• Nie Znaleziono Wyników

A Sufficient Condition for Univalence of Functions Meromorphic in the Unit Disc

N/A
N/A
Protected

Academic year: 2021

Share "A Sufficient Condition for Univalence of Functions Meromorphic in the Unit Disc"

Copied!
4
0
0

Pełen tekst

(1)

/ ; I , ■ .

ANNALES UNI VERSITATIS MAftlAE CURIE-SKŁODOWSK A LUBLIN-POLONIA

VOL. XU, 9____________________________SBCTIO A______________________________________ 1987

Instytut M&temutyki UmwmyUt Mani Cune-Skłodowskiej

■ , ' . ' ' ■ ' ' ' J.MICHALSKI

i ,

A Sufficient Condition for Univalence of Functions Meromorphic in the Unit Disc

Pewien warunek dostateczny jednolistnosd funkcji meromorficznej w kole jednostkowym

1. Introduction. The class Sp , 0 < p < 1 , of functions f meromorphic and univalent in the unit disk D with a simple pole at p and the normalization : /(0) = /'(0) — 1=0 has been investigated by many authors, c£.[l]. S. M Zemyan was lust to investigate the subclasses Sp(«) of Sp consisting of all f € Sp with a fixed residue res (/;p) = a , cf. [2], [3], [4]. It is easily seen that F(f) = is a function

/(1/f)

cf the familiar class £ which satisfies F(l/p) = 0. Hence a = —F'(l/p)/p’ and this determines the range 0p of values of « = res(/;p) , f € Sp(«) :

(1.1) nF = {«€C:s=-p’(l-p’r , »€/>}.

Consequently, any f € <Sp(a) has the forme *

(1-2) /(»)=-3T + £+(l+S-)*+52a*** ’

According to Zemyan (3) the following area theorem holds for f € Sp(a) :

U*3)

(I — y3)*

- I1 + p-’1 + '

This implies that (1.4)

holds for any a € flp.

1-1 > (1->’)|1 + £|

(2)

72 J. Kfidudski On the other hand, & more restrictive oondition

(1.5) |«|>(l+P)’|l + £|

implies that the set of all a satisfying (1.5) is a proper subset of 0p. In fact, in Sect 2 we show that the function

(1.5)

with a satisfying (1.5) is univalent which implies a € flp. As shown in [3], the area of the set of values omitted by / € Sp(a) is a maximum for F(z,p, «) , as soon as (1.5) holds.

Since (1.5) implies the univalence of (1.6) , i.e. the univalence of / whose all coefficients a* in the expansion (1.2) vanish, it seems natural to ask whether a suitably modified oondition (1.5) involving the coefficients a* does imply the univalence of / as given by (1.2). A positive answer is given in the next section. Fbr the suggestions concerning the problem I am mnch indebted to Prof. J.Krzyz.

2. A sufficient condition for the univalence of /. VWs have the following Theorem . Suppose that (1.5) hold» for some « € C and 0 < p < 1. # moreover

(2-1)

then the function

it univalent. Consequently, f € Sp(a) andsèQr.

Proof. If »i,sj eD — (p) , then

(2-3) sj -»i

It follows from (1.5) that

U+p

)’

> l(*i - p

)(*»

- p)l ; e P.

Hence

I(*i

-

p

)(*

j

-

p

)I ’

(3)

A Sufficient Condition for Univalence of Finctions Meromorphic... 73 and cosequently,

(2.4)

1 + ± 2___ I >___±L____ h + ±|

. .Z- . V-S I- . • I

> WO+p) ’ - |i +

In view of (2.1) and (2.4) we have

_o____________ a________

+ P3 (*1 -P)(*3-P)l

OO I oo

*wj 'twï

and from thia and (2.3) we readily see that /(xj) — Z(*i) / 0 for tj ?S ’i i

*i,*3 6 D — (p). This ends the proof.

REFERENCES

[1] Goodman, A. W. , Usssolent PkactsoiM , VoL H, Manner Puhi. Company, Tampa, Florida 1983.

[2] Zemyan , S. , A msnsnwil outer area problem in conformal mapping , J. Analyse Math. 39 (1981), 11-23.

[3] Zemyan , S. , Ol a mammal outer area problem far a date of meromorphic nniealent function* , Bull. Austral. Math. Soc. 34 (1986), 433-445.

[4] Zemyan , S. , The range of the reeidne functional for the clam Sp , Michigan Math. J. 31 (1984), 73-77.

STRESZCZENIE

W pracy tej wykazano następujące twierdzenie : jeśh 0 < p < 1 ora» dla fl € C spełniona jest nierówność (1.5), to funkcja f (x) określona wzorem (2.2), w którym współczynniki «fc spełniają

nierówność (2.1), jest jednolistna w obszarze D \ {p}.

SUMMARY

In this paper the following theorem is proved : If 0 < p < 1 and for some a € C the inequality (1.5) holds, then f(z) as defined by (2.2) with coefficients a* satisfying (2.1), is univalent in D \ {p}.

«

(4)

/

Cytaty

Powiązane dokumenty

Współczynniki Grunsky’ ego funkcji meromorficznycłi gwiaździstych i wypukłych Коэффициенты Грунского мероморфных, звёздных и

tute of Mathematics of M. Curie-Sklodowska University, Lublin, Poland.. This lemma gives the extension of the family J^.p/H) up to the linear - invariant family H for an... On

[1] Ahlfors, L.V., Sufficient conditions for quasi-conformal extension, Discontinous groups and Riemann

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

Some authors gave similar univalence conditions by using bounded functions f (z) ∈ A in their papers, see the works (for example Breaz et al.. We note that the functions f ∈ A do

Functions feUp corresponding to the non-singular boundary points of A we shall call extremal functions.. In order to determine the set of non-singular boundary points we shall

A Sufficient Condition for Zeros (of a Polynomial) to be in the Interior of Unit Circle. Warunek dostateczny aby zera wielomianów leżały w

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге