit length of ~

drical pile is expressed as:

J'V D2tJ

.9

U2

F = CD D 2 + C ...,l'c...::-....:M 4 J=.-

U

::i-cient, in which CD is the drag coefficient, C

M the mass coeff: ~locity, D the pile diameter, U the horizontal water particle ~

(2)

220 C O A S T A L E N G I N E E R I N G

U t h e h o r i z o n t a l w a t e r p a r t i c l e a c c e l e r a t i o n , and 9 t h e mass d e n s i t y f o r w a t e r .

The c o e f f i c i e n t s C and C a r e d e t e r m i n e d f r o m t h e above r e l a t i o n s h i p by u s i n g measured v a l u e s f o r F and t h e o r e t i c a l v a l u e s f o r U and U. A l r y ' s f i r s t - o r d e r wave t h e o r y ( w h i c h i s s u p p o s e d l y o n l y v a l i d f o r r e l a t i v e l y low waves o f low s t e e p -n e s s ) a-nd S t o k e s ' seco-nd-, t h i r d - a-nd f i f t h - o r d e r t h e o r i e s

( w h i c h s u p p o s e d l y r e p r e s e n t storm-wave a c t i o n more c l o s e l y ) have been employed.

M o r i s o n , Johnson and O ' B r i e n (1954) used A i r y ' s f i r s t -o r d e r t h e -o r y t -o d e t e r m i n e C and C v a l u e s f -o r m-odel p i l e s -o f v a r i o u s c r o s s s e c t i o n s i n a wave c h a n n e l and a 3.5 i n . d i a m -e t -e r c y l i n d r i c a l p i l -e i n p r o t o t y p -e wav-es. Th-e D -e p t . o f Oc-ean- Ocean-o g r a p h y Ocean-o f Texas A & M (1954, 1955, 1956 and 1957) used l i n e a r wave t h e o r y on d a t a f r o m t h e G u l f o f M e x i c o .

W i e g e l , Beebe and Moon (1959) used A i r y ' s t h e o r y t o de-t e r m i n e C and C v a l u e s f o r ocean-wave f o r c e s on c y l i n d r i c a l p i l e s . ™

On some o f t h e above d a t a t h e Beach E r o s i o n B o a r d ( 1 9 6 1 ) a p p l i e d S t o k e s ' s e c o n d - and t h i r d - o r d e r t h e o r i e s .

C o n s i d e r a b l e v a r i a t i o n s i n mean v a l u e s f o r C and C» as w e l l as l a r g e s c a t t e r and s t a n d a r d d e v i a t i o n s have r e s u l t e d f r o m t h e above i n v e s t i g a t i o n s . The r e a s o n s f o r t h e d i s c r e p -a n c i e s m-ay be m-any. Among t h e more i m p o r t -a n t -a r e :

a. I r r e g u l a r wave s p e c t r a c o n s i s t i n g o f s e v e r a l p e r i o d s and a m p l i t u d e s . I n t h e a n a l y s e s t h e wave s p e c t r a a r e u s u a l l y r e d u c e d t o one wave p e r i o d and one wave h e i g h t i n a r a t h e r p r i m i t i v e manner. b. T u r b u l e n c e a r o u n d t h e s t r u c t u r e s by w h i c h t h e t e s t p i l e s a r e s u p p o r t e d . c. V i b r a t i o n s o f t e s t p i l e s . d. I n a c c u r a c i e s on w a v e - f o r c e r e c o r d i n g s . e. I n a b i l i t y o f wave t h e o r i e s t o d e s c r i b e a c t u a l w a t e r -p a r t i c l e m o t i o n . I n model t e s t s w i t h r e g u l a r wave t r a i n s , i t s h o u l d be p o s s i b l e t o e l i m i n a t e a, ||bj and c and r e d u c e d c o n s i d e r a b l y . ? X

(3)

i t i s p o s s i b l e t o e l i m i n a t e e. T h i s was done by L a i r d , John-son and Walker (1960) who r e p o r t e d t h a t t h e i r CQ v a l u e s f o r a c c e l e r a t e d and u n i f o r m m o t i o n a g r e e d w i t h a c c e p t e d v a l u e s f o r u n i f o r m m o t i o n , whereas d e v i a t i o n s o c c u r r e d f o r d e c e l e r -a t e d m o t i o n . T h e i r v -a l u e s f o r n o n - u n i f o r m m o t i o n were how-e v how-e r d how-e t how-e r m i n how-e d undhow-er t h how-e a s s u m p t i o n t h a t Cj^j was how-e q u a l t o u n i t y . T h i s paper p r e s e n t s Cp and v a l u e s d e t e r m i n e d by t h e w r i t e r s by a p p l y i n g S t o k e s ' f i f t h - o r d e r t h e o r y a d a p t e d f o r

t h i s purpose by S k j e l b r e i a , H e n d r i c k s o n , Gragg and Webb (1960) on wave and w a v e f o r c e d a t a by W i e g e l e t a l ( 1 9 5 9 ) . S t a t i s -t i c a l a n a l y s e s and c o m p a r i s o n s w i -t h c o r r e s p o n d i n g f i r s -t - o r d e r v a l u e s f o r CD and Cj^j a r e I n c l u d e d . The f i f t h - o r d e r t h e o r y p r e s e n t e d by S k j e l b r e i a e t a l ( 1 9 6 0 ) as t a b u l a t i o n s o f computer s o l u t i o n s i s s p e c i f i c a l l y d e s i g n e d f o r c o n v e n i e n t d e t e r m i n a t i o n o f wave p r e s s u r e s , f o r c e s and moments on p i l e s . Volume I o f t h e above r e p o r t , w h i c h i s c l a s s i f i e d "For O f f i c i a l Use O n l y , " c o n t a i n s s t a t i s

t i c a l l y based d r a g and mass c o e f f i c i e n t s f o r d e s i g n use t o -g e t h e r w i t h t h e t a b l e s , w h i c h a r e n o t i n any way c l a s s i f i e d .

DETERMINATION OF FIFTH-ORDER C^ AND C, VALUES D M

T a b l e I by W i e g e l e t a l (1959) c o n t a i n s wave h e i g h t s H and p e r i o d s T, t o g e t h e r w i t h wave f o r c e s FQ a t t h e passage o f a wave c r e s t (phase a n g l e 0 = 0 ° ) . The f o r c e i s f o r one l i n e a r f t . o f a 12.75 i n . d i a m e t e r p i l e a t a d i s t a n c e S o f 42.5 f t . above t h e b o t t o m . The w a t e r d e p t h d i s r e p o r t e d t o be between 49.3 f t . and 46.0 f t . An a v e r a g e v a l u e o f 47.65 f t . was used h e r e . T a b l e I I c o n t a i n s t h e same i n f o r m a t i o n f o r a 24 i n . d i a m e t e r p i l e a t a d i s t a n c e o f 33.0 f t . above t h e b o t t o m w i t h t h e w a t e r d e p t h r e p o r t e d t o be between 48.0 f t . and 46.0 f t . An average v a l u e o f 47.0 f t . was used h e r e .

For w i d e ranges o f d/T^, H/d, 9 =0° t o 180° and S/d v a l u e s f r o m 0.1 t o 1.5, t h e t a b l e s by S k j e l b r e i a e t a l (1960) g i v e v a l u e s f o r t h e p r e s s u r e f u n c t i o n s Pi and P2 f r o m w h i c h d r a g p r e s s u r e i s d e t e r m i n e d as H CQ and i n e r t i a p r e s s u r e as P2 D Cj^j. The t o t a l wave f o r c e on t h e p i l e and i t s moment a b o u t t h e b o t t o m a r e f o u n d e q u a l l y c o n v e n i e n t f r o m t h e t a b u -l a t e d f o r c e and moment f u n c t i o n s Fi, F2, M]^, and M2 .

L i n e a r i n t e r p o l a t i o n s were used where n e c e s s a r y . The t a b u l a t e d v a l u e s f o r d/T2 have a l o w e r l i m i t o f 0.20. Of t h e

(4)

222 C O A S T A L E N G I N E E R I N G

1 9 5 waves i n T a b l e s I and I I , 2 5 had d / T 2 v a l u e s below 0 . 2 0 ' Those w i t h d/T^ v a l u e s e q u a l t o o r e x c e e d i n g 0 . 1 7 5 were i n -c l u d e d by l i n e a r e x t r a p o l a t i o n f r o m 0 . 2 0 and 0 . 2 5 . For e = 0 ° w a t e r p a r t i c l e a c c e l e r a t i o n s and a c c o r d i n g l y i n e r t i a f o r c e s a r e z e r o . The d r a g c o e f f i c i e n t f o r w h i c h * ® symbol Cjjs i s employed i s f o u n d f r o m t h e e q u a t i o n : C ^ D 5 - p — Ï T D T a b l e I I I by W i e g e l e t a l ( 1 9 5 9 ) c o n t a i n s t h e w a ^ e f o r c e Fg^yj^ c o r r e s p o n d i n g t o t h e passage o f t h e s t i l l - ^ * * ^ i ^ j ^ g l e v e l p o i n t on t h e wave p r o f i l e , w h i c h p r e c e d e s a c r e s t -o t h e r d a t a i n T a b l e I I I a r e t h e same as i n T a b l e I I .

The f i f t h - o r d e r mass c o e f f i c i e n t f o r w h i c h t h e ey'"^°''" % 5 i s used may be d e t e r m i n e d f o r a t o t a l o f 7 4 waves

w h i c h Cj)5 a t t h e passage o f t h e wave c r e s t i s d e t e r m i n e d

-One f e a t u r e o f t h e computer s o l u t i o n s t a b u l a t e d ^ ^ ^ g S k j e l b r e i a e t a l ( 1 9 6 0 ) i s t h e n o n - d i m e n s i o n a l wave s u ï " * ^ o r d i n a t e Y. The s t i l l - w a t e r l e v e l i s c h a r a c t e r i z e d b y

The c o r r e s p o n d i n g v a l u e s f o r and P2 a r e f o u n d by lin®^''^ i n t e r p o l a t i o n s . The e x p r e s s i o n f o r Cjj5 i s :

^ ^SWL - ^ " ^ ^ D 5 CMS = T,

T a b l e s 1 and 2 a r e s i m i l a r t o T a b l e s I and I I t>5^ j j _ W i e g e l e t a l ( 1 9 5 9 ) . Columns w i t h C-Q^ v a l u e s and c o r r ^ ^ ^

i n g R e y n o l d s numbers Res have been added. The symbol ^^\±x-has been used i n s t e a d o f CQ f o r t h e f i r s t - o r d e r d r a g < ^ * ^ ^ - j ^ i i c i e n t s and Re 1 f o r c o r r e s p o n d i n g Reynolds numbers. I t ^ ^ n be n o t i c e d t h a t C^s ( i n a l l b u t two c a s e s ) i s s m a l l e r ^ ^ \ ^ the c o r r e s p o n d i n g u s u a l l y c o n s i d e r a b l y s m a l l e r . ' ^ ^ ^ b v was e x p e c t e d as t h e w a t e r - p a r t i c l e v e l o c i t i e s d e t e r m i n ^ T ' the h i g h e r - o r d e r t h e o r y a r e u s u a l l y h i g h e r . The 0^5 ^ ^ have been t a b u l a t e d w i t h two d e c i m a l p o i n t s , w h i c h i s m*^-^^ t h a n s t r i c t l y n e c e s s a r y .

T a b l e 3 i s s i m i l a r t o T a b l e I I I by W i e g e l e t aO- ^ However, a column f o r 0^,5 has been added and t h e s y m b c ^ ^ i has been used i n s t e a d o f f o r t h e mass c o e f f i c i e n t t»

on t h e f i r s t - o r d e r t h e o r y . T a b l e 3 does o n l y c o n t a i n ^ waves o u t o f t h e t o t a l o f 7 4 waves f o r w h i c h 0^5 i s k n - ''^^oüld The r e a s o n f o r t h i s i s t h a t t h e s e 2 8 Cjj5 v a l u e s , w h i c l i

(5)
(6)

-224 C O A S T A L E N G I N E E R I N G

be d e t e r m i n e d w i t h o u t e x c e s s i v e t i m e - c o n s u m i n g two-way o r f o u r way i n t e r p o l a t i o n s , i n no case d e v i a t e d more t h a n + 0 . 1 f r o m t h e c o r r e s p o n d i n g C^^ v a l u e s . A p o s s i b l e e x p l a n a t i o n f o r t h i s may be t h a t t h e a c t u a l s t i l l - w a t e r phase a n g l e s were n o t known t o t h e w r i t e r s . The t h e o r e t i c a l f i f t h - o r d e r s t i l l - w a t e r a n g l e s were employed. The p r o d u c t H D C^s d i d n o t exceed 2% o f FsWL e x c e p t i n one case. Thus t h e i n a c c u r a c y on C^s v a l u e s was n o t i n c o r p o r a t e d i n t h e Cj^g v a l u e s . I t was n o t c o n s i d e r e d w o r t h w h i l e t o compute t h e r e m a i n i n g 46 Cjj5 v a l u e s p a r t l y f o r t h e r e a s o n s t a t e d above and p a r t -l y because t h e Cj^jj v a -l u e s a r e much h i g h e r t h a n t h o s e f r o m o t h e r s o u r c e s . DRAG COEFFICIENTS STATISTICAL ANALYSES OF CD VALUES

As t h e s c a t t e r on t h e CQ v a l u e s i s n o t s m a l l compared t o t h e mean v a l u e s , t h e s t a t i s t i c a l d i s t r i b u t i o n c a n n o t be assumed t o f o l l o w t h e normal law o f e r r o r . T h i s may e a s i l y l e a d t o e r r o n e o u s c o n c l u s i o n s . A s i m p l e f u n c t i o n o f CD w h i c h may be assumed t o f o l l o w t h e n o r m a l law o f e r r o r i s l o g CD The s c a t t e r and t h e s t a n d a r d d e v i a t i o n f o r l o g CD a r e n o t changed i f a l l t h e Cp v a l u e s and t h u s t h e mean a r e m u l t i p l i e d by a c o n s t a n t . T h i s f a c i l i t a t e s s t a t i s t i c a l c o m p a r i s o n o f d i s t r i b u t i o n s w i t h d i f f e r e n t mean v a l u e s and p r o v e d t o be v e r y u s e f u l . P a r a l l e l l i n e s s i m p l y i n d i c a t e t h a t t h e s t a n d a r d d e v i a t i o n on t h e l o g CD d i s t r i b u t i o n i s t h e same. S t a t i s t i c a l d i s t r i b u t i o n s f o r CD v a l u e s a r e shown i n F i g s . 1 , 2 and 3. The a b s c i s s a s c a l e i s l o g a r i t h m i c , w h i l e t h e o r d i n a t e s c a l e i s a s o - c a l l e d p r o b a b i l i t y s c a l e . I f t h e n o r m a l l a w o f e r r o r i s v a l i d f o r t h e l o g CD d i s t r i b u t i o n , a s t r a i g h t l i n e w i l l r e s u l t , when t h e numbers o f CD v a l u e s ( i n p e r c e n t o f t h e t o t a l number) s m a l l e r t h a n o r e q u a l t o c e r t a i n CD v a l u e s a r e p l o t t e d as a f u n c t i o n o f t h e s e CD v a l u e s . F i g . 1 c o n t a i n s t h e d a t a f r o m T a b l e 1 f o r a 12.75 i n . d i a m e t e r p i l e . Two s t a t i s t i c a l d i s t r i b u t i o n s f o r Cjjg as w e l l as C D I v a l u e s a r e shown. One i n c l u d e s a l l t h e v a l u e s , t h e o t h e r o n l y t h o s e f o r w h i c h t h e c o r r e s p o n d i n g wave s t e e p n e s s H/L e q u a l s o r exceeds 2.0%. The wave s t e e p n e s s v a r i e d f r o m 0.7% t o 3.6%. The w r i t e r s a r e aware o f t h e l i m i t e d r e l i a b i l -i t y o f a s t a t -i s t -i c a l a n a l y s -i s o f o n l y 20 Cn v a l u e s f o r w h -i c h H/L ^ 2 . 0 % .

(7)

-•CD5 A L L V A L U E S ® CD5 - f t 2 . 0 % xC 01 + C 01 I I M I I I I 99.9r 5 (» y-2 : I .

0.5 '

1 1 1 1 1 — I I I I 1 1 \ 1 1 I N I

0.1 0.2 | 0 . 3 0.4 0.5 1.0 1.5 2.0 3.0 4.0 5.0 10.0 Co(LOGARITHMIC S C A L E )

Figure 2. Statistical Distributions of C^^ Values for D = 24.0 in. Based on Data by Wiegel, Beebe and Moon

(8)

226 C O A S T A L E N G I N E E R I N G t i o n s f o r l o g CQ c l o s e l y a p p r o x i m a t e s t r a i g h t l i n e s f o r t h e p o i n t s above 5%. S t e e p e r d i s t r i b u t i o n s and t h u s s m a l l e r s t a n d a r d d e v i a t i o n s r e s u l t when t h e lower l i m i t f o r H/L i s r a i s e d t o 2.0%. The s t a n d a r d d e v i a t i o n i s d e f i n e d as t h e d i f f e r e n c e between l o g Cj) v a l u e s c o r r e s p o n d i n g t o 83.5% and 16.5%. I n t h e f o l l o w i n g s e c t i o n t h e r e s u l t s a r e d i s c u s s e d f u r t h e r and compared w i t h t h o s e o b t a i n e d f o r a 24 i n . d i a m -e t -e r p i l -e i n F i g . 2 and a 16 i n . d i a m -e t -e r p i l -e f r o m B r e t s c h n e i d e r ' s (1957) d a t a . F i g . 2 c o n t a i n s t h e d a t a f r o m T a b l e 2. Two d i s t r i b u -t i o n s f o r each o f Cps and C D I shown. One f o r a l l v a l u e s and one f o r 40 v a l u e s w i t h c o r r e s p o n d i n g H/L = 2.0%. H/L v a r i e d f r o m 1 . 1 % t o 3.4%. The s t a t i s t i c a l d i s t r i b u t i o n s a p p r o a c h s t r a i g h t l i n e s f o r v a l u e s above 20%. Only t h e p l o t t e d p o i n t s a r e shown f o r t h e d i s t r i b u t i o n o f Cj^i v a l u e s f o r H/L ^ 2.0% w h i c h i s v e r y c l o s e t o t h e 0^5 d i s t r i b u t i o n f o r a l l v a l u e s . An i n c r e a s e o f t h e l o w e r l i m i t o f H/L seems t o i n f l u e n c e t h e mean v a l u e s b u t n o t t h e s t a n d a r d d e v i a t i o n -F i g . 3 shows f o u r C^-^ d i s t r i b u t i o n s f r o m B r e t s c h n e i d e : ( 1 9 5 7 ) d a t a . Only waves w i t h a p e r i o d o f 6.0 s e e s , o r mo^e were i n c l u d e d , as t h e e r r o r on t h e measured wave h e i g h t s exceed + 2 0 % f o r l o w e r wave p e r i o d s . Out o f a t o t a l o f l ^ ^ waves, 95 had a s t e e p n e s s o f 2% o r more, 38 had a s t e e p n e s s o f 3% o r more and 15 had a s t e e p n e s s o f 3.5% o r more. So^"® p o i n t s a t t h e l o w and h i g h ends s t r a y away f r o m t h e s t r a i g l ^ * l i n e d i s t r i b u t i o n s .

ANALYSES OF DISTRIBUTIONS

For t h e i n d i v i d u a l p i l e i n a c o n s t a n t w a t e r d e p t h , w i t h t h e f o r c e s measured f o r o n l y one e l e v a t i o n i n t e r v a l ? o n l y v a r i a b l e s a r e t h e wave c h a r a c t e r i s t i c s . The r e c o r d e d v a r i a b l e s a r e t h e wave h e i g h t H and t h e wave p e r i o d T. T h e wave l e n g t h , L, i s computed f r o m T and t h e w a t e r d e p t h d -n o -n - d i m e -n s i o -n a l wave p a r a m e t e r s , t h e s t e e p -n e s s H/L a-nd 1 1 ^ ^ r e l a t i v e h e i g h t H/d, a r e commonly u s e d . As d i s c o n s t a n ' t and t h e l a r g e r v a l u e s f o r H/L g e n e r a l l y c o r r e s p o n d t o t h e la.ï'ëer v a l u e s f o r H, i t was d e c i d e d t o use o n l y H/L as a p a r a m e ' t e r f o r t h e i n d i v i d u a l p i l e . F i g . 1 shows t h a t t h e f i f t h - o r d e r and f i r s t - o r d e r ^T) d i s t r i b u t i o n s f o r a l l waves a r e v e r y c l o s e t o b e i n g p a r a. 1 i® •'•' t h a t i s t h e s t a n d a r d d e v i a t i o n on l o g Cp i s t h e same. A-S t h e a v e r a g e wave s t e e p n e s s i s l e s s t h a n 2%, we c o u l d n o t exp>^*^''' t o f i n d any s i g n i f i c a n t d i f f e r e n c e s . The f i r s t - o r d e r ttx&°^y may be assumed t o be adequate f o r such g e n t l e s w e l l s . X* ï^^*

(9)

X CDI A L L V A L U E S ® C D I ^= 3.0%

+ CDI f = 2.0%

ffl CDI

^ = 3.5%

99.9| I 1 I 1 1 I I I I 1 1

0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 3.0 4.0 5.0 10.0 Co(LOGARITHMIC S C A L E )

Figure 3. Statistical Distributions of C^^^ Values f o r D = 16.0 in. Based on Texas A & M Data (1957)

(10)

228 C O A S T A L E N G I N E E R I N G t h e f i f t h o r d e r d i s t r i b u t i o n l i e s b e l o w t h e f i r s t o r d e r d i s -t r i b u -t i o n i s -t o be e x p e c -t e d , as -t h e f i f -t h - o r d e r w a -t e r - p a r -t i c l e v e l o c i t i e s a r e g e n e r a l l y c o n s i d e r a b l y h i g h e r t h a n t h e c o r r e s -p o n d i n g f i r s t - o r d e r v e l o c i t i e s . When waves w i t h a s t e e p n e s s o f l e s s t h a n 2% a r e d i s -r e g a -r d e d b o t h Cp d i s t -r i b u t i o n s become c o n s i d e -r a b l y s t e e p e -r , w h i c h means t h a t t h e s t a n d a r d d e v i a t i o n s d e c r e a s e d . T h a t t h e f i r s t - o r d e r d i s t r i b u t i o n became s t e e p e r t h a n t h e f i f t h - o r d e r d i s t r i b u t i o n i s perhaps n o t s i g n i f i c a n t as t h e s t a t i s t i c a l d i s t r i b u t i o n s a r e based on o n l y 20 Cp v a l u e s . However, Dean

( 1 9 6 5 ) has shown t h a t convergence p r o b l e m s e x i s t f o r t h e

h i g h e r - o r d e r t h e o r i e s a p p l i e d t o s h a l l o w w a t e r waves, and t h a t t h e f i r s t - o r d e r t h e o r y i s s u p e r i o r t o t h e f i f t h - o r d e r t h e o r y w i t h i n c e r t a i n r a n g e s o f t h e p e r t i n e n t p a r a m e t e r s . I t was n o t t o be e x p e c t e d t h a t t h e s t a n d a r d d e v i a t i o n w o u l d d e c r e a s e f o r waves o f h i g h e r s t e e p n e s s u s i n g e i t h e r f i f t h - o r d e r o r f i r s t - o r d e r t h e o r y . N e i t h e r o f t h e t h e o r i e s s h o u l d be a b l e t o d e s c r i b e s t e e p waves b e t t e r t h a n l e s s s t e e p waves . The r e a s o n f o r t h e decrease i n s t a n d a r d d e v i a t i o n may be t h a t t h e r e l a t i v e a c c u r a c y on t h e measured wave f o r c e s i s b e t t e r , a s h i g h e r f o r c e s g e n e r a l l y c o r r e s p o n d t o h i g h e r s t e e p -nesses and h i g h e r a b s o l u t e wave h e i g h t s . A l s o , a g a i n i t s h o u l d be c o n s i d e r e d t h a t t h e d i s t r i b u t i o n s a r e based on o n l y 20 Cp v a l u e s .

F i g . 2 shows Cp d i s t r i b u t i o n s f o r a 24 i n . d i a m e t e r p i l e . Here t h e l i n e s f o r a l l waves and t h e l i n e s f o r s t e e p -nesses of 2% o r more a r e v e r y c l o s e t o b e i n g p a r a l l e l . The s t a n d a r d d e v i a t i o n on l o g Cp i s t h u s about t h e same. A g a i n , the f i r s t - o r d e r d i s t r i b u t i o n f o r waves o f h i g h e r s t e e p n e s s has a s l i g h t l y l o w e r s t a n d a r d d e v i a t i o n t h a n t h e c o r r e s p o n d i n g f i f t h - o r d e r d i s t r i b u t i o n . 40 Cp v a l u e s c o r r e s p o n d e d t o a s t e e p n e s s o f 2% o r more. F i g . 3 shows C p j d i s t r i b u t i o n s f o r a 16 i n . d i a m e t e r p i l e f r o m B r e t s c h n e i d e r ' s (1957) d a t a . As m e n t i o n e d p r e v i o u s -l y , t h e wave f o r c e d a t a , f r o m w h i c h f i f t h - o r d e r c o e f f i c i e n t s c o u l d have been d e t e r m i n e d , were n o t a v a i l a b l e . The wave h e i g h t v a r i e d f r o m 3.5 t o 13.3 f t . and t h e wave p e r i o d f r o m 6.0 t o 8.8 s e e s . The s t e e p n e s s v a r i e d f r o m 1.3% t o 8.0%. The p i l e e x t e n d e d 13 f t . below s t i l l - w a t e r i n a w a t e r d e p t h o f 40 f t . The t o t a l wave f o r c e s on t h e p i l e were measured. The R e y n o l d s number v a l u e s were g e n e r a l l y low, o n l y two exceeded a v a l u e o f a b o u t 4 x 10^. From F i g . 3 i t i s once more f o u n d t h a t t h e s t a n d a r d d e v i a t i o n on f i r s t - o r d e r l o g Cp v a l u e s does

(11)

s t r a i g h t l i n e s c l o s e l y . Only a few p l o t t e d p o i n t s a t t h e l o w e r and upper ends d e v i a t e c o n s i d e r a b l y f r o m t h e l i n e s .

For t h e r a n g e s o f v a r i a b l e s i n v e s t i g a t e d above, i t i s c o n c l u d e d t h a t t h e f i f t h - o r d e r a p p r o a c h i s n o t s u p e r i o r t o t h e f i r s t - o r d e r a p p r o a c h . A s l i g h t i n d i c a t i o n o f t h e o p p o s i t e i s f o u n d . F o r l a r g e r d/L r a t i o s t h e f i f t h - o r d e r t h e o r y may be s u p e r i o r . See Dean ( 1 9 6 5 ) . DISCUSSION For s t e a d y - s t a t e f l o w a r o u n d c y l i n d e r s , a d e f i n i t e r e l a t i o n s h i p between Cp and Reynolds number has been e s t a b -l i s h e d e x p e r i m e n t a -l -l y . The c u r v e shown i n F i g s . 4 and 5 f o r an i n f i n i t e l y l o n g c y l i n d e r was c o p i e d f r o m P r a n d t l and

T i e t j e n s ( 1 9 3 4 ) . When f i r s t - o r d e r Cp v a l u e s f o r waves a r e p l o t t e d as a f u n c t i o n o f Re, c l o u d s o f p o i n t s appear. See F i g s . 11 and 12 by W i e g e l e t a l ( 1 9 5 9 ) . No c o n c l u s i o n s may be d r a w n , o t h e r t h a n t h a t Cj) v a r i e s v e r y c o n s i d e r a b l y w i t h i n r e l a t i v e l y n a r r o w r a n g e s o f Re, e.g. on t h e above m e n t i o n e d F i g . 12 Cp v a r i e s f r o m 0.11 t o 0.9 r i g h t a r o u n d R e = 7 x l 0 ^ and CD v a r i e s f r o m 0.4 t o 2.0 f o r Re v a r y i n g f r o m 3 t o 4x10^. S i m i l a r c l o u d s o f p l o t t e d p o i n t s r e s u l t when t h e f i f t h - o r d e r t h e o r y i s a p p l i e d .

G e n e r a l l y , i t i s n o t d e s i r a b l e t o use Reynolds number as a p a r a m e t e r f o r w a v e a c t i o n phenomenon, when t h e w a t e r -p a r t i c l e v e l o c i t i e s c o n t a i n e d i n Re a r e n o t measured ( w h i c h t h e y a r e g e n e r a l l y n o t ) , b u t d e t e r m i n e d a c c o r d i n g t o t h e a p -p l i e d wave t h e o r y . One o f t h e m a j o r r e a s o n s f o r t h e s c a t t e r on CQ may be t h e d i f f e r e n c e s between a c t u a l and t h e o r e t i c a l p a r t i c l e v e l o c i t i e s . K e u l e g a n and C a r p e n t e r (1958) s t u d i e d f o r c e s on a c y l i n d r i c a l p i l e exposed t o s t a n d i n g waves i n t h e l a b o r a t o r y . I t a p p e a r e d as i f Cp was a f u n c t i o n o f t h e p a r a m e t e r U^^^^ T/D w h i c h a c c o r d i n g t o f i r s t - o r d e r t h e o r y i s p r o p o r t i o n a l t o t h e r a t i o between t h e h o r i z o n t a l p a r t i c l e a m p l i t u d e and p i l e d i a m -e t -e r . I n t h -e i r s t u d i -e s t h -e R-eynolds numb-er r a n g -e f r o m 4 x 10^ t o 3 X 10^ i s c o n s i d e r a b l y below c r i t i c a l v a l u e s . The p e r i o d f o r t h e s t a n d i n g wave i s c o n s t a n t c o r r e s p o n d i n g t o t h e con-s t a n t b a con-s i n l e n g t h and d e p t h . The a c t u a l p a r a m e t e r i con-s t h u con-s n o t Unjax T/D b u t Umax/D. W i e g e l (1964) i n h i s F i g . 11.9

shows t h e r e l a t i o n s h i p f o u n d by Keulegan and C a r p e n t e r (1958) t o g e t h e r w i t h p o i n t s p l o t t e d f r o m t h e d a t a by W i e g e l e t a l

(12)

CO O

(13)

Figure 5. Coefficient of Drag as a Function of Reynolds Number. First Order Theory

(14)

232 C O A S T A L E N G I N E E R I N G

( 1 9 5 9 ) . Large s c a t t e r on Cp i s f o u n d w i t h i n r e l a t i v e l y narrow l i m i t s o f t h e p a r a m e t e r . The p l o t t e d p o i n t s go f a r above and b e l o w t h e c u r v e f o r s t a n d i n g waves.

For h i g h v a l u e s o f t h e h o r i z o n t a l - p a r t i c l e a m p l i t u d e t o p i l e - d i a m e t e r r a t i o combined w i t h r e l a t i v e l y l o w maximum-p a r t i c l e v e l o c i t i e s ( l o n g waves o f l o w s t e e maximum-p n e s s ) one m i g h t e x p e c t t h a t c o n d i t i o n s s i m i l a r t o s t e a d y - s t a t e f l o w f o r lower R e y n o l d s numbers w o u l d be approached under t h e wave c r e s t . The d a t a by W i e g e l e t a l (1959) g e n e r a l l y c o n f o r m t o t h e s e r e q u i r e m e n t s . However, t h e c o r r e s p o n d i n g v a l u e s do n o t a p p r o a c h t h o s e f o r s t e a d y s t a t e f l o w . I t seems t o t h e w r i t e r s , t h a t i t c a n n o t be i n s i g n i f i -c a n t f o r a -c o n s t a n t v a l u e o f D and Umax T/D w h e t h e r a l o w v a l u e f o r Uj^^x i s combined w i t h a h i g h v a l u e f o r T, o r a h i g h v a l u e f o r Umax i s combined w i t h a low v a l u e f o r T. As Umax T/D=ReVT/D2 t h e f o r m e r case w o u l d c o r r e s p o n d t o l o w e r v a l u e s o f R e y n o l d s numbers and s l o w l y c h a n g i n g p a r t i c l e v e l o c i t i e s , t h a t i s , i t w o u l d a p p r o a c h s t e a d y - s t a t e f l o w f o r l o w e r v a l u e s o f R e y n o l d s number. The l a t t e r case w o u l d c o r -r e s p o n d t o h i g h e -r and mo-re -r a p i d l y c h a n g i n g v a l u e s o f Rey-n o l d s Rey-number. The w r i t e r s f i Rey-n d i t h a r d t o u Rey-n d e r s t a Rey-n d t h a t t h e s e w i d e l y d i f f e r e n t c o n d i t i o n s s h o u l d have no i n f l u e n c e on t h e d r a g c o e f f i c i e n t . I t seems t o t h e w r i t e r s t h a t R e y n o l d s number, as w e l l as i t s g e n e r a l r a t e o f change, w h i c h may be e x p r e s s e d by t h e wave p e r i o d T, w o u l d be s i g n i f i c a n t p a r a m e t e r s . T h i s d i s r e -g a r d s t h e above s t a t e d o b j e c t i o n t o u s i n -g t h e non-measured p a r t i c l e v e l o c i t y as p a r a m e t e r . For n a r r o w r a n g e s o f Rey-n o l d s Rey-number, i t was a t t e m p t e d t o p l o t CQ as a f u Rey-n c t i o Rey-n o f t h e wave p e r i o d . The p l o t s were i n c o n c l u s i v e .

The measured p e r t i n e n t p a r a m e t e r s a r e t h e wave h e i g h t and p e r i o d , t h e w a t e r d e p t h , t h e e l e v a t i o n i n t e r v a l s f o r w h i c h t h e wave f o r c e s a r e measured, t h e p i l e d i a m e t e r , and

t h e sea w a t e r v i s c o s i t y . A number o f n o n - d i m e n s i o n a l r a t i o s between t h e s i x d l m e n t i o n a l p a r a m e t e r s w o u l d be n e c e s s a r y t o d e f i n e t h e p h y s i c a l e n v i r o n m e n t . However, even f o r c o n s t a n t v a l u e s o f a l l t h e v a r i a b l e s Cp v a r i e s v e r y c o n s i d e r a b l y . Thus a s t a t i s t i c a l a p p r o a c h seems i n d i s p e n s a b l e . I n l a c k o f a b e t t e r p a r a m e t e r , i t was d e c i d e d t o use R e y n o l d s number.

For r e l a t i v e l y n a r r o w ranges o f R e y n o l d s number as compared t o t h e c o r r e s p o n d i n g CQ r a n g e s , s t a t i s t i c a l d i s t r i -b u t i o n s f o r CD v a l u e s were d e t e r m i n e d . The Re r a n g e s were chosen based on t h e need f o r a r e l a t i v e l y l a r g e number o f CD

(15)

t h e number o f CD v a l u e s u s u a l l y v a r i e d between 40 and 80. W i t h i n each Re range t h e Re d i s t r i b u t i o n was n o r m a l o r c l o s e t o n o r m a l . The CD d i s t r i b u t i o n was c o n s i d e r e d r e p r e s e n t a t i v e o f t h e mean v a l u e f o r Re.

DESIGN VALUES FOR CD

F i g . 4 shows s t a t i s t i c a l l y based p l o t t e d p o i n t s f o r CD5 v a l u e s and s t r a i g h t l i n e s , w h i c h f a l l w i t h + 10% o f t h e c o r r e s p o n d i n g p l o t t e d p o i n t s . Three s e t s o f p l o t t e d p o i n t s and t h e c o r r e s p o n d i n g s t r a i g h t l i n e s a r e shown. The upper one i s f o r CD5 v a l u e s c o r r e s p o n d i n g t o 98% v a l u e s on t h e s t a t i s t i c a l d i s t r i b u t i o n , or i n o t h e r w o r d s , t h e CD v a l u e s f o r w h i c h t h e p r o b a b i l i t y o f b e i n g exceeded i s o n l y 2%. The m i d d l e and l o w e r CD5 v a l u e s a r e t h o s e f o r w h i c h t h e p r o b a b i l

i t y o f b e i n g exceeded i s 10% and 50% (mean v a l u e s ) r e s p e c t i v e l y . The s t r a i g h t l i n e s used a r e m a i n l y a m a t t e r o f c o n -v e n i e n c e , a l t h o u g h f o r s t e a d y s t a t e f l o w t h e r e l a t i o n s h i p between CD and Re i s q u i t e c l o s e t o b e i n g l i n e a r between Re X 10-5 e q u a l t o 1 and 5. I t s h o u l d be n o t i c e d t h a t t h e r e i s no v i s i b l e t r e n d f o r t h e d r a g c o e f f i c i e n t s t o become con-s t a n t f o r h i g h e r Re v a l u e con-s acon-s t h e y do f o r con-s t e a d y con-s t a t e f l o w p a s t a Re v a l u e o f about 5x10^. i t i s b e l i e v e d t h a t d a t a e x i s t f o r Re v a l u e s above t h o s e c o v e r e d h e r e . These d a t a have n o t been p u b l i s h e d , however.

The d e s i g n v a l u e f o r CD5 t o be used w i t h c e r t a i n v a l u e s o f Re w o u l d depend upon w h i c h s a f e t y f a c t o r s a r e used; on how r e l i a b l e t h e d e s i g n wave c r i t e r i a a r e ( w h e t h e r t h e y a r e based on r e c o r d i n g s o r d e t e r m i n e d by f o r e c a s t i n g f r o m w i n d d a t a ) ; and how r e l i a b l e o t h e r d e s i g n c r i t e r i a ( s u c h as s o i l s p a r a m e t e r s ) a r e . I f mean v a l u e s a r e u s e d , i t i s known t h e r e i s a f i f t y - f i f t y chance t h a t t h e y w i l l be exceeded, and t h a t t h e y m i g h t be exceeded by a f a c t o r o f 2 or more. T h i s c o u l d c o m p l e t e l y a b s o r b commonly used s a f e t y f a c t o r s , l e a v i n g no m a r g i n f o r t h e o t h e r u n c e r t a i n t i e s i n v o l v e d . I f 90% v a l u e s a r e u s e d , t h e p r o b a b i l i t y t h a t t h e y w i l l be exceeded i s o n l y 10% and t h e p r o b a b i l i t y t h a t t h e y w i l l be exceeded by 25 t o 3 3 % o r more i s o n l y a b o u t 2%. The 98% v a l u e s w i l l r a r e l y be exceeded and n o t by v e r y much. For t h e h i g h e r end o f Re v a l u e s c o v e r e d i n F i g . 4, i t i s recommended t h a t CD5 d e s i g n v a l u e s o f 0.8 t o 1.0 be u s e d .

F i g . 5 shows s t a t i s t i c a l l y based f i r s t o r d e r d r a g c o -e f f i c i -e n t s as a f u n c t i o n o f R-eynolds numb-er. Th-e t r -e n d i s

(16)

234 C O A S T A L E N G I N E E R I N G

Figure 6. Statistical Distributions of 0^^^ and Cj^^^ V a l u ' ^ D = 24.0 in. Based on Data by Wiegel, Beebe and M c ^

(17)

as t h e f i r s t - o r d e r v e l o c i t i e s a r e lower t h a n t h e f i f t h - o r d e r v e l o c i t i e s . F o r t h e h i g h e r end o f Re v a l u e s c o v e r e d by F i g - ^ C D I d e s i g n v a l u e s o f 1.0 t o 1.4 a r e recommended, based on s i " " " l i a r r e a s o n i n g as f o r t h e CD5 v a l u e s i n F i g . 4.

MASS COEFFICIENTS STATISTICAL ANALYSES OF Cji VALUES

I n F i g . 6, CM d i s t r i b u t i o n s f o r a 2 f t . d i a m e t e r pil® c o r r e s p o n d i n g t o t h e CQ d i s t r i b u t i o n s i n F i g . 2 a r e p l o t t e d i n a l i n e a r p r o b a b i l i t y g r a p h . The CM d i s t r i b u t i o n s f o l l o w t h e n o r m a l law o f e r r o r ( s t r a i g h t l i n e ) . The s t a n d a r d d e v i a ' t i o n t o mean-value r a t i o f o r CM i s much s m a l l e r t h a n f o r Cp • Three d i s t r i b u t i o n s a r e shown. One f o r t h e 28 CMS v a l u e s , one f o r t h e c o r r e s p o n d i n g C M I v a l u e s , and one f o r a l l t h e 149 C M I v a l u e s i n T a b l e I I I by W i e g e l e t a l ( 1 9 5 9 ) . The l a * " t e r f o l l o w s f a i r l y c l o s e l y t h e s t r a i g h t l i n e shown. The fv/*^ o t h e r d i s t r i b u t i o n s s t r a y a l i t t l e f u r t h e r f r o m straight-li^^® d i s t r i b u t i o n s . They a r e v e r y c l o s e t o each o t h e r , h a v i n g a number o f p o i n t s i n common. A s t a t i s t i c a l a n a l y s i s o f t h e 59 C M I v a l u e s ( f o r whi'^*'' t h e c o r r e s p o n d i n g H/L = 2.0%) f r o m T a b l e I I I by W i e g e l e t a-^

(1959) has a l s o been c a r r i e d o u t . I t i s n o t shown i n F i g . w h i c h w o u l d have become t o o crowded. I t f o l l o w s t h e d i s t r i - ^ ^

t i o n f o r 149 C M I v a l u e s v e r y c l o s e l y , b u t i s perhaps a t r i f s t e e p e r . F i g . 7 shows C M I d i s t r i b u t i o n s f o r a 1 6 - i n . d i a m e t e a r p i l e c o r r e s p o n d i n g t o t h e C D I d i s t r i b u t i o n s i n F i g . 3. FoX" i n c r e a s i n g wave s t e e p n e s s e s , t h e s t r a i g h t - l i n e d i s t r i b u t i o n ^ r e m a i n a l m o s t p a r a l l e l . P a r a l l e l l i n e s do n o t , however, ^ r e p r e s e n t e q u a l s t a n d a r d d e v i a t i o n s . When t h e a b s c i s s a s c ^ ^ ^ i s l i n e a r , t h e s t a n d a r d d e v i a t i o n (as w e l l as t h e mean val'«-J-^ ^ ^ ^ ^ j i s m u l t i p l i e d by a c o n s t a n t i f a l l t h e CM v a l u e s a r e m u l t i

by t h i s c o n s t a n t . Thus t o compare d i s t r i b u t i o n s w i t h d i f f ^ - ' f ^^^^ e n t mean v a l u e s , t h e s t a n d a r d d e v i a t i o n a l o n e i s n o t s u f f i < ^ I t i s n e c e s s a r y t o use t h e r a t i o between s t a n d a r d d e v i a t i o s ^ and mean v a l u e . As t h e mean v a l u e s i n F i g . 7 v a r y o n l y f r * ^ * ^ 2.0 t o 1.7, t h e s t a n d a r d d e v i a t i o n t o mean v a l u e r a t i o i n

-c r e a s e s o n l y s l i g h t l y w i t h i n -c r e a s i n g wave s t e e p n e s s . I n F i g . 8 i s shown C M I d i s t r i b u t i o n s f r o m B r e t s c h n e

(1955) f o r a 2.5 f t . d i a m e t e r p i l e e x t e n d i n g 13 f t . below ^ s t i l l - w a t e r l e v e l i n a w a t e r d e p t h o f 40 f t . Out o f a tot

(18)

236

C O A S T A L E N G I N E E R I N G

XCM, A L L V A L U E S ®CM, f > 3 . 0 %

+ CM, 2 . 0 % = C„| 3 . 5 %

(19)
(20)

238 C O A S T A L E N G I N E E R I N G

o f 203 waves, 134 had a s t e e p n e s s o f 3% o r more, 77 had a s t e e p n e s s o f 4% o r more and 44 had a s t e e p n e s s o f 5% o r more. The wave h e i g h t v a r i e d f r o m 3.1 t o 8.4 f t . and t h e p e r i o d f r o m 3.6 t o 8.2 s e e s . The c o r r e s p o n d i n g C D I v a l u e s were n o t a v a i l a b l e . When t h e l o w e r l i m i t f o r wave s t e e p n e s s i s r a i s e d f r o m 3% t o 4% t h e s t a n d a r d d e v i a t i o n t o meanvalue r a t i o d e c r e a s e s s l i g h t l y and when t h e s t e e p n e s s l i m i t i s r a i s e d f u r -t h e r -t o 5%, -t h i s r a -t i o r e m a i n s c o n s -t a n -t . For t h e r a n g e s o f v a r i a b l e s i n v e s t i g a t e d h e r e , f i r s t - o r d e r a p p r o a c h does n o t show s i g n i f i c a n t l y i n c r e a s i n g s c a t t e r on C ^ i v a l u e s f o r i n c r e a s i n g wave s t e e p n e s s .

DESIGN VALUES FOR MASS COEFFICIENTS

As t h e mass c o e f f i c i e n t s a r e r e l a t e d t o w a t e r - p a r t i c l e a c c e l e r a t i o n s i n t h e f i r s t power and t h e d r a g c o e f f i c i e n t s a r e r e l a t e d t o p a r t i c l e v e l o c i t i e s i n t h e second power» t h e r e i s r e a s o n t o b e l i e v e t h a t t h e f i f t h - o r d e r mass c o e f f i c i e n t s a r e c l o s e r t o t h e f i r s t - o r d e r mass c o e f f i c i e n t s t h a n vi^as t h e case f o r d r a g c o e f f i c i e n t s . W i e g e l (1959) and (1964) ^ a s a t t e m p t e d t o c o r r e l a t e C j j i w i t h R e y n o l d s number, water—P^^*-*--c l e a water—P^^*-*--c water—P^^*-*--c e l e r a t i o n , wave p e r i o d and U^j^x T/D. O n l y f o r

C M I v e r s u s w a v e - p e r i o d p l o t was a s l i g h t c o r r e l a t i o n f o ^ i ^ d . CM showed a t e n d e n c y t o i n c r e a s e w i t h i n c r e a s i n g wave p e r i o d . I n F i g s . 7 and 8, t h e 98% C M I v a l u e s f o r H/L ^ 3 . 0 % v a r y f r o m 1.8 t o 2.5 and t h e 90% C M I v a l u e s f r o m 1.6 t o 2.2. Based on t h e same c o n s i d e r a t i o n s as f o r d r a g c o e f f i c i e r i t s , i t i s recommended t h a t a d e s i g n v a l u e f o r C M I o f 2.0 ( e q u a l t o t h e t h e o r e t i c a l v a l u e ) be u s e d . For CMS, t h e same d e s i g n v a l u e o f 2.0 ( o r perhaps a s l i g h t l y l o w e r v a l u e ) i s r e c o m -mended u n t i l f u r t h e r knowledge i s a v a i l a b l e .

COMPARISONS OF DRAG AND MASS-COEFFICIENT D I S T R I B U T I O N As p r e v i o u s l y s t a t e d , t h e s t a n d a r d d e v i a t i o n t o mean-v a l u e r a t i o s a r e much s m a l l e r f o r m a s s - c o e f f i c i e n t d i s ' ^ ^ - ' - ^ " " t i o n s t h a n f o r t h e c o r r e s p o n d i n g d r a g - c o e f f i c i e n t d i s ' t ^ ^ ^ i ^ ^ " t i o n s . T h i s i s o b v i o u s f r o m c o m p a r i s o n s between F i g s - ^ 6 as w e l l as F i g s . 3 and 7.

When t h e r a t i o between any p e r c e n t a g e v a l u e fo:x^ CM and t h e mean v a l u e i s compared t o t h e c o r r e s p o n d i n g CD r a " C i o i t i s f o u n d t h a t t h e CD r a t i o i s e q u a l t o t h e CM r a t i o i J ^ ^

power w h i c h v a r i e s between 1.7 and 2 . 1 . T h i s may p e r t ^ ^ P ^ be e x p l a i n e d by assuming t h a t t h e r e l a t i v e d e v i a t i o n s b e " t " ^ ^ ^ "

(21)

f a c t t h a t CM i s r e l a t e d t o t h e a c c e l e r a t i o n i n t h e f i r s t power and Cp t o t h e v e l o c i t y i n t h e second power. I f t h i s e x p l a n a t i o n i s v a l i d , t h e p r o s p e c t s f o r d r a s t i c a l l y r e d u c i n g t h e s c a t t e r on CQ v a l u e s do n o t seem t o o p r o m i s i n g , even i f c o n s i d e r a b l e p r o g r e s s i s a c h i e v e d i n a p p r o a c h i n g wave t h e o -r i e s t o a c t u a l wave a c t i o n . I f i t , f o -r example, i s -r e q u i -r e d t h a t a l l CD v a l u e s s h o u l d be w i t h i n t h e mean v a l u e m u l t i p l i e d or d i v i d e d by a f a c t o r o f 1 . 5 , i t w o u l d mean t h a t t h e r a t i o s between a c t u a l and t h e o r e t i c a l v e l o c i t i e s (and a c c e l e r a t i o n s ) c o u l d n o t exceed a v a l u e o f 1 . 2 2 ,

CONCLUSIONS AND RECOMMENDATIONS

From t h e i n v e s t i g a t i o n s d e s c r i b e d above i t was c o n -c l u d e d t h a t :

a. F o r t h e ranges o f v a r i a b l e s c o v e r e d , t h e f i f t h -o r d e r a p p r -o a c h i s n -o t s u p e r i -o r t -o t h e f i r s t - -o r d e r a p p r o a c h . A s l i g h t i n d i c a t i o n o f t h e o p p o s i t e i s f o u n d .

b. No d e f i n i t e r e l a t i o n s h i p s between t h e d r a g and mass c o e f f i c i e n t s ( r e s p e c t i v e l y ) and t h e measured p a r -a m e t e r s seem t o e x i s t . Even f o r c o n s t -a n t v -a l u e s o f a l l measured p a r a m e t e r s , t h e s c a t t e r on t h e c o e f f i c i e n t s i s v e r y c o n s i d e r a b l e . c. A s t a t i s t i c a l a p p r o a c h was c o n s i d e r e d i n d i s p e n s a -b l e f o r d e t e r m i n i n g d e s i g n v a l u e s f o r t h e d r a g a n d mass c o e f f i c i e n t s . d. Perhaps t h e p r i m a r y r e a s o n f o r t h e s c a t t e r on t h e c o e f f i c i e n t s i s f o u n d i n d i f f e r e n c e s between a c -t u a l and -t h e o r e -t i c a l p a r -t i c l e v e l o c i -t i e s a n d a c c e l e r a t i o n s . For d e s i g n p u r p o s e s t h e f o l l o w i n g v a l u e s a r e r e c o m m e n d e d : a. C D 5 = 0 . 8 t o 1 . 0 f o r Res ^ 7 x 1 0 ^ . b. C D I = i - 0 t o 1 . 4 f o r Re^ ^ 6 . 5 x 1 0 ^ .

c. F o r s m a l l e r v a l u e s o f Re, see F i g s . 4 and 5 . d. CMS and C M I = 2 . 0 f o r s t o r m waves.

(22)

240 C O A S T A L E N G I N E E R I N G ACKNOWLEDGEMENTS The w r i t e r s w i s h t o t h a n k F r e d e r i c R. H a r r i s , I n c . f o r p r o v i d i n g a s s i s t a n c e i n t y p i n g o f t h e m a n u s c r i p t and p r e p a r a -t i o n o f -t h e i l l u s -t r a -t i o n s . REFERENCES

A «5 M C o l l e g e o f Texas, The, ( 1 9 5 4 ) . Wave F o r c e E x p e r i m e n t s a t A t c h a f a l a y a Bay, L o u i s i a n a : Techn. R e p o r t No. 3 8 - 1 , D e p t . o f Oceanography. (Not p u b l i s h e d ) .

Beach E r o s i o n Board ( 1 9 6 1 ) . Shore P r o t e c t i o n P l a n n i n g and D e s i g n : Techn. R e p o r t No. 4, U.S. Army Corps o f E n g i n e e r s B r e t s c h n e i d e r , C.L. ( 1 9 5 5 ) . An E v a l u a t i o n o f I n e r t i a l C o e f f i

c i e n t s i n Wave Force E x p e r i m e n t s , I n v e s t i g a t i o n o f Wave F o r c e s on S t e e l P i l e s : D e p t . o f Oceanography, The A & M C o l l e g e o f Texas, Techn. R e p o r t No. 55-3. (Not p u b l i s h e d ) B r e t s c h n e i d e r , C.L. ( 1 9 5 7 ) . E v a l u a t i o n o f Drag a n d I n e r t i a l

C o e f f i c i e n t s f r o m Maximum Range o f T o t a l Wave F o r c e : D e p t . o f Oceanography, The A & M C o l l e g e o f Texas, Techn. R e p o r t No. 55-5 (Not p u b l i s h e d ) .

Dean, E.G. ( 1 9 6 5 ) . A C r i t i q u e o f Wave F o r c e A n a l y s i s and C a l c u l a t i o n Methods: P r o c e e d i n g s ASCE S p e c i a l t y C o n f e r -ence on C o a s t a l E n g i n e e r i n g .

K e u l e g a n , G.H. and C a r p e n t e r , L.H. ( 1 9 5 8 ) . F o r c e s on C y l i n -d e r s an-d P l a t e s i n an O s c i l l a t i n g F l u i -d : J . Res. N a t i o n a l Bureau o f S t a n d a r d s , 60,5.

L a i r d , A.D.K., Johnson, C A . and W a l k e r , R.W. ( 1 9 6 0 ) . Water F o r c e s on A c c e l e r a t e d C y l i n d e r s : T r a n s a c t i o n s o f t h e ASCE V o l . 125.

M o r i s o n , J.R., O ' B r i e n , M.P., Johnson, J.W. and S c h a a f , S.A. ( 1 9 5 0 ) . The Force E x e r t e d by S u r f a c e Waves on P i l e s : P e t r o l e u m T r a n s a c t i o n s , AIME, V o l . 189.

M o r i s o n , J.R., Johnson, J.W. and O ' B r i e n , M.P. ( 1 9 5 4 ) . Exper i m e n t a l S t u d i e s o f F o r c e s on P i l e s : P r o c e e d i n g s F o u r t h C o n f e r e n c e on C o a s t a l E n g i n e e r i n g , C o u n c i l on Wave

R e s e a r c h .

P r a n d t l , L. and T i e t j e n s , O.G. ( 1 9 3 4 ) . A p p l i e d H y d r o - and A e r o m e c h a n i c s : M c G r a w - H i l l Book Co.

(23)

o g r a p h y , The A & M C o l l e g e o f Texas. (Not p u b l i s h e d ) . S k j e l b r e i a , L., H e n d r i c k s o n , J.A., Gragg, W. and Webb, L.M.

( 1 9 6 0 ) . L o a d i n g on C y l i n d r i c a l P i l i n g Due t o t h e A c t i o n o f Ocean Waves. T h e o r e t i c a l R e s u l t s : An i n v e s t i g a t i o n c o n d u c t e d a t N a t i o n a l E n g i n e e r i n g S c i e n c e C o . f o r U.S. N a v a l C i v i l E n g i n e e r i n g Lab., V o l s . I I , I I I and I V . W i e g e l , R.L., Beebe, K.E. and Moon, J . ( 1 9 5 9 ) . Ocean Wave

F o r c e s on C i r c u l a r C y l i n d r i c a l P i l e s : T r a n s a c t i o n s o f t h e ASCE, V o l . 124.

W i e g e l , R.L. ( 1 9 6 4 ) . O c e a n o g r a p h i c a l E n g i n e e r i n g : P r e n t i c e H a l l .

W i l s o n , B.W. ( 1 9 5 7 ) . R e s u l t s o f A n a l y s i s o f Wave F o r c e D a t a - Confused Sea C o n d i t i o n s Around a 3 0 - I n c h D i a m e t e r T e s t P i l e , G u l f o f M e x i c o : D e p t . o f Oceanography, The A & M C o l l e g e o f Texas, F i n a l Techn. R e p o r t No. 55-7.

(24)

242 C O A S T A L E N G I N E E R I N G

Table 1. Drag Coefficients - D = 12.75 in.

D = 12. 75 i n . , S = 42.5 f t , d = 49 .3 t o 46 .0 f t WAVE T H ^05 Re 1 Re^ NO. sec . f t . l b s / f t x l O - 5 x l O - 5 228 16. 5 7 . 0 6.8 0. 8 0 . 50 2. 14 2,73 229 16. 8 9. 6 14.4 0. 9 2. 95

-230 17. 1 7. 6 14.0 1. 5 2. 28 -2 3 1 16. 1 6. 6 6.0 0. 8 0. 50 2. 02 2.58 232 15. 5 8. 8 18. 0 1. 3 0. 84 2. 77 3 .49 233 15. 0 8. 8 7.0 0. 5 0. 32 2. 75 3.47 234 14. 6 6. 0 9.2 1. 4 1 . 01 1 . 87 2 .23 235 15. 3 9. 0 34 2. 3 1 . 44 2. 78 3 .60 236 15. 9 13 . 6 40 1. 2 0. 65 4. 17 5.80 237 15. 4 17. 6 56 1. 0 0. 50 5 . 44 7 .81 238 15. ,2 20.5 58 0. ,8 0. 35 6. 30 9.58 239 15. ,6 17. 8 62 1. , 1 0 . 54 6. 34 7.92 240 16 10. 1 21.0 0. ,5 0. 68 3 . 12 4.11 2 4 1 16 8. 0 10.0 0 . ,9 0. 54 2. 47 3,18 242 15, ,5 5. 4 9.2 1. ,3 1 . 25 2, 00 2.01 243 13 , ,8 8, ,5 12.4 0 , ,9 0. 63 2. 67 3 .27 244 14, ,8 9. ,2 21.0 1, .4 0 . .87 2. 85 3 .63 245 10, .5 7. ,1 12.0 1, .3 1. ,01 2. ,25 2.55 246 14, .3 9, ,3 15.2 1, .0 0 , ,63 2. ,86 3 .64 247 14, .0 8, ,4 22.8 1, .8 1. ,21 2, ,64 3,21 248 14, .0 6, ,3 21.2 3 , .0 2, ,19 1, ,96 2.30 249 13 .0 6, .6 10.2 1 .0 0, ,94 2, ,07 2.44 250 12, .7 8, .6 9 0 .7 0, ,48 2, ,65 3 .22 2 5 1 12 .8 8, .9 12 0 .8 0 , .59 2, .78 3 ,35 252 12 .8 9, .6 14 0 .9 0, ,58 3 , ,01 3 .63 253 12 .4 6 .6 6.6 0 .9 0, .61 2, .08 2.43 254 16 .1 9 .2 15.2 1 .1 0 .60 2, .82 3.71 255 14 .6 8 .6 22 1 .6 1 .08 2 .68 3 .34 256 14 .8 8 .6 22 1 .6 1 .07 2 .66 3.36 257 14 .8 5 .6 8.8 1 .5 1 .09 1.76 2,10 258 14 .8 8 .0 8.6 0 .7 0 .48 2 .48 3 .12 259 16 .1 8 .3 7.8 0 .7 0 .40 2 .52 3 ,29 260 14 .0 8 .2 7.2 0 .6 0 .41 2 .56 3 .09 2 6 1 14 .0 5 .3 10 2 .0 1 .49 1 .65 1,91 262 15 .4 7 .0 13 .2 1 .5 0 .99 2 .18 2.70 263 15 .8 4 .4 6.6 1 .7 1 .47 1 .37 1.57 264 15 .0 7 .8 8 0 .7 0 .48 2 .45 3.02 265 15 .0 10 .2 25 .2 0 .9 0 .82 3 .18 4.09

(25)

WAVE T H ^C NO. sec . f t . I b s / f 1 266 15 12 .6 40 267 15.5 13 .3 54 268 15 13 .6 36 269 14.5 11 .5 40 270 13 .7 9, .4 30 271 14.5 11 .6 28 272 15 5, .8 10 273 15 9 .0 10 274 15 9, .2 16 275 15.4 7, .0 6 276 15.4 8, .3 12 277 15.1 9, ,2 6.4 278 14.6 7 , .9 10 279 15 9, ,6 15 280 14.4 7 , ,6 4 281 14.0 7 , ,8 10.4 282 14 7 . ,4 8.6 283 15.3 8. .6 12 284 12.5 9, ,2 24 285 15.6 9. ,0 22 .6 286 16.3 9, ,0 25 287 16.5 7 , ,7 7.2 288 16.3 9, ,0 13 .4 289 15.6 8, ,9 14.6 290 14.3 12, ,5 22 291 18.6 7 , ,8 12.4 292 14.8 7 , ,0 20 293 14.5 9, ,8 28 294 14.5 9, ,2 26 295 13 9, .3 24 296 15.3 9, ,0 12 297 15 6 , ,6 10 298 14 7 , ,8 16 299 15.4 9. ,0 17 300 15.4 14, ,5 52 3 0 1 14.8 17, ,0 54 302 15.3 13 , ,5 46 303 13.8 8, ,0 8 304 15.0 7 . ,6 10 305 15 .3 11. ,5 26 3 06 15.0 19. ,0 58 C D I R e i Res xlO-5 xlO-5 1.4 0 .81 3 .89 5 .22 1.7 0 .94 4 .08 5 .61 1.1 0 .61 4 .22 5 .68 1.5 1 .02 3 .58 4 .63 1.9 1 .24 2 .94 3 .64 - 0 .70 3 .00 4 .68 1.6 1 .19 1 .82 2 .14 0.7 0 .43 2 .83 3 .56 1.0 0 .66 2, .89 3 .64 0.7 0 .45 2, .66 2 .69 1.0 0 .62 2, .56 3 .27 0.4 0, .26 2, .93 3 .68 0.9 0, .59 2, .44 3 .05 0.9 0.57 2, .98 3 .81 0.4 0, .26 2, .34 2 .90 0.9 0, .65 2, .42 2 .95 0.9 0, .61 2, .31 2 .77 0.9 0, .57 2, .68 3 .40 1.6 1, .09 1.65 3 .47 1.6 0, .96 2, .79 3 .60 1.8 1, .03 2, .75 3 .64 0.7 0, .43 2.38 3 .02 1.0 0, .55 2, .75 3 .64 1.0 0 , .64 2.77 3 .54 0.8 0, .47 3 , ,90 5 ,05 1.1 2.48 2.2 1, .54 2, .17 2 .66 1.6 1, .02 3 , .04 3 .88 1.7 1, .09 2, .84 3 ,61 1.6 1, .05 2, ,92 3 .54 0.8 0, .51 2, .78 3 .60 1.3 0, ,86 2, .07 2 .52 1.5 1, ,00 2 , .42 2 .96 1.2 0 , ,72 2 , .80 3 .60 1.4 0, ,74 4.46 6 .21 1.0 0, ,55 5, .28 7 .34 1.4 0, ,78 4, ,14 5 .70 0.7 0 , .47 2, ,50 3 .06 1.0 0, ,63 2,38 2 .94 1.1 0, ,64 3, ,56 4 .71 0.9 0, ,44 5 , ,88 8 .50

(26)

244 C O A S T A L E N G I N E E R I N G T A B L E 1 - ( C o n t i n u e d ) WAVE NO. T sec . H f t . Fc l b s / f t C D I CD5 R e i x l O - 5 Res xlO^' 3 0 7 1 4 .5 1 5 , ,0 4 8 1.2 0 . 6 7 4 . 6 4 6 . 2 8 3 0 8 1 3 .5 1 3 , ,0 4 4 1.4 0 , 9 0 4 . 0 9 5 . 1 6 3 0 9 1 3 .7 6. ,6 1 1 1.4 0 . 9 9 2 . 0 8 2 . 4 6 3 1 0 1 3 .0 8. ,0 1 4 1.2 0 . 8 4 2 . 5 3 3 , 0 2 3 1 1 1 3 .0 9. ,3 1 7 1 . 1 0 . 7 4 2 . 9 2 3 , 5 4 3 1 2 1 4 .0 8. ,4 1 5 1 . 2 0 . 8 0 2 . 6 2 3 , 2 1 3 1 3 1 2 .0 8. .6 1 6 1 . 2 0 . 8 7 2 . 7 5 3 , 1 8 3 1 4 1 4 .0 7 . ,0 8 0 . 8 0 . 6 4 2 . 3 0 2 , 6 1 3 1 5 1 4 .3 8. ,0 1 0 0 . 8 0 . 5 8 2 . 5 4 3 , 0 8 3 1 6 1 3 .8 9. ,7 1 8 1 . 0 0 , 7 0 3 . 0 7 3 , 7 6 3 1 7 1 3 .2 8. 5 1 3 .6 1 . 0 0 , 7 1 2 . 7 0 3 . 2 3 3 1 8 1 4 .7 7. 0 1 0 1 . 1 0 , 7 8 2 . 2 3 2 , 6 6 3 1 9 1 3 .7 6. 5 8 1 . 0 0 . 7 5 2 , 0 8 2 , 4 1 3 2 0 1 4 . 1 8, 0 1 0 0 . 9 0 . 5 8 1 , 7 8 3 . 0 6 3 2 1 1 4 .8 8. 2 1 7 1.3 0 . 9 3 2 , 6 3 3 . 1 5 3 2 2 1 4 .2 8. 9 1 2 . 4 0 , 8 0 . 5 7 2 . 8 5 3 . 4 6 3 2 3 1 5 . 1 6. 0 9.2 1 . 1 0 . 9 9 1 , 9 2 2 , 2 5 3 2 4 1 4 .5 6. 0 7 , 6 1 , 1 0 . 8 4 1 . 9 2 2 , 2 3 3 2 5 1 4 .0 5 . 5 1 2 2.0 1 . 6 4 1 . 7 6 2 . 0 0

(27)

D = 24 i n . , S = 33.0 f t . , d = 48.0 t o 46.0 f t .

WAVE T H Fc C D l C D5 Re 5 NO.

Re 5 NO.

sec . f t . l b s / f t xlO-5 xlO-' 23 15.0 9.8 25,5 0 .8 0 .53 5,75 7.00 24 15.2 12.0 29.0 0 .6 0.39 7.05 8.75 25 12.8 10.1 11.6 0 .3 0 .26 5.87 5.53 26 12.1 8.6 41.6 1 .7 1 .39 5.03 5.55 27 13.8 9.0 11.6 0 .4 0 .33 5.29 6.06 28 12.2 9.3 11.6 0 .4 0 .32 5.45 6,10 29 14.3 10.8 29.0 0 .7 0 ,52 6.37 7,58 30 13.2 11.4 5.8 0 .1 0 .10 7.21 7,75 31 13.5 9.0 11.6 0 .4 0 .33 5.20 6,06 32 14.6 7.0 11.6 0 .7 0 .53 4.11 4,74 33 14.3 7.8 29 1 .5 1 ,07 4.46 5,30 34 13 .5 8.9 26.1 1 .0 0 ,74 5.10 6.03 35 14.4 9.0 23 .2 0 .9 0 ,63 5.19 6.18 36 13.6 12.2 5.8 0 .1 0,08 7,05 8.50 37 11.6 8.5 11.6 0 .5 0.41 4.84 5.39 38 11.2 10.0 11.6 0 .4 0 .29 5.65 6.36 39 13.0 7.3 11.6 0 .7 0 .53 4.17 4.75 40 12.9 9.0 11.6 0 .4 0 .34 5,20 5 .94 41 14.4 6.1 11.6 1 .0 0.73 3 ,51 4.04 42 14.0 11.5 11.6 0 .3 0, .19 6.80 7 .96 43 13.7 8.0 40.6 2 .0 1, .46 4,60 5.34 44 15.2 9.5 20.3 0 .7 0, .47 5,45 6.70 45 14.7 8.6 17.4 0, .7 0. ,51 4.98 5.95 46 15.4 8.1 11.6 0, .5 0, ,38 4 .70 5.58 47 13.2 8.0 11.6 0, .6 0. ,43 4.75 5.28 48 12.0 8.5 11,6 0, ,5 0. .40 4.83 5.45 49 13 .5 8.5 29.0 1. ,2 0. 92 4.85 5.70 51 15.3 7.5 23 .2 1, ,3 0. 89 4.33 5,19 52 12.2 10.2 31.9 1, ,0 0. 73 5.84 6 .70 53 13 .0 10.0 29.0 0. 9 0. 66 5.81 6,70 54 12.0 6.0 11.6 1. 0 0. 82 3 ,42 3 .80 55 14.2 11.5 11.6 0. 3 0. 18 6,86 8.10 56 14.4 11.0 40.6 1. 0 0. 70 6,29 7,75 57 14.3 12.5 23 .2 0. 5 0. 30 7,29 8.91 58 13.5 11.5 34 .8 0 . 8 0. 56 6,60 7.96 59 15.0 12.2 31.9 0. 7 0,41 7.06 8.91 60 14.4 8.0 23 .2 1. 1 0. 81 4.62 5.44 61 12.0 8.0 11.6 0. 6 0, 46 4.62 5.12

(28)

246 C O A S T A L E N G I N E E R I N G TABLE 2 - ( C o n t i n u e d ) WAVE T H NO. sec . f t . 6 2 10.0 5.2 6 3 12.2 9.0 64 14.3 8.5 6 5 15.7 6.2 6 6 11.0 9.5 6 7 11.0 8.0 6 8 11.8 8.5 6 9 12.5 6.0 7 0 13 .9 9.0 71 16.2 8.5 7 2 15.0 9.2 7 3 13 .2 9.5 7 4 15 .4 10.0 7 5 12 .3 9.0 7 6 13 .9 8.2 7 7 11.9 6.6 7 8 12.0 6.0 7 9 13 .2 9.2 80 13.5 10.3 8 1 11.8 10.6 84 12.6 7.5 8 5 9.1 10.5 86 13 .1 10.0 8 7 13 .5 7.5 88 13.7 11.5 90 13.8 7.8 9 1 12.0 8.1 9 2 13.6 6.5 93 9.6 8.0 94 14.4 10.2 9 6 12.3 9.5 9 7 15.2 9.1 98 14.7 10.6 9 9 14.8 7.3 101 13.6 9.1 1 0 2 14.0 8.2 1 0 3 13.5 8.0 1 0 4 15.2 10.5 1 0 5 11.7 9.2 106 15.0 10.0 Fc CD5 l b s / f t 20 .3 2.4 2.21 23 .2 0.9 0.71 23 .2 1.0 0.71 17 ,4 1.4 1.04 40 .6 1.4 1.18 17 .4 0.9 0.72 17 .4 0.7 0.61 17 .4 1.5 1.21 11 .6 0.4 0.33 17 .4 0.7 0.49 8 .7 0.3 0.21 23 .2 0.8 0.60 29 .0 0.9 0.59 5 .8 0.2 0.17 17 .4 0.8 0.59 17 .4 1.2 1.04 11 .6 1.0 0.82 17 .4 0.6 0.47 29 .0 0.8 0.60 29 .0 0.8 0.63 17 .4 0.9 0.76 40 .6 1.2 1.08 34 .8 1.1 0.79 17 .4 0.9 0.72 26 .2 0.6 0.42 14 .5 0.7 0.55 14 .5 0.7 0.56 11 .6 0.8 0.65 17 .4 0.9 0.78 5 .8 0.2 0.12 17 .4 0.6 0.46 11 .6 0.4 0.29 17 .4 0.5 0.32 34 .8 1.9 1.46 17 .4 0.6 0.47 17 .4 0.8 0.59 5 .8 0.3 0.21 29 .0 0.8 0.53 29 .0 1.0 0.86 34 .8 1.0 0.70 R e i xlO-5 X l ^ 3 .08 2.94 p ; 82 5 .20 6 78 4.87 r-5 9^ 3 .55 r-5 9^ 5.41 A.9& 4.52 5 . 4 3 4.99 3 . 0^ 3 .46 « 0 6 5.25 6 . 0 3 5.00 6 . 0 3 5.30 6 5.51 7 .15 5.65 5.22 4.81 5 .86 3 .79 3 . 80 3 .44 6 Y . 08 5.27 6 Y . 08 5.99 e . 8 9 6.08 4.33 6 .24 5 .88 & .73 5.73 4 .99 4.40 -7 .98 6.75 5 .20 4.54 5 .15 4.75 4 .29 3 .83 4 .79 4.54 -7 .14 5.99 e .21 5 .55 6 . 4 4 5.32 V .51 6.30 4.95 4.28 6.16 5.28 5.49 4.80 5 .34 4 .70 7 .54 6.32 5.90 5.32 7 .14 5.88

(29)

WAVE T H NO * s e c . f t . l b s / f t 107 14 .2 7 .5 23 .6 1 0 8 14.5 10 .3 34 .8 110 17.0 9 .3 11 .6 111 11.2 8 .5 5 .8 112 9.8 7 .0 8 .7 113 12 .7 7 .3 17 .4 1 1 4 15.2 9 .0 34 .8 116 13.1 8 .3 5 .8 117 14.1 10 .8 40 .6 118 11.0 11 .5 20 .3 119 11.4 7 .5 17 .4 120 12.0 11, .0 17 .4 121 13.7 7, ,0 26 .2 122 12.8 9, .6 23 .2 123 14.8 7, ,5 29 .0 124 13.6 8, , 1 34 .8 125 15.3 10, ,0 29 .0 126 14.5 1 1 . ,0 20 .3 127 15.3 10, ,0 31 .9 % 1 % 5 Re 2^ Reg x l O - 5 x l O j : ^

—=

1.2 1 .03 4, ,36 5.05 1.8 0 .68 6, ,06 7.22 0.4 5, ,47

-0.2 0, .21 4, ,98 5.34 0.6 0, .51 3, ,99 4.19 1.0 0, .81 4, ,30 4.69 1.3 0, .90 5, ,32 6.30 0.3 0, .20 4, ,86 5.50 1.0 0, .74 6, ,30 7.56 0.5 0, .39 6, .58 7 .34 0.9 0, .81 4.36 4 . 7 0 0.4 0, .34 6, ,39 7 . 2 1 1 .6 1, ,25 4 , ,07 4 . 6 4 0.8 0, ,59 4, ,61 6 . 3 6 1.5 1, ,13 5. ,13 5 . 1 2 1.6 1, ,24 4. ,76 5 . 3 8 0.9 0, ,59 5. .89 7 . 1 5 0.7 0, ,35 6. 44 7 . 7 0 1.0 0, ,64 5. 89 7 . 1 Ö

(30)

248 COASTAL ENGINEERING

Table 3. Mass Coefficients

D = 24 i n . , S = 33.0 f t . , d = 48 t o 46 f t . ^SWL s e c . f t . l b s / f t 49 13 .5 8 .5 23 .2 2 .3 2 .3 51 15 .3 7 .5 23 .2 3 .0 2 . 9 59 15 .0 12 .2 40 .6 3 .0 3 . 1 65 15 .7 6 .2 29 .6 4 .7 4 .6 66 11 . 0 9 .5 37 .7 2 .8 2 . 8 67 11 .0 8 .0 17 .4 1 . 5 1 .5 68 11 .8 8 . 5 31 .9 2 .8 2 .7 69 12 . 5 6 .0 13 .3 1 .8 1 .7 70 13 .9 9 ,0 34 .8 3 .3 3 .3 74 15 .4 10, .0 40 .6 3 .9 3 .9 75 12 .3 9, .0 11 .6 1 .0 1 .0 80 13 .5 10, ,3 37 .7 3 , 1 3 . 1 84 12 .6 7 , ,5 29 .0 3 . 1 3, , 0 87 13 .5 7, ,5 23, ,2 2 , .5 2, ,6 92 13 .6 6, ,5 26, , 1 3 , ,4 3 , ,4 93 9 .6 8. ,0 29, ,0 2 , ,2 2, ,3 96 12 .3 9, ,5 40, ,6 3 , ,3 3 , ,4 103 13 .5 8, ,0 23 , ,2 2 , ,4 2, ,5 104 15 .2 10, ,5 23, ,2 2. , 1 2, , 1 106 15 .0 10. 0 3 1 , ,9 2 . ,9 3 , ,0 112 9 .8 7 . 0 23 , ,2 2 . 1 2, 1 114 15 .2 9. 0 34 . 8 3 . 6 3 . 6 117 14 .1 10. 8 12. 8 1. 0 1. 0 119 11 .4 7 . 5 11. 6 1. 1 1. 1 121 13 .7 7 . 0 26. 1 3 . 2 3 . 1 124 13 .6 8. 1 45. 3 4 . 8 4. 8 125 15 .3 10. 0 29. 0 2 . 7 2. 7 127 15 .3 10. 0 36. 0 3 . 4 3. 4

Cytaty

Powiązane dokumenty

When the pre-theoretical notion that is to be formalized is that of logical consequence, incompleteness alone cannot serve as an argument to disqualify a system as a proper logic,

Because shear waves are unaccounted for in the presented linear theory, traveltime and amplitude effects are un- derestimated compared to the experimental observations 共though

w badanym zbiorze jest ten ostatni (co może być wyrazem ogólnopolskiej tendencji antroponimicznej), wydaje się, że to właśnie patronimika na -owicz/-ewicz są

26.01.2016 A first-order logic mitigation framework for handling multi-morbid patients.. CKD, AFib and HTN. 26.01.2016 A first-order logic mitigation framework for handling

Oczywiście zasłużył on na o wiele bardziej dosadną krytykę i zgodzić się należy, że już na tym etapie Tatar mógł być inspirowany przez sowieckie służby, niemniej jednak

17 W pierwszej połowie lat dwudziestych funkcję przytułku dla dzieci pełniła też przez pewien czas Szkoła Pomocnicza (w czasach pruskich, a następnie jeszcze w roku

Teksty Drugie : teoria literatury, krytyka, interpretacja nr 5 (113), 127-137 2008.. Inaczej też k sz tałtu ją się k ulturow e scenariusze żałoby oraz ich społeczny

At a first-order phase transition the molar Gibbs potential of the two phases aqe equal, but other molar potentials (u, f , h, etc.) are discontinu- ous across the transition,