• Nie Znaleziono Wyników

Comparative Evaluation of Seakeeping Prediction Methods

N/A
N/A
Protected

Academic year: 2021

Share "Comparative Evaluation of Seakeeping Prediction Methods"

Copied!
5
0
0

Pełen tekst

(1)

iiiJaU±u.

Fast ships

Comparative Evaluation of Seakeeping

Prediction Methods

Volker Bertram, Hidetsugu Iwashita

Möglichkeiten und Grenzen veschie-dener Methoden zur Berechnung des Seeverhaltens schneller Schiffe wer-den anhand eines schne!lcn Fischcr boots untersucht. Die Methoden sind Streifenmethoden, "high-speed strip theory" HSST, 3-D "Green Function Method" und Rankine-Singularitäten-Methode. Experimentelle und rechne-rische Zwischenergebnisse (hydro-dynamische Koeffizienten, erregende Kräfte) werden verglichen, um Fehler-quellen zu identifizieren. Streifen-methoden erwiesen sich in ihrer Anwendbarkeit begrenzt auf Froude-Zahlen unter 0,4.

Atechnical

Seakeeping Qualities of High-Speedcommittee on "Study of Vessel" was organized under the Marine Dynamics Research Committee of Japan

to study the validity and limitations of

strip theory to estimate seakeeping

quali-ties of high-speed boats, This is a digest

of the Japanese report, Takaki and

Iwash-ita (1994), with some additional inter-pretations. The figures shown here are only representative samples. We omitted results for a second high-speed boat as they gave hardly any additional insight.

Die Autoren:

Dr.-Ing. VolkérBertram arbeitet am

Institut für Schiffbau der Universität Hamburg, Hidetsugu Iwashita ist Pro-fessor an der Universität Hiroshima.

Notation follows ETTC standard unless

specified otherwise.

Modei Experiments

Ship motion experiments were

perform-ed in a towing tank for a model of a

typical Japanese hard-chine fishing boat.

Fig. 1. Tables I and II. Table III gives

sinkage and trim (positive for bow im-mersion) for conventional resistance test ("still water") and for the ship in waves

(time-averaged value). The model's

eigenperiods of heave and pitch were

both 0.9 s. The experiments determined heave and pitch motions and surge force in regular head waves for F = 0.4. 0.6. and 0.8. Wave lengths were varied from

2JL I (L = L) to 4. The towing point was at the longitudinal position of the

Rg. 1: Body plan of fishing boat

Table I: Offset data of fishing boat (full-scale, L = L ' 9.90 m; A -0.05543 L, B -0.06086 L)

í' Laboratorium

'oor

Sheep3hydr3rne,ti

Mskeq Z 2628 CD !Ofr

- .- -lIt' center of buoyancy. 17.8 cm (= 9.7% L)

above the base line. For high speeds.

con-siderable spray formed in the forepart of

LII uudci. Siajidaid wuvc ilcigili was

4.5 cm. Experiments with 9 cm wave height determined the degree of

non-linearity in some cases. None of the

mo-tions were affected by nonlinearity. Only

heave acceleration showed a weak

non-linear influence for F = 0.8.

Forced oscillation and exciting force ex-periments were performed for F,, = 0.4 and F,, = 0.6 in a model basin to supply

intermediate results necessary to evaluate the accuracy of the calculations methods. However, unlike in the motion

ex-periments, trim and sinkage were sup-pressed. The amplitude of the forced

oscillations was 2 cm, the frequency pa-rameter w 11g ranged from 1 to 25. The

exciting force experiments were

perform-ed in regular head sea of wave

steep-ness = 1/50. The wave length was

varied from XJL = 0.5 to 1.5. Added mass

coefficients are defined here A,1 = A

-C/w, where A,

are the usual added

mass coefficients and C1 are the restoring coefficients.

Estimation results by

strip theory

12 strip methods were compared. Table 1V. (NSM = New Strip Methods. STE = Salvesen-Tuck-Faltirisen. OSM =

Ordi-nary Strip Method; LF = Lewis form. CF

= Close-Fit; w0 = method follows

Mizo-guchi (1982) using w0 to compute

ex-10XIL

Y Z Y Z Y Z Y Z Y Z Y Z Y Z B 0.0 0.34 1.04 0.41 1.04 1.02 1.19 1.10 1.19 1.73 A 0.0 0.32 1.05 0.42 1.05 0.98 1.20 1.04 1.20 1.68 AP 0.0 0.32 1.06 0.42 1.06 0.945 1.20 1.00 1.21 1.625 0.0 0.28 1.07 0.39 1.08 0.87 1.23 0.93 1.22 1.56 2 0.08

-0.55

0.08 0.20 1.09 0.325 1.10 0.81 1.23 0.89 1.23 1.50 3 0.15

-0.49

0.15 0.13 1.12 0.26 1.12 0.77 1.25 0.83 1.25 1.43 4 0.22

-0.42

0.22 0.055 1.14 0.21 1.14 0.73 1.28 0.79 1.28 1.41 5 0.22

-0.35

0.22 0.0 1.15 0.16 1.16 0.70 1.29 0.75 1.30 1.39 6 0.22

-0.28

0.22

-0.06

1.12 0.13 1.15 0.70 1.30 0.75 1.32 1.45 7 0.22 -0.21 0.22

-0.08

1.07 0.16 1.12 0.76 1.28 0.80 1.32 1.45 8 0.17

-0.14

0.18

-0.10

0.92 0.26 0.99 0.87 1.12 0.92 1.24 1.44 1.24 1.56 8.5 0.14

-0.10

0.15

-0.08

0.75 0.37 0.84 0.945 0.97 1.00 1.14 1.52 1.14 1.63 9 0.11

-0.07

0.48 0.53 0.66 1.05 0.73 1.12 1.02 1.61 1.03 1.74 9.5 0.03 0.48 0.15 0.703 0.38 1.18 0.44 1.24 0.86 1.71 0.87 1.85 FP 0.0 1.34 0.70 1.81 0.70 1.96

(2)

Table Il: Principal particulars of fishing boat model (model scale

1:5.38), with respect to center of gravity

citing forces, o regular approach). 6

methods accounted for end effects by

in-cluding "end terms". (Strip theory

ex-presses the forces (and moment) on the ship as integral over the ship lengths

in-volving derivatives with respect to x.

Partial integration can transform this

in-tegral yielding terms which have to be

evaluated at the ends. These terms con-tain the added mass which is zero at the bow. For transom sterns with separating flows, a non-zero contribution remains

called "end term".) All results shown

here are for the design draft, i.e. not

con-sidering trim and sinkage. Trial

computa-tion with experimental trim and sinkage showed no significant change which is probably due to the wall-sided geometry

of the ship.

Heave added mass A33 and pitch added

mass A55 were generally underpredicted,

Fig. 2a. Only methods E and G predicted A55 well. Damping for heave B33 and

pitch B55 was generally overpredicted

es-pecially for long waves. The coupling

terms A35, A53, B, and B5- agree better

with experiments than the main terms,

especially for methods including end ef-fects. Fig. 2b. Surge exciting forces were

typically predicted to only half the

meas-ured value, Fig. 3. However, the surge

exciting force is small compared to heave and pitch exciting forces making large

re-lative errors more acceptable. Also, it is

difficult to measure surge forces and

measured values may therefore also be wrong. Heave and pitch exciting forces

agreed well with experiments for F5 =

0.4. Only pitch exciting moment was somewhat underpredicted for XJL > I.

For F5 0.6 the heave exciting force

disagreed for XJL< 1 and pitch exciting

moment for AIL> 1.

Heave and pitch motions agreed well

with experiments for close-fit methods.

Fig. 4. For F,, = 0.6. Lewis form methods

sometimes strongly overpredicted heave

and pitch. Added mass measurements

showed considerable scatter for AIL < i

making comparison in this range not

sen-sible. Close-fit methods generally

pre-dicted added resistance better than Lewis

form methods but also tended to

overpre-diction for i < AIL < 2.5. Takaki and

Iwashita (1994) compare the distribution

of 2-D heave added mass coefficients

over the length of the ship as predicted by

the various strip methods. Differences become pronounced towards the ship

ends. The effect of these differences on

'J I 1.! I (. f/...jJ.j') i " 'I l

Table Ill: Trim and sinkage (model sca e), values indicated by* are for 9 cm instead of 4,5 cm wave height

A,.

Addcd o,,,., od doo,png cooffi,o,*,., ro, I,o,.o, Add,d m.. ond d*m5fl onthcno, o,

Add,d,00,odd,.mp,oco,th.00fo,p*o

07.

Add,d n,o .od d**p,og co ic,00, io, p,o,h

L

Fig. 2a: Hydrodynamic coefficients (main terms),F,, = 0.6:

A33/pV, B3:,IpVüi,. (top), A55IpV, B55IPVWe(bottom)

Lewis form method Close fit method

8,. 0-08

.8>

Fig. 2b: Hydrodynamic coefficients (coupling terms),F5 = 0.6: A35IpV, B35IpVü. (top),A5.IpV,B53IpVw. (bottom)

Fn sinkage (cm) trim (deg)

still averaged still averaged

water in waves water in waves

0.4 1.18 0.60 0.80 0.72 0.6 1.65 1.52 - 1.98 - 1.91 1.54* - 1.76° 0.8 0.77 0.88 - 1.59 - 1.54 1.04* 1.30* LOA 2.543m D 0.158m A 52.3 kg 1.840m 01180m LCB 01632m B 0.428 m Tf 0.0586 m 0.275 .0

Lewis form method

Add,d,00,.*odd*A0p*co.thc,'ocn b,cocn o,.od p,c.rO Add m,,.0 ,nd d.oping co,.lc,o,o,

bnSo,*o h,000 .,d p,nob

Add,d ,o,.*o ood doc*pio co,th*.nco

bnccc., pAcb o,d b.00,

Add,00**ddoop,0000ffic,,n,o

(3)

global values. e.g. motions, will be small

because the 2-D added mass coefficients are multiplied by relatively small values

(cross section area or square of the water-line width) at the ship ends in the

integra-tion to global values. Lewis form

me-thods generally predicted smaller added

mass and larger exciting forces than close-fit methods in the middle of the

ship. The OSM differed largely from the other methods in the prediction of 2-D added mass but performed not worse in

the prediction of 3-D added mass and

damping.

The end terms were found to be

impor-tant in computing the hydrodynamic

coefficients for this ship due to the tran-som stern and the high speed. Computed hydrodynamic coefficients including end terms agree well with experiments.

Sub-sequently, motions also agreed better

especially around XJL 2, Fig. 5. For

XJL = 2. time-domain calculations based on Chin and Fujino (1991) gave virtually

the same results as strip methods. So in

this case, nonlinear effects play no role as

the ship is wall-sided over most of its

length.

Table IV: Compared strip methods

ooI

fo, pb

we xc 'wfo,c fo, so's.

W,.oex'w oo,,coo fo,

Close t method

Effective and cost saving

CHRIS-MARINE equipment

for diesel engine maintenance

at top level

Valve and Valve seat grinding machines Cylinder liner and cover grinding machines Cylinder liner honing machines

Wear edge milling machines Fuel valve grinding machines Pocket grinding machines

CHRIS-MARINE AB

Fig. 3: Exciting forces,F5= 0.6:F/pg Ç5BL. FJpgÇ,BL (top). M0/pgÇ5BL (bottom)

xc,,, ,g fo rc fo, b

So,s..00,00fb.,bpohe.doe. Hcc,.moo,o,,of,h.,bjp,,b,4o,.oes

A,ldcd oOoe ,o'ec,c,, berd

Fig. 4: Motion amplitudes and added resistance, F,, 0.6: X/Ç,,, Z/Ç5 (top). 91k-Ç,, and

R,,,,/(pg Ç (B2/L))(bottom):

white circles denote added resistance without ship motions (diffraction only)

Strip method 2-D repr. aft append. mcl. (A+B) frequency exc.force End effect

ANSMLF

B STF LF

+ a +

CNSMLF

w,. +

DNSMLF

ENSMLF

+ w,.

FNSMLF

w,,

GNSMLF

HSTFCF

w.

INSMCF

+ o +

JNSMCF

+ o +

KNSMCF

+ w,. +

LOSMCF

+ w,. +

(4)

Fig. 5: Effect of end terms on motions,F,, =

0.6: Z/Ça (left). 6/k Ç (right):

with end terms, - - without;

white circles denote results using

experi-mental hydrodynamic coefficients and excit-ing forces

Estimation results by other methods

Strip theory neglects most forward-speed

and 3-D effects. Therefore. High-Speed Strip Theory (HSST). 3-D Green

Func-- 'N...L..4 (r'Ffl\ _._.-J 0._i.:..., C.-...__.-....

joli ISICLIIOU t'.J11i) ciilU i'e.Ui!ro.ILIL )LJULL..t..

Method (RSM) were investigated. Vari-ous authors have contributed to the de-velopment of HSST. e.g. Faltinsen and Zhao (1991 a. b). Ohkusu and Faltinsen (1990). HSST formulates the problem in terms of linear potential flow theory in

the frequency domain. The numerical

so-lution for the flow around the hull starts at the bow. The free-surface conditions are used to step the solutions on the free-surface elevation and the velocity

poten-tial on the free surface in the longitudinal

direction of the hull. The velocity poten-tial for each cross section is found by a two-dimensional analysis. Transom stern

effects are accounted for by assuming that the flow leaves the transom stern

tangentially in the downstream direction

so that there

is atmospheric pressure

at the transom stern and the transom

stern is dry. The method is applicable for

F,, > 0.4. when the transverse wave sys-tem of the ship becomes less important.

because the linearized solution of the HSST accounts only for the divergent wave systems generated by the ship.

Takaki et al. (1995) give a summary of

the involved equations.

Fig. 6a. b show HSST and GFM

predic-tions at F, = 0.6. Strip method K is

in-cluded for reference. HSST divided the ship into 100 strips. Each strip used 40 segments on the hull and 100 on the free surface. The GFM (direct method, con-stant strength per panel, line integral and rn-terms neglected) used 292 panels on the hull. All 3 methods predict the

cou-pling terms(A35. A53. B35. B53) accurately, but underpredictA33andA55.On average,

HSST performs best, strip method worst

also for B33 and B55. All 3 methods underpredict heave exciting forces for X./L < 1. roughly by a factor of 4. On

average, again HSST performs best, strip

method worst. GFM overpredicts heave and pitch motions by up to 50% around

?JL = 2. This is mainly due to poor predic-tion of added masses. HSST predicts

mo-tions better than GFM and strip method,

but still overpredicts pitch for long waves

by some 20%. This is probably due to

poor prediction ofB55.HSST gives better

results than GFM but is twice as fast. For

2.0

1.5

1.0

0.5

0.0

11eue IflotlollS of hc .slii ii head 'tICS

Fig. Sa: Hydrodynanlic coefficients,F,, = 0.6:

A33IpV,Bs3/PVw. A35IpV.B35IpVw (top). A55IpV, B55IPVco. A 53/pV, B5-,/pV ú (bottom)

o

O Fn0.0

Fig. Sb: Exciting forces and motion amplitudes,F,, = 0.6:

F8/pgÇ5BL. F/pg Ç5BL, M0/pgÇ5BL2(left),X/Ç5, Z/Ç5, 0/k Ç5(right)

Pitch rootiolts of the ship in head wav

0,,

0.01-Add,d oo od do,optog co,ifetoo,a lo, hopo,

505.0 oe00000dOotoptopoo,ffic,o,t,lo,pttch

t, Lo l0

HSST fOg,,,oFM. Stop Method

Add,,, m,t ond d..,opng co,dlotop., be.o.eo h... ocA path

Atoo,00,00,o,tddo,op,Oioo,iiiae000 b,to.enpath..ndh..o. ton, F. -dt 3D g,.. , F M. Stop MomoS Oc. /40 "t

Path otto,, of th. nhtp io booS

'-s 'eDT 3D genee F M. Sn,p f.to0000 2.0 1.5 1.0 0.5 0.0 0.0 180 .<6 -t

Stai, notton.. 01,5, ha e 50.5 0LO.0 5c, 001000 of the nbtp e hoed SVtoeoottOtOOloOColOClt000C

(5)

practical purposes. HSST seems to be the best choice. However, the relatively poor

performance of the GFM could be due to the neglect of the rn-terms and the line

integral. Unfortunately. no results includ-ing these two contributions are available.

Calculations were also performed by a

Rankine source method. The radiation

condition was fulfilled following

Sciavou-nos and Nakos (1988). The free-surface

grid extended 0.25L before and 0.75L

behind the ship and L in transverse

direc-tion using 80 x 20 panels . The ship was discretized rather coarsely by 292 panels giving a total of 1892 panels. For com-parison. Sciavounos and Nakos (1993) claim that 4000 panels are necessary to

compute seakeepings flow around

yachts. The transom stern of the ship re-quires special care in panel arrangement on the free surface near the aftbody. The

chosen grid featured a rapid change in

width for the panels on the free-surface at

the transom stern. Otherwise it was

smooth. The steady disturbance of the

free surface and in the rn-terms was

ig-nored. There are no experimental data for

F = 0.2 but results at this Froude number

appear plausible compared to results for a

surface-piercing ellipsoid of same Frou-de number. Attempted computations for

F = 0.4 and 0.6 could not obtain any

reasonable results. Calculations were

very grid-sensitive near the stern. These

problems do not occur for usual ships

without transom sterns. Obviously tran-som sterns require special treatment. e.g.

following the approach of Sciavounos

and Nakos (1993).

Conclusions

1. The benchmark test showed that strip methods were valid only to roughly

F<0.4.

For ships with transom sterns, end

ef-fects are important and should be con-sidered.

HSST ("high-speed strip method")

is at present the most suitable

me-thod for fast ships for practical

pur-poses.

CPU time requirements.

time-consum-ing grid generation and difficulties

in modelling transom sterns make 3-D

Green function method and Rankine source methods at present unsuitable

for practical applications.

References

Chin. F. C.; Fujino. M. (199!). Nonlinear predic-tion of vertical mopredic-tions of fishing vessel in head

sea. J. Ship Research 35/1

Faltinsen. O.; Zhao. R. (1991a). Numerica! predic-tions of ship mopredic-tions at high forward speed. Phil.

Trans. Royal Soc., Series. A, Vol. 334

Faltinsen. O.; Zhao. R. (1991b), Flow prediction

around high-speed ships in waves. Math.

JJnnI

Approaches in Hydrodynamics. SIAM. ed. Miloh Mizoguchi. S. (1982). Exciting forces on a high

speed containership in regular oblique waves

-Frequency selections for calculating exciting forces by the strip method. Kansai Soc. Nay. Arch. 187 (in Japanese)

Ohkusu, M.; Faltinsen. O. M. (1990). Prediction

of radiation forces on a catamaran at high

Froude number. 18. Symp. Naval Hydrodyn.. Ann

Arbor

Sclavounos. PD.; Nakos. D. E. (1993). Seakeeping

Die EU-Kommission hat jetzt ein internationales Konsortium mit einer umfassenden Untersuchung zur

Verlage-rung von Gütertransporten auf die Binnenwasserstraßen beauftragt. Das

Forschungsprojekt ,,Shifting Cargo to

Inland Waterways" wird über das 4. Rah-menprogramm für Forschung,

Ent-wicklung und Demonstration (FTD) der

EU finanziert. Das Konsortium be-steht aus dem Europäischen

Ent-wicklungszentrum für die Binnenschiff-fahrt e.V. (EBD). Duisburg, dem

Oster-reichischen Institut für Raumplanung (OIR) und dem Architecture Navale

Analyse des Systèmes de Transport

(ANAST). Das EBD ist Koordinator des

Projektes ..Shifting Cargo" (Kurz-bezeichnung).

Zielsetzung

Um den Verkehr nicht zum Hemmnis der wirtschaftlichen Entwicklung Europas

werden zu lassen, ist es dringend

er-forderlich, Transportalternativen zu

finden. Eine wichtige Alternative bildet

die Binnenschiffahrt. die noch über

erhebliche Kapazitätsreserven verfügt.

Erklärtes politisches Ziel ist daher eine verstärkte, ökonomisch und ökologisch sinnvolle Einbindung dieses

Verkehrs-trägers.

Bisher hat jedoch eine

nennens-werte Verlagerung auf das Binnenschiff

kaum stattgefunden. Vielmehr

bevor-zugen Verlader und Spediteure

weiter-hin den Lkw. der schon auf vielen

Magistralen an die Grenzen seiner

Kapa-zität gestoßen ist. Hauptziel von .,Shifting Cargo" ist es deshalb, nach

den Ursachen dieser Entwicklungen zu fragen und hieraus Konzepte und

Strate-gien für eine stärkere Nutzung der

Binnenwasserstraßen abzuleiten. Damit

leistet das Forschungsvorhaben einen

grundlegenden Beitrag, um das von der

Europäischen Union angestrebte Ziel

einer auf Dauer tragbaren Mobilität zu

erreichen.

and added resistance of IACC yachts by a

three-di-mensional panel method. Il. Chesapeake Sailing

Yacht Symp. Annapolis

Takaki. M.; Iwashita. H. (1994). On the Estimation Methods of the Seakeeping Qualities for the High

Speed Vessel in Waves. Applications of Ship

Moti-on Theory to Design. 11th Marine Dynamics

Symp.. Soc. Naval Arch. of Japan

Takaki, M.; Lin. X.; Gu, X; Mori. H. (1995).

Theo-retical predictions of seakeeping qualities of high-speed vessels. FAST '95. Travemünde '

Inhalte

Um das angestrebte Ziel zu erreichen,

gilt es zunächst, das

Verlagerungspoten-tial zugunsten der Binnenschiffahrt zu er-mitteln und Möglichkeiten seiner

Bewäl-tigung im Rahmen der vorhandenen Ka-pazitäten aufzuzeigen. 1m Vordergrund stehen jedoch die Fragen, welche Fakto-ren bisher eine nachhaltige Verlagerung auf die Wasserstraßen behindert haben und welche Voraussetzungen erfüllt sein müssen, damit das Binnenschiff dort, wo

es sich anbietet, problemlos in die

Trans-portkette integriert werden kann. Ein

wichtiger Baustein zur Beantwortung

dieser Fragen ist eine ausführliche

Befra-gung der Verlader und Spediteure. Den

Abschluß der Untersuchung bildet die

Erarbeitung von Verlagerungskonzepten

und -strategien, die einmal auf die

Anbie-ter der Verkehrsdienstleistungen. zum anderen auf die politischen

Entschei-dungsinstanzen zugeschnitten sind.

Das Projekt wird zwei Jahre dauern und beinhaltet im einzelen folgende

Arbeits-schritte

1. Verlagerungsmöglichkeiten

- Analyse des Verkehrsaufkommens - Abschätzung des

Verlagerungspo-tentials

- Vergleich von

Verlagerungspoten-tial

und Kapazität der

Binnen-wasserstraßen 2 Verlagerungshemmnisse - schriftliche Befragung - ausführliche Interviews - case studies Verlagerungssvoraussetzungen für

eine verstärkte Integration der

Bin-nenschiffahrt in die Trarisportkette

- technische Optimierung - operative Optimierung - marktliche Optimierung

Verlagerungskonzepte und -strategien

- Szenarien möglicher Entwick-lungspfade

- Handlungsempfehlungen für

Poli-tik und Gewerbe

- Auswahl von Pilotprojekten. 'i

Binnenwasserstraßen

EU finanziert Forschungsprojekt

Cytaty

Powiązane dokumenty

Do rozwoju większej ilości kompleksowych i zintegrowanych struktur kierowni- czych oraz strategii dotyczących w szczególności interakcji i współzależności przepły- wu wiedzy,

'^'^'(,„4 = temperature fluctuation of the internal room of the heat-generation meter. b = constant, specific for the degree of con- version, involwed.. ratio of the volume of the

Spotykamy się dziś w Łodzi na XXXIII Walnym Zjeździe Sto- warzyszenia Elektryków Polskich, aby dokonać podsumowania kadencji władz Stowarzyszenia za ostatnie cztery lata. Ale

Składa się ona z trzech modułów: Aplikacja Android, Arduino oraz Baza danych SQLite.. Każdy z tych systemów posiada funkcjonalności przedstawione w zielonych

Przedstawiono podział poszczególnych grup metod geofizycznych oraz dokonano ich charakterystyki, a także przeanalizowano perspektywy i możliwości ich zastosowania w

Przeprowadzone badania w kierunku rozpoznania motywacji osób przybyłych turystycznie w rejon Babiej Góry, ukazały rolę przestrzeni chronionej parku naro- dowego jako

Jak już wspomniano, nie jest możliwe ścisłe rozgraniczenie tych form, jednak w kontekście rozwoju lokalnego można mówić o potencjale kulturowym oraz przyrodniczym, a także

Wojciech Trojanowski nigdy specjalnie nie zajmował się polityką, nie otrzy­ mywał też w RWE żadnych specjalnych, politycznych ról, choć niewątpliwie trud­ no