• Nie Znaleziono Wyników

The Region of Variability of the Ratio f(b) / f(c) within the Class of Meromorphic and Univalent Functions in the Unit Disc

N/A
N/A
Protected

Academic year: 2021

Share "The Region of Variability of the Ratio f(b) / f(c) within the Class of Meromorphic and Univalent Functions in the Unit Disc"

Copied!
12
0
0

Pełen tekst

(1)

ANNALES

U N I V E R SI T A T I S MARIAE C U R I E-S K Ł O D O W S K A LUBLIN - POLONIA

VOL. XXII/XXIII/XXIV, 31 SECTIO A 1968/1969/1970

Instytut Matematyki,Uniwersytet Marii Curie-Skłodowskiej, Lublin

ELIGIUSZ ZŁOTKIEWICZ

The Region of Variability of the Ratio within the Class of Meromorphic and Univalent Functions in the Unit Disc.

Obszar zmienności stosunku /(b)//(c) w klasie funkcji mero morf icznych i jedno- Ustnych w kole jednostkowym

Область значений выражения f(b)/J\c) в классе мероморфных и однолистных функций в единичном круге

1. Introduction.

Let Up denote the class of functions meromorphic and univalent in the unit disc d subject to the conditions

(LI) /(0) = 0,/'(0) = l,/(p) = oo where p is fixed, 0 < p < 1.

Let J/p be the family of functions meromorphic and univalent in d and satisfying the conditions

(1.2)

(i) /(0) = 0

(ii) Дг0) = zOf z0 0, zoe d (iii) f(P) = °o,p =£ ze

Various problems concerning functions that are holomorphic and univa­

lent in d and are normalized by the conditions (i) and (ii) in (1.2) have been considered by many authors. In particular, J. Krzyz [3] found the region of variability of q> (z) for fixed ze d, where y ranges over the whole class of functions that satisfy (i) and (ii) in (1.2).

In the present note we determine the region of variability of f(z), fe In the limit case p — 1 we obtain the Krzyz’s result.

This paper is a part of research done by the author as a Visiting Scholar at the University of Michigan in Ann Arbor (U. S. A.). The author is very much indebted to Professor Maxwell O. Reade for his encour­

agement.

(2)

202 Eligiusz Złotkiewicz

2. Preliminary remarks

Let z, z Q,p, be a fixed point of A and let the variability region of q>(z) over J/p be the set IE = {w: w = g>(z),<pe J?p}.

It is clear that E is identical to the set of all possible values of the ratio zof (z)/zf(z0) for f ranging over the whole class Up. The set E is closed because the class Up is compact.

Let dE denote a boundary of E and let VE be the complement of E.

A point PedE is said to be a non-singular boundary point of the set E if there exists a point a, a e WE, such that \P—a\, Pe E, attains its minimum with P = Po. It is well-known [5] that the set of non-singular boundary points is everywhere dense in dE.

Functions feUp corresponding to the non-singular boundary points of A we shall call extremal functions.

In order to determine the set of non-singular boundary points we shall use variational formulas given by the following:

Theorem A. [4]. Suppose that fe\Jp,£,Z p, is a fixed point of A, A is an arbitrary fixed complex number, £„ satisfies |£0| =1 awd a = —

—press=J)/(s). Then there exists a positive number x„ such that for each A e <0, x0) there exist functions belonging to Up that have the form

(2.2) f\z) = /(s) + AP(?,J,)W)

where

|

(2.3) P(z,u) =f(z)-zf'(z)--- Ha/2^)--- .

u —z u —p

If w0 is an interior point of ^f(A), then

(2.4) /** (2) = f(z) - aA + 0 (xa) w0-f№

belongs to Up.

3. A differential equation for the extremal functions

Let b,c,b yi c, 0 A p be fixed points of A and let F(J) denote the expression f(b)lf(c),feUp. We prove now

Lemma 1. The functions corresponding to the non-singular boundary points of the set E satisfy the differential equation

(3)

The region of variability of the ratio f{b)/f(e) ... 203

(3.1) -iOl£f’W

\ /(0 I

(f(b)—f(c)f(£)

= <№)

for £« J\{p}; here 0c<0,2jr> and Q(Ç) is a rational function such that (3.2) <?(C)>0, ICI =1

holds.

Proof. Suppose that f corresponds to a non-singular boundary point of E. Then for a suitably chosen a, a e T.E we have

(3.3) l-F(/)-a| = min|P(g)-a|

Let f* be given by (2.1). Then

|-F(/*)—«I* = \F<J)-a\*-l\F(f)-a\#l\A +

■+ \7m F»M0)Ji+ (}

+e’<

fb ~fc

where/,, = f(b),fc = f(f>),f = /(C) and 0 = arg[P(/)-a].

In view of (3.3) the real part of the expression in the braces must be equal to zero for each fe/1^.{p}. Since argA can be chosen in an arbitrary manner we obtain the condition

(3.4) e (/<,-/„)/

(/c-/)(/&-/)

_.e P(b, Ç)—P(c,

fb-fc

= e +

fb-fc which holds for fed\{p}.

Now let us apply the formula (2.2) to the extremal function /. Then

\F(f)-a\* = \F(J)-a\* + X\F(J)-a\&le-ieF{b, Co) -P(c, Co) from which we obtain

^<e' ,9P(i,Co)-P(c fb-fc From the last we obtain (3.2).

Now (2.3) and (3.4) yield

(3.5) <?(C) = A.+A,-^- +A4—~ +A ' +P Z-c

fb fc W)

Z-p _ _ 1+6C -r 1+cC pA1 AA2 ——y? +^3 ■

1-6C 1-cC

1+pC 1 -pC Hence Lemma 1 has been proved.

(4)

204 Eligiusz Złotkiowicz

If we apply (2.4) to (3.3) we can convince ourselves that the set

^/(J), where / is an extremal function, has no interior points so that the set is the whole plane slit along a finite number of arcs.

The condition (3.4) has been established for £e Zl\{p}. However, it is well-known that it holds also on |£| = 1. Hence, the extremal functions map A onto the whole plane cut along a finite number of analytic arcs.

4. The form of £>(£)

We have proved that <?(£) is a rational function. It is easy to see

<?(£)=<?(£)

which implies that the roots of the equation ()(£) =0 are symmetric w.r.t. the unit circumference. Moreover (3.4) shows that Q(£) 0 for

£ 0, oo, and |£| 1. Since the equation Q(£) = 0 has at most 6 roots and the roots on |£| =1 have an even order of multiplicity then Q(£) must have the form

c(£-A)2(:-«)2

(4.11) <?(£) (6_:)(c_^)Cp_C)(1_X)(1_cC)(1_5:)

where k = eia, I — are the points on |£| =1 which are carried by f onto the endpoints of the arc /(|£| =1). Of course, /'(fc) = /'(1) = 0.

Hence / maps A onto the whole plane cut along one analytic arc with endpoints /(&),/(!).

Since /(|£| = 1) is an analytic arc, the points k, I divide the unit circumference into two arcs a±, a2 with common endpoints which have the same length in the metric |Q (e‘e) |4 dB. Hence

/|<?(eifi)|M0 = f \Q(eie)\'dO

a P

from which we obtain

where

^»(0) = |(&-e«)(C-C«)(3,_e")|-1.

Now (4.2) can be written in the form (4-3)

where (4.4)

k + l = D+Dkl

D = f eie<f>(_B)d6/ f <p(O)dO.

0 0

(5)

The region of variability of the ratio f(b)/f(c) ... 205 On the other hand Q(e'°) > 0, so that it follows that

k-l = = e‘iv holds. Finally we find that Q(£) has the form

(4-5) W) = |A| __________ ________________________

(6 - 0 (c - o (p - :) a -j»c) (i -c^)(i - so

Now, if we compare the Laurent coefficients of both sides of (2.1) near the point £ = 0 and if we use (3.5), then we obtain

A = e-iB fb’fc Thus we have proved the following:

Theorem 1. If b,c, b c =£ p 0 are given points of the unit disc and if te <fb, 2n), then the functions corresponding to the non-singular boun­

dary points of E satisfy the differential equation

(4-6)

/tf'(f)V

fb-fc-fU) bpc Ç (l — (fD+Dea) Ç + e+il

\ /(£) / (A - A)(A —/(f))

(b-ü)(c- Ç)(P -

£) (1 -PC) (l -co (l - 6£)

and map A onto the whole plane cut along one analytic arc.

5. The region E

In this section we shall determine the region of variability of the ratio /(6)|/(c) within the class Up.

Let z„, zk, z2, z3 denote the points 0, b, c, p, respectively, Zl Zg z3

f (*i - £) (*. - 0 («8 - 0 (1 - ZiC) (1 - z, f)(l - z3 C) (5-1)

Stf) = l-(D+Pe")C+ e’<C2

and let Fk be the value of the integral JJS(C)(C)dC = I(zk) taken along y

a closed curve y situated in A that starts from z = I and incloses the single critical point zk (k = 0 to 3). This closed curve can be reduced to a loop formed by the straight line lzk, the circle of infinitesimal radius about zk, and the straight line zkl.

Then

Fk = 2f S(£)R(£)d£, k = 0,1, 2,3 i

where the integral is taken along the straight line lzk.

(6)

206 Eligiusz Złotkicwioz

Let

(5.2) Qk=Fk-F0, fc =1,2,3.

It is well-known [6] that

l(y) = l(0 + j>A

fc=l

or

i(y)=A-^o+jXfl*

*=i

where

l(y)

denotes the integral taken along a curve y jointing I to 0 In the case under considerations there is the possibility of eliminating one of the constants £2k.

Since (4.2) holds, we have J R(£)S(£)d£ = 0 and hence

ICI-l

Fa-F2+F1-F0

= 0 = f E(OS(OdC

ICI-l

Therefore

L— 3 1? •> j 1? —— 0 Thus (5.3) takes the form

z(y) = i(o+2’

(5.4)

i(o =r3-i(o+2X&*

1

Let us write (4.1) in the form vQdv

jvv(v0 — v)(v0 — qv) ' O' ,=T= where v0 = f(b),q =/(&№),« =/(0-

If we set

_ 4(g*-g+l) _ 4(l+ g)(g—2)(2g—1)

3q2 ,Sa 27 q3

then we have

2d®

l/®0^4®3 — g2x—g3

0.

fi(0«(0^

(5.5)

and 0’-2703

(7)

The region of variability of the ratiof(b)/f(c)... 207 Let £)(w; 12x, Q2) be the elliptic function of Weierstrass defined by the formula

-5-00

£)(m; Q2, H2) = w~2 + —(nfix+wCa)-2].

— 00

If we integrate (5.5), then we obtain t

(5.6) /(f) = Ap(p(f)E(f)df) +B

p

where A, B are constants and we have made use of the fact that/(p) = oo.

The formulas (5.4) show that we can write (5.6) in the form c

/(f) = JS(u)E (u)du+I(f2x+P2)) +B 0

and hence the function / is single valued.

Finally, because /(0) = 0 we have (5.7)

t

/(f) =

f S(æ)E(æ)dx+|(^i + ^2)) ~«2]

0

where e2 = p(i(£i+I22)) and A has to be chosen so that /'(0) = 1.

Formula (5.7) gives us the form of the extremal functions.

If we set f = b, £ — c then we obtain (k =1,3)

Let l(r) be the modular function defined as a conformal mapping of the domain {0 < Six < l}n{|r —1| > j} onto the upper half plane such that 1(0) = 1, 1(1) = oo, l(oo) = 0.

Then [1]

(5.9) A(t)

1(t)-1 — 1(t+1) e2 g3

^1 e3 which combines with (5.8) to yield (5.10)

As t varies from 0 to 2rc the quotient describes a circle. Hence, the set of all bundary points of the region E lies on the curve (5.10).

Thus we have established the following

(8)

208 Eligiusz Złotkiewicz

Theorem 2. The region E is a closed set whose boundary is given by the equation

I &i(0\

=i(1+ c^r)’

where 2 is the modular function defined by (5.9) and Q2, Q2, > 0 are given by the formulas

f2k = f S(x)R(x)dx, k — 1,2 Yk

yk is a loop that incloses the points 0 and zk (k =1,2) and that leaves the other critical points outside.

6. The limit case p = 1

It follows from (1.3) that limZ)(p) = 1. Hence k = 1 or I = 1 and

w’e obtain P=1

where

p :

д.)-я(1+ж)! ,,s

, C (l — e‘‘x)dx

= J

Yk

'

Vx(z1—x)(z2 — x)(l —zlf x)(l— z2x) This is a well-known result due to J. G. Krzyż [3].

REFERENCES

[1] Bateman, H., Erdólyi, A., Higher Transcendental Functions, Me Graw Hill New York (1955).

[2] Krzyż, J., Some remarks concerning my paper “On univalent functions with two preassigned values”, Annales UMCS XVI (1962) 129-136.

[3] Krzyż, J., The region of variability of the ratio f(z1)/f(z2) within theclass of uni­ valentfunctions, Annales UMCS XVII (1963), 55-64.

[4] Lewandowski, Z., and Złotkiewicz, E. Variational formulae for functions meromorphioandunivalent intheunit disc, Bull.Acad. Pol. Sci. 12 (1964), 253-254.

[5] Schaeffer, A. D., Spencer, D. C., Coefficients regions for schlicht functions, Coll. Pub. vol. XXXV (1950).

[6] Stoilov, S., Theory offunctionsof a complex variable, Moscow (1962), (Russian).

STRESZCZENIE

W pracy podano dokładny obszar zmienności wyrażenia f(b)lf(c) w klasie meromorficznych i jednolistnych funkcji.

РЕЗЮМЕ

В работе определена точная область значений выражения/(6)//(с) в классе мероморфных и однолистных функций.

(9)

UNIWERSYTET MARII CURIE-SKŁODWSKIEJ

*

Nakład 750 egz. Ark. wyd. 16 Ark. druk. 13,25. Papier druk.sat.

kl. III 80 g. Oddano do składania 20 V 1971 r. Druk ukończono

wewrześniu 1972r.

Zam. nr 655/71 B-8

* WROCŁAWSKA DRUKARNIA NAUKOWA

(10)
(11)

ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA

VOL. XIX SECTIO A 1965

1. Z. Bogucki: On a Theorem ofM. Biernacki Concerning Subordinate Funotiona.

O twierdzeniu M. Biernackiego dotyczącym funkcji podporządkowanych.

2. Z. Bogucki and J. Waniurski: On a Theorem of M. Biernacki Concerning Convex Majorants.

O twierdzeniu M. Biernackiego dotyczącym majorant wypukłyoh.

3. R. M. Goel: On the Partial Suma of a Class of Univalent Functiona.

0 sumach częściowych pewnej klasy funkcji jednolistnych.

4. F. F. Jabłoński et Z. Lewandowski: Caractérisation de certaines classes de fonctions holomorphes par la subordination modulaire.

Charakteryzowanie pewnych klas funkcji holomorficznych w terminaoh podporządkowania modułowego.

5. Z. Lewandowski: On someProblems of M. Biernaoki Concerning Subordinate Functions and on some Related Topics.

O pewnych zagadnieniach M. Biernackiego dotyczących podporządko­ wania funkcji i pewnych problemach pokrewnych.

6. Z. Lewandowski and J. Stankiewicz: On MutuallyAdjoint Closo-to-Convex Functions.

O wzajemnie sprzężonych funkcjach prawie — wypukłych.

7. J. Stankiewicz: Some Remarks on Functions Starlike with Respect to Sym- metric Points.

Pewne uwagi o funkcjach gwiaździstych względom punktów symet­ rycznych.

8. M. Maksym: Relations entre les plans oscillateurs orientés de 15 types.

Zależności między zorientowanymi płaszczyznami ściśle stycznymi 15 typów.

9. M. Maksym: Les familles d’éléments plans P(Jf), généralisation des plans oscillateurs d’une courbe.

Rodzinyelementów płaskich P(M), stanowiących uogólnienie płaszczyzn ściśle stycznych krzywej.

10. M. Maksym: Sur la continuité des paratingens plans oscillateurs dune courbe.

O ciągłości paratyngensów płaszczyzn ściśle stycznych do krzywej.

11. J. Sowiński: Sur la congruence des surfaces dans l’espace équiaffine.

O przystawaniu powierzchni w przestrzeni ekwiafinicznej.

12. D. Szynal: Certaines inégalitéspour les sommes de variables aléatoires et leur application dansl’étude de laconvergence de séries etde suites aléatoires.

Pewne nierówności dla sum zmiennych losowych i ich zastosowanie w badaniu zbieżnośoi szeregów i ciągów losowych.

(12)

Biblioteka Uniwersytetu MARII CURIE-SKLODOWSKIBJ

ANNALES UNIVEESITATIS MARIAE

VOL. XX SECTIO A

w Lublinie

CZASOPISMA

1968-/3/0

1. G. Labelle: On the Theorems of Gauss-Luca ’ O twierdzeniach Gaussa-Lucasa i Grace 2. F. Bogowski, F.F. Jabłoński, et J. Stani etinégalités des modules pour certain dans le cercle unité.

Podporządkowanie obszarowe a nierówności modułów dla pewnych klas funkcji holomorficznych w kole jednostkowym.

3. J. Chądzyński and J. Ławrynowicz: On Homeomorphisms and Quasi- conformal Mappings Connected with Cyclic Groups of Homographies and Antigraphies.

O homeomorfizmach i odwzorowaniach quasi-konforemnych związanych z grupami cyklicznymi homografii i antygrafii.

4. Z. Lewandowskiand J. Stankiewicz: On the Region ofVariability oflogf'(z) for some Classes of Close-to-convex Functions.

Obszar zmienności logf'(e) w pewnych podklasach funkcji prawie wy­ pukłych.

5. J. Miazga, J. Stankiewicz and Z. Stankiewicz: Radii of Convexity for some Classes of Close-to-convex Functions.

Promienie wypukłości pewnych podklas funkcji prawie wypukłych.

6. J. Stankiewicz: Quelques problèmes extrémaux dans les classes des fonctions o-angulairement étoilées.

Pewne problemy ekstremalne w klasach funkcji o-kątowo gwiaździstych.

7. J. Stankiewicz: On some Classes of Close-to-convex Functions.

O pewnych podklasach funkcji prawie wypukłych.

8. A. Wesołowski: Relations entre la subordination et l’inégalité des modules dans le cas des majorantes appartenant a la classe N (p, 0: g).

Zależność między podporządkowaniem i nierównością modułów w przy­ padku majorant należących do klasy N (p,O:g).

9. A. Z murek: Sur les relations entre les plans osculateurs à k-dimensions d’une courbe dans l’espace euclidien à m-dimensions.

Zależności między Ze-wymiarowymi płaszczyznami ściśle stycznymi krzywej w przestrzeni euklidesowej n-wymiarowej.

Adresse:

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ BIURO WYDAWNICTW

LUBLIN Plac Litewski 5 POLOGNE

Cytaty

Powiązane dokumenty

the univalence of / whose all coefficients a* in the expansion (1.2) vanish, it seems natural to ask whether a suitably modified oondition (1.5) involving the coefficients a*

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге

The determination of the region D(z1,zi) of variability of the ratio /(г1)//(гг)&gt; where Zj,z2 are fixed points of К different from 0 and from each other and f ranges over 8,

Stankiewicz, On a class of p-valent analytic functions with fixed argument of coefficients defined by fractional calculus, Folia Scient. Waniurski, Some classes of univalent

Let S(b) be the class of bounded normalized univalent functions and Σ(b) the class of normalized univalent meromorphic functions omitting a disc with radius b.. The close

109] introduced the concept of the linear-invariant family M and showed that numerous theorems about the family M followed immediately once we have proved that M is a linear-