• Nie Znaleziono Wyników

3-ns pulse transmission in SF₂ buffered by C₅H₆OH and freon 502 at 10.6μm

N/A
N/A
Protected

Academic year: 2021

Share "3-ns pulse transmission in SF₂ buffered by C₅H₆OH and freon 502 at 10.6μm"

Copied!
4
0
0

Pełen tekst

(1)

Optica Applicata, Vol. X I I I , No. 4, 1983

3-ns pulse transmission in SF

2

buffered by C

5

H

6

OH

and freon 502 at 10.6 ^m*

Ka r o l Ja n u l e w ic z, Ro m an- Ja r o c k i

Sylwester Kaliski Institute of Plasma Physics and Laser Microfusion, 00-908 Warszawa- -Bemowo, Poland.

The primary motivation for nanosecond pulse transmission experiments has been the use of SF6-based saturable absorbers for wideband gas isolators in laser systems for the fusion. This is our first investigation of the mixture SF6, C2H sOH and freon 502, and therefore the results obtained indicate only the directions for further investigations.

Transmission of the SF6 buffered by other gases was measured by many authors [1-3]. Recently, the results of measurements on nanosecond time scale have been presented in paper [4]. These measurements, however, concerned SFg buffered by nitrogen and noble gases in order to present the possibilities of the enhancement of the contrast ratio of the passing pulse.

We have tried to measure the transmission characteristics of the SFe buffered by C2H 5OH and freon 502. In this mixture the SF6 is a saturable element at 10.6 (j.m and ethyl alkohol with freon are used to quench parasitics on the residual generation spectrum of C 02 molecule. The absorption spectra of SF6, C2H 5OH and freon 502 are presented in Figs, la -c , respectively, the summary spectrum of the mixture being given in Fig. Id. In these figures we can see that a relatively deep hole in the transmission spectrum is in the neighbour­ hood of the maximum of the R branch, 10.4 p.m band gain spectrum. The weak pressure dependence of the absorption spectrum width of the freon 502 requires the elimination of this hole by increasing the SF6 pressure.

The transmission characteristics against the input energy density have been measured on the nanosecond scale in the experimental set-up shown in Fig. 2. Results of the measurements are presented in Figs. 3 and 4. Transmis­ sion characteristics of the pure SF6 (Fig. 3) resemble the ones in [4]. From Figures 3 and 4 it follows that 31 hPa of C2H 5OH and 101 hPa of the freon act as 20 hPa of the pure SF6. The exact analysis of the behaviour of such mixture cannot be performed without some additional measurements, due to the uncer­ tainties concerning the mechanisms of the absorption by the SF„ molecule and to the lack of relaxation times data. That is caused by strong dependence

* This paper has been presented at the European Optical Conference (EOC'83), May 30-June 4, 1983, in Rydzyna, Poland.

(2)

374 K . Jan u le w icz, E . Jaeocki

Fig. 1. Small-signal transmission spectra for pure SF6 (a), ethyl alcohol (h), freon 502 (c) and summary mixture (d)

(3)

3-ns pulse transmission in SF6... 375 of the level excitation and relaxation times on both the input energy density and anharmonicity in the SF6 molecule.

Finally, let us make a mention about the errors committed in our measu­ rements. They were chiefly made while defining the input and output energy densities because of very small changes in the propagation direction, and the subsequent averaging at the input diaphragm aperture. The changes in errors were also caused by varying sensitivity of the energy meter-oscilloscope system.

2 '

Fig. 2. Experimental set-up: 1 — Pockel’s cell, 2 — laser spark gap, 3 — analyser, 4 — diaphragm, 5 — beam splitter, 6 — absorber, 7 — TEA C02 hybrid laser, 8 — attenuator, EM — energy meter

Fig. 3. 3-ns pulse transmission characteri­ stics for pure SF6: 1 — 5.3 hPa SF6, 2 - 19.2 hPa SF6

Fig. 4. 3-ns pulse transmission characteri­ stics for buffered sulfur hexafluoride: 1 - 5.3 hPa SF6, 41.8 hPa C2H5OH, 2 - 53 hPa SF6, 75 hPa C2H5OH, 3 - 53 hPa SF6, 31 hPa C2H5OH, 101 hPa, R 502

(4)

376 K. Jan ulew icz, R. Jarocki

References

[1] Ar m s t r o n g J. J., Ga d d y O. L., IEEE J. Quant. Electron. QE-9 (1972), 797-802. [2] Ga r s id e B. K., Ta y l o r R. S., Ba l l ik E. A., Can. J. Phys. 55 (1977), 849-854. [3] Ta y l o r R. S., Zn o tin s T. A., Ba l l ik E. A., Ga r s id e B. E ., J. Appl. Phys. 48 (1977),

4435-4443.

[4] Ta y l o r R. S., Ap o l l o n o v Y. V., Corkttm P. B., IEEE J. Quant. Electron. QE-16 314-318.

Cytaty

Powiązane dokumenty

Próby opisania literackiego obrazu grupy, czy to społecznej, czy etnicznej, nie mogą obyć się bez odpowiedzi na pytanie, czym tak właściwie jest obraz/ obrazowanie..

H et w erken i n 3D Voor dat we in staat zijn een beeld te renderen moet er eerst een model gemaakt worden.. Daarbij is het be langrijk om goed te bedenken welke informatie er wel

cylindrical nozzle on the inflow velocity to the impeller that the non-cylindrical ducted propeller offers a definite means of minimising propeller inducted vibra- tion and

Zauważmy, że dwie czynności prawne odnotowane w zapisce odbyły się w tym samym miejscu (ibidem, chyba w Dzierżkówku), ale w różnym czasie. Dowodzą tego różnice

Regions of large Iacobian correspond to regions of large node separation in physical coordinates. Tbe third measure. W was averaged over several nodes and scaled

Figure 1: (a) The scheme of the spectrometer for exciting and recording mechanical resonances of solid samples includes a variable frequency source, a pair of piezoelec-

Jakkolwiek by nie oceniać takiego podejścia do wykładu o po­ w staniu gwiazd, nie m a wątpliwości, że na jego wygłoszenie trzeba posiadać odwagę specjalisty,